Болезни Военный билет Призыв

Статическая значимость. Понятия статистической значимости и статистического критерия. Какие уровни значимости используются

В любой научно-практической ситуации эксперимента (обследования) исследователи могут исследовать не всех людей (генеральную совокупность, популяцию), а только определенную выборку. Например, даже если мы исследуем относительно небольшую группу людей, например страдающих определенной болезнью, то и в этом случае весьма маловероятно, что у нас имеются соответствующие ресурсы или необходимость тестировать каждого больного. Вместо этого обычно тестируют выборку из популяции, поскольку это удобнее и занимает меньше времени. В таком случае, откуда нам известно, что результаты, полученные на выборке, представляют всю группу? Или, если использовать профессиональную терминологию, можем ли мы быть уверены, что наше исследование правильно описывает всю популяцию , выборку из которой мы использовали?

Чтобы ответить на этот вопрос, необходимо определить статистическую значимость результатов тестирования. Статистическая значимость {Significant level , сокращенно Sig.), или /7-уровень значимости (p-level) - это вероятность того, что данный результат правильно представляет популяцию, выборка из которой исследовалась. Отметим, что это только вероятность - невозможно с абсолютной гарантией утверждать, что данное исследование правильно описывает всю популяцию. В лучшем случае по уровню значимости можно лишь заключить, что это весьма вероятно. Таким образом, неизбежно встает следующий вопрос: каким должен быть уровень значимости, чтобы можно было считать данный результат правильной характеристикой популяции?

Например, при каком значении вероятности вы готовы сказать, что таких шансов достаточно, чтобы рискнуть? Если шансы будут 10 из 100 или 50 из 100? А что если эта вероятность выше? Что можно сказать о таких шансах, как 90 из 100, 95 из 100 или 98 из 100? Для ситуации, связанной с риском, этот выбор довольно проблематичен, ибо зависит от личностных особенностей человека.

В психологии же традиционно считается, что 95 или более шансов из 100 означают, что вероятность правильности результатов достаточна высока для того, чтобы их можно было распространить на всю популяцию. Эта цифра установлена в процессе научно-практической деятельности - нет никакого закона, согласно которому следует выбрать в качестве ориентира именно ее (и действительно, в других науках иногда выбирают другие значения уровня значимости).

В психологии оперируют этой вероятностью несколько необычным образом. Вместо вероятности того, что выборка представляет популяцию, указывается вероятность того, что выборка не представляет популяцию. Иначе говоря, это вероятность того, что обнаруженная связь или различия носят случайный характер и не являются свойством совокупности. Таким образом, вместо того чтобы утверждать, что результаты исследования правильны с вероятностью 95 из 100, психологи говорят, что имеется 5 шансов из 100, что результаты неправильны (точно так же 40 шансов из 100 в пользу правильности результатов означают 60 шансов из 100 в пользу их неправильности). Значение вероятности иногда выражают в процентах, но чаще его записывают в виде десятичной дроби. Например, 10 шансов из 100 представляют в виде десятичной дроби 0,1; 5 из 100 записывается как 0,05; 1 из 100 - 0,01. При такой форме записи граничным значением является 0,05. Чтобы результат считался правильным, его уровень значимости должен быть ниже этого числа (вы помните, что это вероятность того, что результат неправильно описывает популяцию). Чтобы покончить с терминологией, добавим, что «вероятность неправильности результата» (которую правильнее называть уровнем значимости) обычно обозначается латинской буквой р. В описание результатов эксперимента обычно включают резюмирующий вывод, такой как «результаты оказались значимыми на уровне достоверности (р) менее 0,05 (т.е. меньше 5%).

Таким образом, уровень значимости (р ) указывает на вероятность того, что результаты не представляют популяцию. По традиции в психологии считается, что результаты достоверно отражают общую картину, если значение р меньше 0,05 (т.е. 5%). Тем не менее это лишь вероятностное утверждение, а вовсе не безусловная гарантия. В некоторых случаях этот вывод может оказаться неправильным. На самом деле, мы можем подсчитать, как часто это может случиться, если посмотрим на величину уровня значимости. При уровне значимости 0,05 в 5 из 100 случаев результаты, вероятно, неверны. 11а первый взгляд кажется, что это не слишком часто, однако если задуматься, то 5 шансов из 100 - это то же самое, что 1 из 20. Иначе говоря, в одном из каждых 20 случаев результат окажется неверным. Такие шансы кажутся не особенно благоприятными, и исследователи должны остерегаться совершения ошибки первого рода. Так называют ошибку, которая возникает, когда исследователи считают, что обнаружили реальные результаты, а на самом деле их нет. Противоположные ошибки, состоящие в том, что исследователи считают, будто они не обнаружили результата, а на самом деле он есть, называют ошибками второго рода.

Эти ошибки возникают потому, что нельзя исключить возможность неправильности проведенного статистического анализа. Вероятность ошибки зависит от уровня статистической значимости результатов. Мы уже отмечали, что, для того чтобы результат считался правильным, уровень значимости должен быть ниже 0,05. Разумеется, некоторые результаты имеют более низкий уровень, и нередко можно встретить результаты с такими низкими /?, как 0,001 (значение 0,001 говорит о том, что результаты могут быть неправильными с вероятностью 1 из 1000). Чем меньше значение р, тем тверже наша уверенность в правильности результатов .

В табл. 7.2 приведена традиционная интерпретация уровней значимости о возможности статистического вывода и обосновании решения о наличии связи (различий).

Таблица 7.2

Традиционная интерпретация уровней значимости, используемых в психологии

На основе опыта практических исследований рекомендуется: чтобы по возможности избежать ошибок первого и второго рода, при ответственных выводах следует принимать решения о наличии различий (связи), ориентируясь на уровень р п признака.

Статистический критерий (Statistical Test) - это инструмент определения уровня статистической значимости. Это решающее правило, обеспечивающее принятие истинной и отклонение ложной гипотезы с высокой вероятностью .

Статистические критерии обозначают также метод расчета определенного числа и само это число. Все критерии используются с одной главной целью: определить уровень значимости анализируемых с их помощью данных (т.е. вероятность того, что эти данные отражают истинный эффект, правильно представляющий популяцию, из которой сформирована выборка).

Некоторые критерии можно использовать только для нормально распределенных данных (и если признак измерен по интервальной шкале) - эти критерии обычно называют параметрическими. С помощью других критериев можно анализировать данные практически с любым законом распределения - их называют непараметрическими.

Параметрические критерии - критерии, включающие в формулу расчета параметры распределения, т.е. средние и дисперсии (^-критерий Стью- дента, F-критерий Фишера и др.).

Непараметрические критерии - критерии, не включающие в формулу расчета параметров распределения и основанные на оперировании частотами или рангами (критерий Q Розенбаума, критерий U Манна - Уитни

Например, когда мы говорим, что достоверность различий определялась по ^-критерию Стьюдента, то имеется в виду, что использовался метод ^-критерия Стьюдента для расчета эмпирического значения, которое затем сравнивается с табличным (критическим) значением.

По соотношению эмпирического (нами вычисленного) и критического значений критерия (табличного) мы можем судить о том, подтверждается или опровергается наша гипотеза. В большинстве случаев для того, чтобы мы признали различия значимыми, необходимо, чтобы эмпирическое значение критерия превышало критическое, хотя есть критерии (например, критерий Манна - Уитни или критерий знаков), в которых мы должны придерживаться противоположного правила.

В некоторых случаях расчетная формула критерия включает в себя количество наблюдений в исследуемой выборке, обозначаемое как п. По специальной таблице мы определяем, какому уровню статистической значимости различий соответствует данная эмпирическая величина. В большинстве случаев одно и то же эмпирическое значение критерия может оказаться значимым или незначимым в зависимости от количества наблюдений в исследуемой выборке (п ) или от так называемого количества степеней свободы , которое обозначается как v (г>) или как df (иногда d).

Зная п или число степеней свободы, мы по специальным таблицам (основные из них приводятся в приложении 5) можем определить критические значения критерия и сопоставить с ними полученное эмпирическое значение. Обычно это записывается так: «при п = 22 критические значения критерия составляют t St = 2,07» или «при v (d ) = 2 критические значения критерия Стьюдента составляют = 4,30» и т.н.

Обычно предпочтение оказывается все же параметрическим критериям, и мы придерживаемся этой позиции. Считается, что они более надежны, и с их помощью можно получить больше информации и провести более глубокий анализ. Что касается сложности математических вычислений, то при использовании компьютерных программ эта сложность исчезает (но появляются некоторые другие, впрочем, вполне преодолимые).

  • В настоящем учебнике мы подробно не рассматриваем проблему статистических
  • гипотез (нулевой - Я0 и альтернативной - Нj) и принимаемые статистические решения,поскольку студенты-психологи изучают это отдельно по дисциплине «Математическиеметоды в психологии». Кроме того, необходимо отметить, что при оформлении исследовательского отчета (курсовой или дипломной работы, публикации) статистические гипотезыи статистические решения, как правило, не приводятся. Обычно при описании результатовуказывают критерий, приводят необходимые описательные статистики (средние, сигмы,коэффициенты корреляции и т.д.), эмпирические значения критериев, степени свободыи обязательно р-уровень значимости. Затем формулируют содержательный вывод в отношении проверяемой гипотезы с указанием (обычно в виде неравенства) достигнутого илинедостигнутого уровня значимости.

Исследование обычно начинается с некоторого предположения, требую-щего проверки с привлечением фактов. Это предположение — гипотеза — формулируется в отношении связи явлений или свойств в некоторой сово-купности объектов.

Для проверки подобных предположений на фактах необходимо измерить соответствующие свойства у их носителей. Но невозможно измерить тревож-ность у всех женщин и мужчин, как невозможно измерить агрессивность у всех подростков. Поэтому при проведении исследования ограничиваются лишь относительно небольшой группой представителей соответствующих совокупностей людей.

Генеральная совокупность — это все множество объектов, в отношении ко-торого формулируется исследовательская гипотеза.

Например, все мужчины; или все женщины; или все жители какого-либо города. Генеральные совокупности, в отно-шении которых исследователь собирается сделать выводы по результатам ис-следования, могут быть по численности и более скромными, например, все первоклассники данной школы.

Таким образом, генеральная совокупность — это хотя и не бесконечное по численности, но, как правило, недоступное для сплошного исследования мно-жество потенциальных испытуемых.

Выборка или выборочная совокупность — это ограниченная по численности группа объектов (в психоло-гии — испытуемых, респондентов), специально отбираемая из генеральной совокупности для изучения ее свойств. Соответственно, изучение на выбор-ке свойств генеральной совокупности называется выборочным исследованием. Практически все психологические исследования являются выборочными, а их выводы распространяются на генеральные совокупности.

Таким образом, после того, как сформулирована гипотеза и определены соответствующие генеральные совокупности, перед исследователем возни-кает проблема организации выборки. Выборка должна быть такой, чтобы была обоснована генерализация выводов выборочного исследования — обобщение, распространение их на генеральную совокупность. Основные критерии обо-снованности выводов исследования это репрезентативность выборки и ста-тистическая достоверность (эмпирических) результатов.

Репрезентативность выборки — иными словами, ее представительность — это способность выборки представлять изучаемые явления достаточно пол-но — с точки зрения их изменчивости в генеральной совокупности.

Конечно, полное представление об изучаемом явлении, во всем его диапа-зоне и нюансах изменчивости, может дать только генеральная совокупность. Поэтому репрезентативность всегда ограничена в той мере, в какой ограни-чена выборка. И именно репрезентативность выборки является основным кри-терием при определении границ генерализации выводов исследования. Тем не менее, существуют приемы, позволяющие получить достаточную для ис-следователя репрезентативность выборки (Эти приемы изучаются в курсе «Экспериментальная психология»).


Первый и основной прием — это простой случайный (рандомизированный) отбор. Он предполагает обеспечение таких условий, чтобы каждый член генеральной совокупности имел равные с другими шансы попасть в выборку. Слу-чайный отбор обеспечивает возможность попадания в выборку самых разных представителей генеральной совокупности. При этом принимаются специ-альные меры, исключающие появление какой-либо закономерности при отборе. И это позволяет надеяться на то, что в конечном итоге в выборке изу-чаемое свойство будет представлено если и не во всем, то в максимально воз-можном его многообразии.

Второй способ обеспечения репрезентативности — это стратифицирован-ный случайный отбор, или отбор по свойствам генеральной совокупности. Он предполагает предварительное определение тех качеств, которые могут вли-ять на изменчивость изучаемого свойства (это может быть пол, уровень дохо-да или образования и т. д.). Затем определяется процентное соотношение чис-ленности различающихся по этих качествам групп (страт) в генеральной совокупности и обеспечивается идентичное процентное соотношение соот-ветствующих групп в выборке. Далее в каждую подгруппу выборки испытуе-мые подбираются по принципу простого случайного отбора.

Статистическая достоверность , или статистическая значимость, результа-тов исследования определяется при помощи методов статистического выво-да.

Застрахованы ли мы от принятия ошибок при принятии решений, при тех или иных выводах из результатов исследования? Конечно, нет. Ведь наши решения опираются на результаты исследования выборочной совокупности, а также на уровень наших психологических знаний. Полностью мы не застрахованы от ошибок. В статистике такие ошибки считаются допустимыми, если они имеют место не чаще чем в одном случае из 1000 (вероятность ошибки α=0,001 или сопряженная с этим величина доверительная вероятность правильного вывода р=0,999); в одном случае из 100 (вероятность ошибки α=0,01 или сопряженная с этим величина доверительная вероятность правильного вывода р=0,99) или в пяти случаях из 100 (вероятность ошибки α=0,05 или сопряженная с этим величина доверительная вероятность правильного вывода р=0,95). Именно на двух последних уровнях и принято принимать решения в психологии.

Иногда, говоря о статистической достоверности, используют понятие «уровень значимости» (обозначается как α). Численные значения р и α дополняют друг друга до 1,000 — полный набор событий: либо мы сделали правильный вывод, либо мы ошиблись. Эти уровни не рассчитываются, они заданы. Уровень значимости можно понимать как некую «красную» линию», пересечение которой позволит говорить о данном событии как о неслучайном. В каждом грамотном научном отчете или публикации сделанные выводы должны сопровождаться указанием значений р или α, при которых сделаны выводы.

Методы статистического вывода подробно рассматриваются в курсе «Математической статистики». Сейчас лишь отметим, что они предъявляют определенные требования к численности, или объему выборки.

К сожалению, строгих рекомендаций по предварительному определению требуемого объема выборки не существует. Более того, ответ на вопрос о не-обходимой и достаточной ее численности исследователь обычно получает слишком поздно — только после анализа данных уже обследованной выбор-ки. Тем не менее, можно сформулировать наиболее общие рекомендации:

1. Наибольший объем выборки необходим при разработке диагностичес-кой методики — от 200 до 1000-2500 человек.

2. Если необходимо сравнивать 2 выборки, их общая численность должна быть не менее 50 человек; численность сравниваемых выборок должна быть приблизительно одинаковой.

3. Если изучается взаимосвязь между какими-либо свойствами, то объем выборки должен быть не меньше 30-35 человек.

4. Чем больше изменчивость изучаемого свойства , тем больше должен быть объем выборки. Поэтому изменчивость можно уменьшить, увеличивая однородность выборки, например, по полу, возрасту и т. д. При этом, естественно, уменьшаются возможности генерализации выводов.

Зависимые и независимые выборки. Обычна ситуация исследования, когда интересующее исследователя свойство изучается на двух или более выборках с целью их дальнейшего сравнения. Эти выборки могут находиться в различ-ных соотношениях — в зависимости от процедуры их организации. Независи-мые выборки характеризуются тем, что вероятность отбора любого испытуе-мого одной выборки не зависит от отбора любого из испытуемых другой выборки. Напротив, зависимые выборки характеризуются тем, что каждому испытуемому одной выборки поставлен в соответствие по определенному критерию испытуемый из другой выборки.

В общем случае зависимые выборки предполагают попарный подбор ис-пытуемых в сравниваемые выборки, а независимые выборки — независимый отбор испытуемых.

Следует отметить, что случаи «частично зависимых» (или «частично неза-висимых») выборок недопустимы: это непредсказуемым образом нарушает их репрезентативность.

В заключение отметим, что можно выделить две парадигмы психологи-ческого исследования.

Так называемая R-методология предполагает изучение изменчивости некоторого свойства (психологического) под влиянием неко-торого воздействия, фактора либо другого свойства. Выборкой является мно-жество испытуемых.

Другой подход, Q-методология, предполагает исследо-вание изменчивости субъекта (единичного) под влиянием различных стимулов (условий, ситуаций и т. д.). Ей соответствует ситуация, когда выборкой явля-ется множество стимулов.

Основные черты всякой зависимости между переменными.

Можно отметить два самых простых свойства зависимости между переменными: (a) величина зависимости и (b) надежность зависимости.

- Величина . Величину зависимости легче понять и измерить, чем надежность. Например, если любой мужчина в выборке имел значение числа лейкоцитов (WCC) выше чем любая женщина, то вы можете сказать, что зависимость между двумя переменными (Пол и WCC) очень высокая. Другими словами, вы могли бы предсказать значения одной переменной по значениям другой.

- Надежность ("истинность"). Надежность взаимозависимости - менее наглядное понятие, чем величина зависимости, однако чрезвычайно важное. Надежность зависимости непосредственно связана с репрезентативностью определенной выборки, на основе которой строятся выводы. Другими словами, надежность говорит о том, насколько вероятно, что зависимость будет вновь обнаружена (иными словами, подтвердится) на данных другой выборки, извлеченной из той же самой популяции.

Следует помнить, что конечной целью почти никогда не является изучение данной конкретной выборки значений; выборка представляет интерес лишь постольку, поскольку она дает информацию обо всей популяции. Если исследование удовлетворяет некоторым специальным критериям, то надежность найденных зависимостей между переменными выборки можно количественно оценить и представить с помощью стандартной статистической меры.

Величина зависимости и надежность представляют две различные характеристики зависимостей между переменными. Тем не менее, нельзя сказать, что они совершенно независимы. Чем больше величина зависимости (связи) между переменными в выборке обычного объема, тем более она надежна (см. следующий раздел).

Статистическая значимость результата (p-уровень) представляет собой оцененную меру уверенности в его "истинности" (в смысле "репрезентативности выборки"). Выражаясь более технически, p-уровень – это показатель, находящийся в убывающей зависимости от надежности результата. Более высокий p-уровень соответствует более низкому уровню доверия к найденной в выборке зависимости между переменными. Именно, p-уровень представляет собой вероятность ошибки, связанной с распространением наблюдаемого результата на всю популяцию.

Например, p-уровень = 0.05 (т.е. 1/20) показывает, что имеется 5% вероятность, что найденная в выборке связь между переменными является лишь случайной особенностью данной выборки. Во многих исследованиях p-уровень 0.05 рассматривается как "приемлемая граница" уровня ошибки.

Не существует никакого способа избежать произвола при принятии решения о том, какой уровень значимости следует действительно считать "значимым". Выбор определенного уровня значимости, выше которого результаты отвергаются как ложные, является достаточно произвольным.



На практике окончательное решение обычно зависит от того, был ли результат предсказан априори (т.е. до проведения опыта) или обнаружен апостериорно в результате многих анализов и сравнений, выполненных с множеством данных, а также на традиции, имеющейся в данной области исследований.

Обычно во многих областях результат p .05 является приемлемой границей статистической значимости, однако следует помнить, что этот уровень все еще включает довольно большую вероятность ошибки (5%).

Результаты, значимые на уровне p .01 обычно рассматриваются как статистически значимые, а результаты с уровнем p .005 или p . 001 как высоко значимые. Однако следует понимать, что данная классификация уровней значимости достаточно произвольна и является всего лишь неформальным соглашением, принятым на основе практического опыта в той или иной области исследования .

Понятно, что чем большее число анализов будет проведено с совокупностью собранных данных, тем большее число значимых (на выбранном уровне) результатов будет обнаружено чисто случайно.

Некоторые статистические методы, включающие много сравнений, и, таким образом, имеющие значительный шанс повторить такого рода ошибки, производят специальную корректировку или поправку на общее число сравнений. Тем не менее, многие статистические методы (особенно простые методы разведочного анализа данных) не предлагают какого-либо способа решения данной проблемы.

Если связь между переменными "объективно" слабая, то не существует иного способа проверить такую зависимость кроме как исследовать выборку большого объема. Даже если выборка совершенно репрезентативна, эффект не будет статистически значимым, если выборка мала. Аналогично, если зависимость "объективно" очень сильная, тогда она может быть обнаружена с высокой степенью значимости даже на очень маленькой выборке.

Чем слабее зависимость между переменными, тем большего объема требуется выборка, чтобы значимо ее обнаружить.

Разработано много различных мер взаимосвязи между переменными. Выбор определенной меры в конкретном исследовании зависит от числа переменных, используемых шкал измерения, природы зависимостей и т.д.

Большинство этих мер, тем не менее, подчиняются общему принципу: они пытаются оценить наблюдаемую зависимость, сравнивая ее с "максимальной мыслимой зависимостью" между рассматриваемыми переменными. Говоря технически, обычный способ выполнить такие оценки заключается в том, чтобы посмотреть, как варьируются значения переменных и затем подсчитать, какую часть всей имеющейся вариации можно объяснить наличием "общей" ("совместной") вариации двух (или более) переменных.

Значимость зависит в основном от объема выборки. Как уже объяснялось, в очень больших выборках даже очень слабые зависимости между переменными будут значимыми, в то время как в малых выборках даже очень сильные зависимости не являются надежными.

Таким образом, для того чтобы определить уровень статистической значимости, нужна функция, которая представляла бы зависимость между "величиной" и "значимостью" зависимости между переменными для каждого объема выборки.

Такая функция указала бы точно "насколько вероятно получить зависимость данной величины (или больше) в выборке данного объема, в предположении, что в популяции такой зависимости нет". Другими словами, эта функция давала бы уровень значимости
(p -уровень), и, следовательно, вероятность ошибочно отклонить предположение об отсутствии данной зависимости в популяции.

Эта "альтернативная" гипотеза (состоящая в том, что нет зависимости в популяции) обычно называется нулевой гипотезой .

Было бы идеально, если бы функция, вычисляющая вероятность ошибки, была линейной и имела только различные наклоны для разных объемов выборки. К сожалению, эта функция существенно более сложная и не всегда точно одна и та же. Тем не менее, в большинстве случаев ее форма известна, и ее можно использовать для определения уровней значимости при исследовании выборок заданного размера. Большинство этих функций связано с классом распределений, называемым нормальным .

Задание 3. Пяти дошкольникам предъявляют тест. Фиксируется время решения каждого задания. Будут ли найдены статистически значимые различия между временем решения первых трёх заданий теста?

№ испытуемых

Справочный материал

Данное задание основано на теории дисперсионного анализа. В общем случае, задачей дисперсионного анализа является выявление тех факторов, которые оказывают существенное влияние на результат эксперимента. Дисперсионный анализ может применяться для сравнения средних нескольких выборок, если число выборок больше двух. Для этой цели служит однофакторный дисперсионный анализ.

В целях решения поставленных задач принимается следующее. Если дисперсии полученных значений параметра оптимизации в случае влияния факторов отличаются от дисперсий результатов в случае отсутствия влияния факторов, то такой фактор признается значимым.

Как видно из формулировки задачи, здесь используются методы проверки статистических гипотез, а именно – задача проверки двух эмпирических дисперсий. Следовательно, дисперсионный анализ базируется на проверке дисперсий по критерию Фишера. В данном задании необходимо проверить являются ли статистически значимыми различия между временем решения первых трёх заданий теста каждым из шести дошкольников.

Нулевой (основной) называют выдвинутую гипотезу H о. Сущность е сводится к предположению, что разница между сравниваемыми параметрами равна нулю (отсюда и название гипотезы – нулевая) и что наблюдаемые различия имеют случайный характер.

Конкурирующей (альтернативной) называют гипотезу H 1 , которая противоречит нулевой.

Решение:

Методом дисперсионного анализа при уровне значимости α = 0,05 проверим нулевую гипотезу (H о) о существовании статистически значимых различий между временем решения первых трёх заданий теста у шести дошкольников.

Рассмотрим таблицу условия задания, в которой найдем среднее время решения каждого из трех заданий теста

№ испытуемых

Уровни фактора

Время решения первого задания теста (в сек.).

Время решения второго задания теста (в сек.).

Время решения третьего задания теста (в сек.).

Групповая средняя

Находим общую среднюю:

Для того, чтобы учесть значимость временных различий каждого теста, общая выборочная дисперсия разбивается на две части, первая из которых называется факторной , а вторая – остаточной

Рассчитаем общую сумму квадратов отклонений вариант от общей средней по формуле

или , где р – число измерений времени решений заданий теста, q – количество испытуемых. Для этого составим таблицу квадратов вариант

№ испытуемых

Уровни фактора

Время решения первого задания теста (в сек.).

Время решения второго задания теста (в сек.).

Время решения третьего задания теста (в сек.).

Проверка гипотез проводится с помощью статистического анализа. Статистическую значимость находят с помощью Р-значения, которое соответствует вероятности данного события при предположении, что некоторое утверждение (нулевая гипотеза) истинно. Если Р-значение меньше заданного уровня статистической значимости (обычно это 0,05), экспериментатор может смело заключить, что нулевая гипотеза неверна, и перейти к рассмотрению альтернативной гипотезы. С помощью t-критерия Стьюдента можно вычислить Р-значение и определить значимость для двух наборов данных.

Шаги

Часть 1

Постановка эксперимента

    Определите свою гипотезу. Первый шаг при оценке статистической значимости состоит в том, чтобы выбрать вопрос, ответ на который вы хотите получить, и сформулировать гипотезу. Гипотеза - это утверждение об экспериментальных данных, их распределении и свойствах. Для любого эксперимента существует как нулевая, так и альтернативная гипотеза. Вообще говоря, вам придется сравнивать два набора данных, чтобы определить, схожи они или различны.

    • Нулевая гипотеза (H 0) обычно утверждает, что между двумя наборами данных нет разницы. Например: те ученики, которые читают материал перед занятиями, не получают более высокие оценки.
    • Альтернативная гипотеза (H a) противоположна нулевой гипотезе и представляет собой утверждение, которое нужно подтвердить с помощью экспериментальных данных. Например: те ученики, которые читают материал перед занятиями, получают более высокие оценки.
  1. Установите уровень значимости, чтобы определить, насколько распределение данных должно отличаться от обычного, чтобы это можно было считать значимым результатом. Уровень значимости (его называют также α {\displaystyle \alpha } -уровнем) - это порог, который вы определяете для статистической значимости. Если Р-значение меньше уровня значимости или равно ему, данные считаются статистически значимыми.

    • Как правило, уровень значимости (значение α {\displaystyle \alpha } ) принимается равным 0,05, и в этом случае вероятность обнаружения случайной разницы между разными наборами данных составляет всего лишь 5%.
    • Чем выше уровень значимости (и, соответственно, меньше Р-значение), тем достовернее результаты.
    • Если вы хотите получить более достоверные результаты, понизьте Р-значение до 0,01. Как правило, более низкие Р-значения используются в производстве, когда необходимо выявить брак в продукции. В этом случае требуется высокая достоверность, чтобы быть уверенным, что все детали работают так, как положено.
    • Для большинства экспериментов с гипотезами достаточно принять уровень значимости равным 0,05.
  2. Решите, какой критерий вы будете использовать: односторонний или двусторонний. Одно из предположений в t-критерии Стьюдента гласит, что данные распределены нормальным образом. Нормальное распределение представляет собой колоколообразную кривую с максимальным количеством результатов посередине кривой. t-критерий Стьюдента - это математический метод проверки данных, который позволяет установить, выпадают ли данные за пределы нормального распределения (больше, меньше, либо в “хвостах” кривой).

    • Если вы не уверены, находятся ли данные выше или ниже контрольной группы значений, используйте двусторонний критерий. Это позволит вам определить значимость в обоих направлениях.
    • Если вы знаете, в каком направлении данные могут выйти за пределы нормального распределения, используйте односторонний критерий. В приведенном выше примере мы ожидаем, что оценки студентов повысятся, поэтому можно использовать односторонний критерий.
  3. Определите объем выборки с помощью статистической мощности. Статистическая мощность исследования - это вероятность того, что при данном объеме выборки получится ожидаемый результат. Распространенный порог мощности (или β) составляет 80%. Анализ статистической мощности без каких-либо предварительных данных может представлять определенные сложности, поскольку требуется некоторая информация об ожидаемых средних значениях в каждой группе данных и об их стандартных отклонениях. Используйте для анализа статистической мощности онлайн-калькулятор, чтобы определить оптимальный объем выборки для ваших данных.

    • Обычно ученые проводят небольшое пробное исследование, которое позволяет получить данные для анализа статистической мощности и определить объем выборки, необходимый для более расширенного и полного исследования.
    • Если у вас нет возможности провести пробное исследование, постарайтесь на основании литературных данных и результатов других людей оценить возможные средние значения. Возможно, это поможет вам определить оптимальный объем выборки.

    Часть 2

    Вычислите стандартное отклонение
    1. Запишите формулу для стандартного отклонения. Стандартное отклонение показывает, насколько велик разброс данных. Оно позволяет заключить, насколько близки данные, полученные на определенной выборке. На первый взгляд формула кажется довольно сложной, но приведенные ниже объяснения помогут понять ее. Формула имеет следующий вид: s = √∑((x i – µ) 2 /(N – 1)).

      • s - стандартное отклонение;
      • знак ∑ указывает на то, что следует сложить все полученные на выборке данные;
      • x i соответствует i-му значению, то есть отдельному полученному результату;
      • µ - это среднее значение для данной группы;
      • N - общее число данных в выборке.
    2. Найдите среднее значение в каждой группе. Чтобы вычислить стандартное отклонение, необходимо сначала найти среднее значение для каждой исследуемой группы. Среднее значение обозначается греческой буквой µ (мю). Чтобы найти среднее, просто сложите все полученные значения и поделите их на количество данных (объем выборки).

      • Например, чтобы найти среднюю оценку в группе тех учеников, которые изучают материал перед занятиями, рассмотрим небольшой набор данных. Для простоты используем набор из пяти точек: 90, 91, 85, 83 и 94.
      • Сложим вместе все значения: 90 + 91 + 85 + 83 + 94 = 443.
      • Поделим сумму на число значений, N = 5: 443/5 = 88,6.
      • Таким образом, среднее значение для данной группы составляет 88,6.
    3. Вычтите из среднего каждое полученное значение. Следующий шаг заключается в вычислении разницы (x i – µ). Для этого следует вычесть из найденной средней величины каждое полученное значение. В нашем примере необходимо найти пять разностей:

      • (90 – 88,6), (91- 88,6), (85 – 88,6), (83 – 88,6) и (94 – 88,6).
      • В результате получаем следующие значения: 1,4, 2,4, -3,6, -5,6 и 5,4.
    4. Возведите в квадрат каждую полученную величину и сложите их вместе. Каждую из только что найденных величин следует возвести в квадрат. На этом шаге исчезнут все отрицательные значения. Если после данного шага у вас останутся отрицательные числа, значит, вы забыли возвести их в квадрат.

      • Для нашего примера получаем 1,96, 5,76, 12,96, 31,36 и 29,16.
      • Складываем полученные значения: 1,96 + 5,76 + 12,96 + 31,36 + 29,16 = 81,2.
    5. Поделите на объем выборки минус 1. В формуле сумма делится на N – 1 из-за того, что мы не учитываем генеральную совокупность, а берем для оценки выборку из числа всех студентов.

      • Вычитаем: N – 1 = 5 – 1 = 4
      • Делим: 81,2/4 = 20,3
    6. Извлеките квадратный корень. После того как вы поделите сумму на объем выборки минус один, извлеките из найденного значения квадратный корень. Это последний шаг в вычислении стандартного отклонения. Есть статистические программы, которые после введения начальных данных производят все необходимые вычисления.

      • В нашем примере стандартное отклонение оценок тех учеников, которые читают материал перед занятиями, составляет s =√20,3 = 4,51.

      Часть 3

      Определите значимость
      1. Рассчитайте дисперсию между двумя группами данных. До этого шага мы рассматривали пример лишь для одной группы данных. Если вы хотите сравнить две группы, очевидно, следует взять данные для обеих групп. Вычислите стандартное отклонение для второй группы данных, а затем найдите дисперсию между двумя экспериментальными группами. Дисперсия вычисляется по следующей формуле: s d = √((s 1 /N 1) + (s 2 /N 2)).