Болезни Военный билет Призыв

Сверхтяжелые элементы экзотические ядра. Трансурановые элементы. Могут ли сверхтяжелые элементы рождаться при взрывах сверхновых? И можем ли мы это рождение зафиксировать

You can comment here or .

ЧИКАГО, 17 февраля. Впервые удалось измерить массу элемента тяжелее урана – новый метод открывает путь к давно предсказанному «острову стабильности» устойчивых сверхтяжелых элементов, лежащему за пределами привычной Таблицы Менделеева.

Ядро урана включает 92 протона, это – самый тяжелый из известных нам элементов, встречающихся в природе. В искусственных условиях, конечно, синтезированы и более тяжелые, вплоть до 118-ти протонов. Все эти «тяжеловесы» крайне короткоживущи, они распадаются за считанные миллисекунды.

Но еще в середине ХХ века была теоретически предсказана возможность существования сверхтяжелых элементов, содержащих определенное соотношение протонов и нейтронов и имеющих срок жизни куда более долгий – десятилетия, а то и больше. С тех пор путь к этому «острову стабильности» стал одним из важнейших направлений ядерной физики. И вовсе не из чисто академического интереса. Сверхтяжелые стабильные элементы могли бы послужить отличным топливом для ядерных двигателей будущих космических миссий. Они должны, по расчетам, проявлять также необычные и полезные химические и физические свойства.

Однако до сих пор никто в точности не знает, где же мы должны наткнуться на этот остров. Одни расчеты показывают, что где-то в области с центром в 114 протонов на ядро, другие – между 120-ю и 126-ю протонами. Вычисления затрудняются тем, что ученые не имеют точного представления о том, как действуют сильные и слабые силы в «перенаселенных» ядрах таких элементов, удерживая их протоны и нейтроны вместе. Краткость существования полученных в лаборатории сверхтяжелых элементов не позволяет собрать достаточно экспериментальных данных.

Новый прорыв в этой области обещает недавняя работа команды немецких ученых во главе с Майклом Блоком, которым удалось найти способ прямого измерения массы частиц тяжелее урана. А поскольку масса и энергия связаны знаменитой эйнштейновской формулой E = mc2, определение массы атома позволяет (учтя дополнительные факторы) вычислить и силы, с которыми частицы в его ядре связаны друг с другом.

Для измерения массы атома ученые воспользовались устройством, которое называется ловушкой Пеннинга, где, упрощенно говоря, ионы удерживаются электромагнитным полем. Объектом измерений послужил нобелий, ядро которого включает 102 протона – на 10 больше, чем у урана. Как и прочие «искусственные» элементы, он получается столкновением несколько более легких элементов и является крайне короткоживущим (максимум 58 минут). Главной задачей, которую удалось решить немецким физикам, было найти способ замедлить атомы перед тем, как они попадут в ловушку, для чего ученые решили пропускать их предварительно через камеру, заполненную гелием.

Теперь, обладая методом, позволяющим «взвешивать» сверхтяжелые короткоживущие атомы, экспериментаторы могут точнее установить их параметры. А теоретики на базе этих данных – выбрать между конкурирующими моделями, предсказывающими положение «острова стабильности».

Метод позволяет двинуться существенно дальше по Периодической таблице, хотя на практике воспользоваться им для наиболее тяжелых из полученных элементов может быть не очень просто. Хотя бы потому, что синтез подобных великанов – уже сам по себе крайне непростой процесс. Если тот же нобелий можно с помощью подготовленного эксперимента получать с частотой, в среднем, 1 атом в секунду, то с более тяжелыми элементами, ядра которых содержат более 104 протонов, все гораздо дольше. Получение 1 атома может занять, к примеру, неделю.

Но если все пойдет хорошо, рано или поздно этот метод позволит заметить и обитателей «острова стабильности». Поскольку такие сверхтяжелые элементы обычно обнаруживаются по продуктам распада, а стабильные имеют слишком долгий период жизни, традиционные методы работы с атомами-тяжеловесами для этого не годятся

Сверхтяжелые элементы на островке устойчивости

Теоретическое и экспериментальное изучение устойчивости ядра дало советским физикам повод для пересмотра применявшихся до сих пор методов получения тяжелых трансуранов . В Дубне решили пойти новыми путями и взять в качестве мишени свинец и висмут .

Ядро, как и атом в целом, имеет оболочечное строение . Особой устойчивостью отличаются атомные ядра, содержащие 2-8-20- 28-50-82-114-126-164 протонов (то есть ядра атомов с таким порядковым номером) и 2-8-20-28-50-82-126-184-196- 228-272-318 нейтронов, вследствие законченного строения их оболочек. Только недавно удалось подтвердить эти воззрения расчетами с помощью ЭВМ.

Такая необычная устойчивость бросилась в глаза, прежде всего, при изучении распространенности некоторых элементов в космосе. Изотопы , обладающие этими ядерными числами, называют магическими. Изотоп висмута 209 Bi, имеющий 126 нейтронов, представляет такой магический нуклид. Сюда относятся также изотопы кислорода, кальция, олова . Дважды магическими являются: для гелия - изотоп 4 Не (2 протона, 2 нейтрона), для кальция - 48 Са (20 протонов, 28 нейтронов), для свинца - 208 Pb (82 протона, 126 нейтронов). Они отличаются совершенно особой прочностью ядра.

Используя источники ионов нового типа и более мощные ускорители тяжелых ионов - в Дубне были спарены агрегаты У-200 и У-300, группа Г. Н. Флёрова и Ю. Ц. Оганесяна вскоре стала располагать потоком тяжелых ионов с необычайной энергией. Чтобы достичь слияния ядер, советские физики выстреливали ионами хрома с энергией 280 МэВ в мишени из свинца и висмута. Что могло получиться? В начале 1974 года атомщики в Дубне зарегистрировали при такой бомбардировке 50 случаев, указывающих на образование 106-го элемента , который, однако, распадается уже через 10 -2 с. Эти 50 атомных ядер образовались по схеме:

208 Pb + 51 Cr = 259 X

Немного позднее Гиорсо и Сиборг из лаборатории Лоуренса в Беркли сообщили, что они синтезировали изотоп нового, 106 -го, элемента с массовым числом 263 путем обстрела калифорния-249 ионами кислорода в аппарате Super-HILAC.

Какое имя будет носить новый элемент? Откинув прежние разногласия, обе группы в Беркли и Дубне, соперничающие в научном соревновании, пришли на этот раз к единому мнению. О названиях говорить еще рано, сказал Оганесян. А Гиорсо дополнил, что решено воздержаться от всяких предложений о наименовании 106-го элемента вплоть до прояснения ситуации.

К концу 1976 года дубнинская лаборатория ядерных реакций закончила серию опытов по синтезу 107-го элемента; в качестве исходного вещества дубнинским "алхимикам" послужил "магический " висмут-209. При обстреле ионами хрома с энергией 290 МэВ он превращался в изотоп 107 -го элемента:

209 Bi + 54 Cr = 261 X + 2n

107-й элемент самопроизвольно распадается с периодом полураспада 0,002 с и, кроме того, излучает альфа-частицы.

Найденные для 106- и 107-го элементов периоды полураспада 0,01 и 0,002 с заставили насторожиться. Ведь они оказались на несколько порядков больше, чем предсказывали расчеты ЭВМ. Быть может, на 107-й элемент уже заметно влияла близость последующего магического числа протонов и нейтронов - 114, повышающая устойчивость?
Если это так, то была надежда получить и долгоживущие изотопы 107-го элемента, например обстрелом берклия ионами неона. Расчеты показали, что образующийся по этой реакции изотоп, богатый нейтронами, должен был бы обладать периодом полураспада, превышающим 1 с. Это позволило бы изучить химические свойства 107-го элемента - экарения .

Самый долгоживущий изотоп первого трансурана, элемента 93 - нептуний-237,- обладает периодом полураспада 2 100 000 лет; самый устойчивый изотоп 100-го элемента - фермий-257- только 97 дней. Начиная с 104-го элемента периоды полураспада составляют лишь доли секунды. Поэтому, казалось, что нет абсолютно никакой надежды обнаружить эти элементы. Для чего же нужны дальнейшие исследования?

Альберт Гиорсо, ведущий специалист США по трансуранам, высказался однажды в этой связи: "Причиной для продолжения поисков дальнейших элементов является просто-напросто удовлетворение человеческого любопытства - а что же происходит за следующим поворотом улицы? " Однако это, конечно, не просто научное любопытство. Гиорсо давал все же понять, как важно продолжение такого фундаментального исследования.

В 60-е годы теория магических ядерных чисел приобретала все большее значение. В "море неустойчивости" ученые отчаянно пытались найти спасительный "островок относительной устойчивости ", на который могла бы твердо опереться нога исследователя атома. Хотя этот островок до сих пор еще не открыт, "координаты" его известны: элемент 114, экасвинец , считается центром большой области устойчивости. Изотоп-298 элемента 114 уже давно является особым предметом научных споров, ибо, имея 114 протонов и 184 нейтрона, он представляет собой одно из тех дважды магических атомных ядер, которым предсказывают длительное существование. Однако что же означает длительное существование?

Предварительные расчеты показывают: период полураспада с выделением альфа-частиц колеблется от 1 до 1000 лет, а по отношению к самопроизвольному делению - от 10 8 до 10 16 лет. Такие колебания, как указывают физики, объясняются приближенностью "компьютерной химии". Весьма обнадеживающие значения периодов полураспада предсказывают для следующего островка устойчивости - элемента 164, двисвинца . Изотоп 164-го элемента с массовым числом 482 - также дважды магический: его ядро образуют 164 протона и 318 нейтронов.

Науку интересуют и просто магические сверхтяжелые элементы , как, например, изотоп-294 элемента 110 или изотоп-310 элемента 126, содержащие по 184 нейтрона. Диву даешься, как исследователи вполне серьезно жонглируют этими воображаемыми элементами, будто они уже существуют. Из ЭВМ извлекаются все новые данные и сейчас уже определенно известно, какими свойствами - ядерными, кристаллографическими и химическими - должны обладать эти сверхтяжелые элементы . В специальной литературе накапливаются точные данные для элементов, которые люди, быть может, откроют лет через 50.

В настоящее время атомщики путешествуют по морю неустойчивости в ожидании открытий. За их спинами осталась твердая земля: полуостров с естественными радиоактивными элементами, отмеченный возвышенностями тория и урана, и далеко простирающаяся твердая земля со всеми прочими элементами и вершинами свинца, олова и кальция .
Отважные мореплаватели уже давно находятся в открытом море. На неожиданном месте они нашли отмель: открытые 106 и 107-й элементы устойчивее, чем ожидалось.

В последние годы мы долго плыли по морю неустойчивости, рассуждает Г. Н. Флёров, и вдруг, в последний момент, почувствовали землю под ногами. Случайная подводная скала? Либо песчаная отмель долгожданного островка устойчивости? Если правильно второе, то у нас есть реальная возможность создать новую периодическую систему из устойчивых сверхтяжелых элементов , обладающих поразительными свойствами.

После того, как стала известна гипотеза об устойчивых элементах вблизи порядковых номеров 114, 126, 164, исследователи всего мира набросились на эти "сверхтяжелые " атомы. Некоторые из них, с предположительно большими периодами полураспада, надеялись обнаружить на Земле или в Космосе, по крайней мере в виде следов. Ведь при возникновении нашей Солнечной системы эти элементы так же существовали, как и все прочие.

Следы сверхтяжелых элементов - что следует под этим понимать? В результате своей способности самопроизвольно делиться на два ядерных осколка с большой массой и энергией эти трансураны должны были бы оставить в находящейся по соседству материи отчетливые следы разрушения.
Подобные следы можно увидеть в минералах под микроскопом после их травления. С помощью такого метода следов разрушения можно в настоящее время проследить существование давно погибших элементов. Из ширины оставленных следов можно оценить и порядковый номер элемента - ширина трека пропорциональна квадрату заряда ядра.
"Живущие" еще сверхтяжелые элементы надеются также выявить, исходя из того, что они многократно испускают нейтроны. При самопроизвольном процессе деления эти элементы испускают до 10 нейтронов.

Следы сверхтяжелых элементов искали в марганцевых конкрециях из глубин океана, а также в водах после таяния ледников полярных морей. До сих пор безрезультатно. Г. Н. Флёров с сотрудниками исследовал свинцовые стекла древней витрины XIV века, лейденскую банку XIX века, вазу из свинцового хрусталя XVIII века.
Сначала несколько следов самопроизвольного деления указали на экасвинец - 114-й элемент. Однако, когда дубнинские ученые повторили свои измерения с высокочувствительным детектором нейтронов в самом глубоком соляном руднике Советского Союза, то положительного результата не получили. На такую глубину не могло проникнуть космическое излучение, которое, по-видимому, вызвало наблюдавшийся эффект.

В 1977 году профессор Флёров предположил, что он наконец обнаружил "сигналы нового трансурана " при исследовании глубинных термальных вод полуострова Челекен в Каспийском море.
Однако число зарегистрированных случаев было слишком мало для однозначного отнесения. Через год группа Флёрова зарегистрировала уже 150 спонтанных делений в месяц. Эти данные получены при работе с ионообменником, заполненным неизвестным трансураном из термальных вод. Флёров оценил период полураспада присутствовавшего элемента, который он еще не смог выделить, миллиардами лет.

Другие исследователи пошли иными путями. Профессор Фаулер и его сотрудники из Бристольского университета предприняли эксперименты с аэростатами на большой высоте. С помощью детекторов малых количеств ядер были выявлены многочисленные участки с зарядами ядер, превышающими 92. Английские исследователи считали, что один из следов указывает даже на элементы 102...108. Позднее они внесли поправку: неизвестный элемент имеет порядковый номер 96 (кюрий ).

Как же попадают эти сверхтяжелые частички в стратосферу земного шара? До настоящего времени выдвинуто несколько теорий. Согласно им, тяжелые атомы должны возникать при взрывах сверхновых звезд либо при других астрофизических процессах и достигать Земли в виде космического излучения или пыли - но только через 1000 - 1 000 000 лет. Эти космические осадки в настоящее время ищут как в атмосфере, так и в глубинных морских отложениях.

Значит, сверхтяжелые элементы могут находиться в космическом излучении? Правда, по оценке американских ученых, предпринявших в 1975 году эксперимент "Скайлэб", такая гипотеза не подтвердилась. В космической лаборатории, облетавшей Землю, установили детекторы, поглощающие тяжелые частички из космоса; обнаружены были лишь треки известных элементов .
Лунная пыль, доставленная на Землю после первой посадки на Луну в 1969 году, не менее тщательно обследовалась на присутствие сверхтяжелых элементов. Когда нашли следы "долгоживущих" частичек до 0,025 мм, некоторые исследователи сочли, что их можно приписать элементам 110 - 119.

Аналогичные результаты дали исследования аномального изотопного состава благородного газа ксенона, содержащегося в различных образцах метеоритов. Физики высказали мнение, что этот эффект можно объяснить лишь существованием сверхтяжелых элементов.
Советские ученые в Дубне, которые проанализировали 20 кг метеорита Алленде, упавшего в Мексике осенью 1969 года, в результате трехмесячного наблюдения смогли обнаружить несколько спонтанных делений.
Однако после того, как было установлено, что "природный" плутоний-244 , некогда являвшийся составной частью нашей Солнечной системы, оставляет совершенно сходные следы, интерпретацию стали проводить осторожнее.

Ограничения на существование атомных ядер есть и со стороны сверхтяжелых элементов. Элементы с Z > 92 в естественных условиях не обнаружены. Расчеты по жидкокапельной модели предсказывают исчезновение барьера деления для ядер с Z2/A ≈ 46 (примерно 112 элемент). В проблеме синтеза сверхтяжелых ядер следует выделить два круга вопросов.

  1. Какими свойствами должны обладать сверхтяжелые ядра? Будут ли существовать магические числа в этой области Z и N. Каковы основные каналы распада и периоды полураспада сверхтяжелых ядер?
  2. Какие реакции следует использовать для синтеза сверхтяжелых ядер, типы бомбардирующих ядер, ожидаемые величины сечений, ожидаемые энергии возбуждения компаунд-ядра и каналы снятия возбуждения?

Так как образование сверхтяжелых ядер происходит в результате полного слияния ядра мишени и налетающей частицы необходимо создание теоретических моделей, описывающих динамику процесса слияния двух сталкивающихся ядер в компаунд-ядро.
Проблема синтеза сверхтяжелых элементов тесно связана с тем фактом, что ядра с Z,N = 8, 20, 28, 50, 82, N = 126 (магические числа) обладают повышенной стабильностью по отношению к различным модам радиоактивного распада. Это явление объясняется в рамках оболочечной модели − магические числа соответствуют заполненным оболочкам. Естественно возникает вопрос о существовании следующих магических чисел по Z и N. В случае, если они существуют в области N-Z-диаграммы атомных ядер N > 150, Z > 101, должны наблюдаться сверхтяжелые ядра, имеющие повышенные периоды полураспада, т.е. должен существовать Остров Стабильности. В работе на основе расчетов, выполненных с использованием потенциала Вудса-Саксона с учетом спин-орбитального взаимодействия, было показано, что повышение стабильности ядер следует ожидать для ядра с Z = 114, то есть следующая заполненная протонная оболочка соответствует Z = 114, заполненная нейтронная оболочка соответствует числу N ~ 184. Замкнутые оболочки могут существенно увеличить высоту барьера деления и соответственно увеличить время жизни ядра. Таким образом в этой области ядер (Z = 114, N ~ 184) следует искать Остров Стабильности. Этот же результат был независимо получен в работе .
Ядра с Z = 101–109 были открыты до 1986 года и получили названия: 101 - Md (Menelevium), 102 - No (Nobelium), 103 - Lr (Lawrencium), 104 - Rf (Rutherfordium, 106 - Sg (Seaborgium), 107 - Ns (Nielsborium), 108 - Hs (Hassium), 109 - Mt (Meitnerium). Учитывая заслуги исследователей из Дубны в открытии большого числа изотопов тяжелых элементов (102-105), в 1997 году решением Генеральной Ассамблеи чистой и прикладной химии элементу с Z = 105 было присвоено имя Dubnium (Db). Этот элемент ранее назывался Ha (Hannium).


Рис. 12.3. Цепочки распадов изотопов Ds (Z = 110), Rg (Z = 111), Cn (Z = 112).

Новый этап в исследовании сверхтяжелых ядер начался в 1994 году, когда была существенно повышена эффективность регистрации и усовершенствована методика наблюдения сверхтяжелых ядер. Как результат были обнаружены изотопы Ds (Z = 110), Rg (Z = 111) и Cn (Z = 112) .
Для получения сверхтяжелых ядер использовались ускоренные пучки 50 Ti, 51 V, 58 Fe, 62 Ni, 64 Ni, 70 Zn и 82 Se. В качестве мишеней применялись изотопы 208 Pb и 209 Bi. Различные изотопы 110 элемента были синтезированы в Лаборатории ядерных реакций им. Г.Н. Флерова с помощью реакции 244 Pu(34 S,5n) 272 110 и в GSI (Дармштадт) в реакции 208 Pb(62 Ni,n) 269 110. Изотопы 269 Ds, 271 Ds, 272 Rg и 277 Cn регистрировались по их цепочкам распада (рис. 12.3).
Большую роль в получении сверхтяжелых элементов играют теоретические модели, с помощью которых рассчитываются ожидаемые характеристики химических элементов, реакции, в которых они могут образовываться.
На основе различных теоретических моделей были рассчитаны распадные характеристики сверхтяжелых ядер. Результаты одного из таких расчетов показаны на рис. 12.4. Приведены периоды полураспада четно-четных сверхтяжелых ядер относительно спонтанного деления (а), α-распада (б), β-распада (в) и для всех возможных процессов распада (г). Наиболее устойчивым ядром по отношению к спонтанному делению (рис. 12.4а) является ядро с Z = 114 и N = 184. Для него период полураспада по отношению к спонтанному делению ~10 16 лет. Для изотопов 114-го элемента, отличающихся от наиболее устойчивого на 6-8 нейтронов, периоды полураспада уменьшаются на
10-15 порядков. Периоды полураспада по отношению к α-распаду приведены на рис. 12.5б. Наиболее устойчивое ядро расположено в области Z = 114 и N = 184 (T 1/2 = 10 15 лет).
Стабильные по отношению к β-распаду ядра показаны на рис. 12.4в темными точками. На рис. 12.4г приведены полные периоды полураспада, которые для четно-четных ядер, расположенных внутри центрального контура, составляют ~10 5 лет. Таким образом, после учета всех типов распада оказывается, что ядра в окрестности Z = 110 и N = 184 образуют «остров стабильности». Ядро 294 110 имеет период полураспада около 10 9 лет. Отличие величины Z от предсказываемого оболочечной моделью магического числа 114 связано с конкуренцией между делением (относительно которого ядро с Z = 114 наиболее стабильно) и α-распадом (относительно которого устойчивы ядра с меньшими Z). У нечетно-четных и четно-нечетных ядер периоды полураспада по отношению к
α-распаду и спонтанному делению увеличиваются, а по отношению к β-распаду уменьшаются. Следует отметить, что приведенные оценки сильно зависят от параметров, использованных в расчетах, и могут рассматриваться лишь как указания на возможность существования сверхтяжелых ядер, имеющих времена жизни достаточно большие для их экспериментального обнаружения.


Рис. 12.4. Периоды полураспада, вычисленные для четно-четных сверхтяжелых ядер (числа обозначают периоды полураспада в годах):
а − относительно спонтанного деления, б − α-распада, в − е-захвата и β-распада, г − для всех процессов распада

Результаты еще одного расчета равновесной формы сверхтяжелых ядер и их периодов полураспада показаны на рис. 12.5, 12.6 . На рис. 12.5 показана зависимость энергии равновесной деформации от количества нейтронов и протонов для ядер с Z = 104-120. Энергия деформации определяется как разность энергий ядер в равновесной и сферической форме. Из этих данных видно, что в области Z = 114 и N = 184 должны располагаться ядра, имеющие в основном состоянии сферическую форму. Все обнаруженные на сегодня сверхтяжелые ядра (они показаны на рис. 12.5 темными ромбами) деформированы. Светлыми ромбами показаны ядра стабильные по отношению к β-распаду. Эти ядра должны распадаться в результате α-распада или деления. Основным каналом распада должен быть α-распад.

Периоды полураспада для четно-четных β-стабильных изотопов показаны на рис. 12.6. Согласно этим предсказаниям для большинства ядер ожидаются периоды полураспада гораздо большие, чем наблюдались для уже обнаруженных сверхтяжелых ядер (0.1–1 мс). Так например, для ядра 292 Ds предсказывается время жизни ~ 51 год.
Таким образом, согласно современным микроскопическим расчетам, стабильность сверхтяжелых ядер резко возрастает по мере приближения к магическому числу по нейтронам N = 184. До недавнего времени единственным изотопом элемента Z = 112 Cn (коперниций) был изотоп 277 Cn, имеющий период полураспада 0.24 мс. Более тяжелый изотоп 283 Cn был синтезирован в реакции холодного слияния 48 Ca + 238 U. Время облучения 25 дней. Полное число ионов 48 Ca на мишени − 3.5·10 18 . Зарегистрированы два случая, которые были интерпретированы как спонтанное деление образовавшегося изотопа 283 Cn. Для периода полураспада этого нового изотопа получена оценка T 1/2 = 81 c. Таким образом, видно, что увеличение числа нейтронов в изотопе 283 Cn по сравнению с изотопом 277 Cn на 6 единиц увеличивает время жизни на 5 порядков.
На рис. 12.7 взятом из работы экспериментально измеренные периоды α-распада сравниваются с результатами теоретических расчетов на основе модели жидкой капли без учета оболочечной структуры ядер. Видно, что для всех тяжелых ядер, за исключением лёгких изотопов урана, оболочечные эффекты увеличивают период полураспада на 2–5 порядков для большинства ядер. Ещё более сильное влияние оболочечная структура ядра оказывает на периоды полураспада относительно спонтанного деления. Увеличение периода полураспада для изотопов Pu составляет несколько порядков и увеличивается для изотопа 260 Sg.

Рис. 12.7. Экспериментально измеренные (● exp) и теоретически рассчитанные (○ Y) периоды полураспада трансурановых элементов на основе модели жидкой капли без учета оболочечной структуры ядра. Верхний рисунок − периоды полураспада для α-распада, нижний рисунок − периоды полураспада для спонтанного деления.

На рис. 12.8 показано измеренное время жизни изотопов сиборгия Sg (Z = 106) в сравнении с предсказаниями различных теоретических моделей . Обращает на себя внимание уменьшение почти на порядок времени жизни изотопа с N = 164 по сравнению с временем жизни изотопа с N = 162.
Наибольшего приближения к острову стабильности можно достичь в реакции 76 Ge + 208 Pb. Сверхтяжелое почти сферическое ядро может образоваться в реакции слияния с последующим испусканием γ-квантов или одного нейтрона. Согласно оценкам образующееся ядро 284 114 должно распадаться с испусканием α-частиц с периодом полураспада ~ 1 мс. Дополнительную информацию о заполненности оболочки в районе N = 162 можно получить, изучая α-распады ядер 271 Hs и 267 Sg. Для этих ядер предсказываются периоды полураспада 1 мин. и 1 час. Для ядер 263 Sg, 262 Bh, 205 Hs, 271,273 Ds ожидается проявление изомерии, причиной которой является заполнение подоболочек с j = 1/2 и j = 13/2 в районе N = 162 для ядер деформированных в основном состоянии.

На рис. 12.9 показаны экспериментально измеренные функции возбуждения реакции образования элементов Rf (Z = 104) и Hs (Z = 108)для реакций слияния налетающих ионов 50 Ti и 56 Fe с ядром-мишенью 208 Pb.
Образовавшееся компаунд-ядро охлаждается испусканием одного или двух нейтронов. Информация о функциях возбуждения реакций слияния тяжелых ионов особенно важны для получения сверхтяжелых ядер. В реакции слияния тяжелых ионов необходимо точно сбалансировать действие кулоновских сил и сил поверхностного натяжения. Если энергия налетающего иона недостаточно большая, то расстояние минимального сближения будет недостаточно для слияния двойной ядерной системы. Если энергия налетающей частицы будет слишком большой, то образовавшаяся в результате система будет иметь большую энергию возбуждения и с большой вероятностью произойдет развал ее на фрагменты. Эффективно слияние происходит в довольно узком диапазоне энергий сталкивающих частиц.


Рис.12.10. Схема потенциалов при слиянии 64 Ni и 208 Pb.

Реакции слияния с испусканием минимального числа нейтронов (1–2) представляют особый интерес, т.к. в синтезируемых сверхтяжелых ядрах желательно иметь максимально большое отношение N/Z. На рис. 12.10 показан потенциал слияния для ядер в реакции 64 Ni + 208 Pb → 272 Ds. Простейшие оценки показывают, что вероятность туннельного эффекта для слияния ядер составляет ~ 10 –21 , что существенно ниже наблюдаемой величины сечения. Это можно объяснить следующим образом. На расстоянии 14 Фм между центрами ядер первоначальная кинетическая энергия 236.2 МэВ полностью компенсируется кулоновским потенциалом. На этом расстоянии находятся в контакте только нуклоны, расположенные на поверхности ядра. Энергия этих нуклонов мала. Следовательно существует высокая вероятность того, что нуклоны или пары нуклонов покинут орбитали в одном ядре и переместятся на свободные состояния ядра-партнера. Передача нуклонов от налетающего ядра ядру-мишени особенно привлекательна в случае, когда в качестве мишени используется дважды магический изотоп свинца 208 Pb. В 208 Pb заполнены протонная подоболочка h 11/2 и нейтронные подоболочки h 9/2 и i 13/2 . Вначале передача протонов стимулируется силами притяжения протон-протон, а после заполнения подоболочки h 9/2 - силами притяжения протон-нейтрон. Аналогично нейтроны перемещаются в свободную подоболочку i 11/2 , притягиваясь нейтронами из уже заполненной подоболочки i 13/2 . Из-за энергии спаривания и больших орбитальных моментов передача пары нуклонов более вероятна, чем передача одного нуклона. После передачи двух протонов от 64 Ni 208 Pb кулоновский барьер уменьшается на 14 МэВ, что способствует более тесному контакту взаимодействующих ионов и продолжению процесса передачи нуклонов.
В работах [В.В. Волков. Ядерные реакции глубоконеупругих передач. М. Энергоиздат, 1982; В.В. Волков. Изв. АН СССР серия физич., 1986 т. 50 с. 1879] был детально исследован механизм реакции слияния. Показано, что уже на стадии захвата формируется двойная ядерная система после полной диссипации кинетической энергии налетающей частицы и нуклоны одного из ядер постепенно оболочка за оболочкой передаются другому ядру. То есть оболочечная структура ядер играет существенную роль в образовании компаунд-ядра. На основе этой модели удалось достаточно хорошо описать энергию возбуждения составных ядер и сечение образования элементов Z = 102–112 в реакциях холодного синтеза.
Таким образом, прогресс в синтезе трансурановых элементов Z = 107–112 был связан с «открытием» реакций холодного синтеза, в которых магические изотопы 208 Pb и 209 Bi облучались ионами с Z = 22–30. Образующееся в реакции холодного синтеза ядро нагрето слабо и охлаждается в результате испускания одного нейтрона. Так впервые были получены изотопы химических элементов с Z = 107–112. Эти химические элементы были получены в период 1978–1998 гг. в Германии на специально построенном ускорителе исследовательского центра GSI в Дармштадте. Однако, дальнейшее продвижение − к более тяжелым ядрам − таким методом оказывается затруднительным из-за роста величины потенциаль­ного барьера между сталкивающимися ядрами. Поэтому в Дубне был реали­зован другой метод получения сверхтяжелых ядер. В качестве мишеней использовались наиболее тяжелые изотопы искусственно полученных химических элементов плутония Pu (Z = 94), америция Am (Z = 95), кюрия Cm (Z = 96), берклия Bk (Z = 97) и калифорния Cf (Z = 98). В качестве ускоренных ионов был выбран изотоп кальция 48 Ca (Z = 20). Схематический вид сепаратора и детектора ядер отдачи показан на рис. 12.11.


Рис. 12.11. Схематический вид сепаратора ядер отдачи, на котором проводятся эксперименты по синтезу сверхтяжелых элементов в Дубне.

Магнитный сепаратор ядер отдачи уменьшает фон побочных продуктов реакции в 10 5 –10 7 раз. Регистрация продуктов реакции осуществлялась с помощью позиционно-чувствительного кремниевого детектора. Измерялись энергия, координаты и время пролета ядер отдачи. После остановки все последующие сигналы от регистрируемых частиц распада должны исходить из точки остановки имплантированного ядра. Созданная методика позволяла с высокой степенью надёжности (≈ 100%) установить связь между остановившимся в детекторе сверхтяжелым ядром и продуктами его распада. С помощью такой методики были надёжно идентифицированы сверхтяжелые элементы с
Z = 110–118 (табл. 12.2).
В таблице 12.2 приведены характеристики сверхтяжелых химических элементов с Z = 110–118: массовое число A, m − наличие изомерного состояния в изотопе с массовым числом A, спин-четность J P , энергия связи ядра E св, удельная энергия связи ε, энергии отделения нейтрона B n и протона B p , период полураспада T 1/2 и основные каналы распада.
Химические элементы Z > 112 пока не имеют названий и приводятся в принятых международных обозначениях.

Таблица 12.2

Характеристики сверхтяжелых химических элементов Z = 110–118

XX-A-m J P Масса
ядра,
MэВ
E св,
MэВ
ε,
MэВ
B n ,
MэВ
B p ,
MэВ
T 1/2 Моды распада
Z = 110 − дармштадтий
Ds-267 248787.19 1934.5 7.2 0.7 2.8 ас α ≈100%
Ds-268 0 + 249718.08 1943.2 7.3 8.7 1.3 100 ас α ≈
Ds-269 250650.86 1950.0 7.2 6.8 1.3 179 ас α 100%
Ds-270 0 + 251581.97 1958.4 7.3 8.5 0.10 мс α ≈100%, SF < 0.20%
Ds-270-m 251583.07 1957.3 7.2 6.0 мс α >70%, IT ≤ 30%
Ds-271 252514.72 1965.2 7.3 6.8 2.2 1.63 мс α ≈100%
Ds-271-m 252514.72 1965.2 7.3 69 мс IT?, α >0%
Ds-272 0 + 253446.46 1973.1 7.3 7.8 2.5 1 с SF
Ds-273 254380.32 1978.8 7.2 5.7 2.5 0.17 мс α ≈100%
Ds-274 0 + 255312.45 1986.2 7.2 7.4 3.0 2 с α?,
SF?
Ds-275 256246.44 1991.8 7.2 5.6 2.9 2 с α?
Ds-276 0 + 257178.73 1999.1 7.2 7.3 3.2 5 с SF?,
α?
Ds-277 258112.63 2004.7 7.2 5.7 3.1 5 с α?
Ds-278 0 + 259044.92 2012.0 7.2 7.3 10 с SF?,
α?
Ds-279 259978.62 2017.9 7.2 5.9 0.18 с SF ≈90%,
α ≈10%
Ds-281 261844.60 2031.0 7.2 9.6 с SF ≈100%
Z =111 − рентгений
Rg-272 253452.75 1965.5 7.2 0.2 3.8 мс α ≈100%
Rg-273 254384.34 1973.5 7.2 8.0 0.4 5 мс α?
Rg-274 255317.74 1979.6 7.2 6.2 0.9 6.4 мс α ≈100%
Rg-275 256249.53 1987.4 7.2 7.8 1.2 10 мс α?
Rg-276 257183.22 1993.3 7.2 5.9 1.5 100 мс SF?,
α?
Rg-277 258115.72 2000.4 7.2 7.1 1.3 1 с α?,
SF?
Rg-278 259049.11 2006.5 7.2 6.2 1.8 4.2 мс α ≈100%,
SF
Rg-279 259981.41 2013.8 7.2 7.3 1.8 0.17 с α ≈100%
Rg-280 260914.80 2020.0 7.2 6.2 2.1 3.6 с α ≈100%
Rg-281 261847.09 2027.2 7.2 7.3 1 м α?, SF?
Rg-282 262780.59 2033.3 7.2 6.1 2.3 4 м SF?, α?
Rg-283 263712.98 2040.5 7.2 7.2 10 м SF?, α?
Z = 112 − коперниций
Cn-277 258119.32 1995.5 7.2 2.2 0.69 мс α ≈100%
Cn-278 0 + 259051.20 2003.1 7.2 7.7 2.8 10 мс SF?, α?
Cn -279 259984.69 2009.2 7.2 6.1 2.7 0.1 с SF?, α?
Cn -280 0 + 260916.69 2016.8 7.2 7.6 3.0 1 с α?, SF?
Cn -282 0 + 262782.18 2030.4 7.2 3.2 0.50 мс SF ≈100%
Cn -283 263715.57 2036.6 7.2 6.2 3.3 4.0 с α ≥90%, SF ≤10%
Cn -284 0 + 264647.66 2044.1 7.2 7.5 3.6 101 мс SF ≈100%
Cn -285 265580.76 2050.5 7.2 6.5 34 с α ≈100%
Z = 113
Uut-278 0.24 мс α 100%
Uut-283 263719.46 2031.4 7.2 1.0 100 мс α 100%
Uut-284 264652.45 2038.0 7.2 6.6 1.4 0.48 с α ≈100%
Uut-285 265584.55 2045.5 7.2 7.5 1.4 2 м α?, SF?
Uut-286 266517.64 2051.9 7.2 6.5 1.4 5 м α?, SF?
Uut-287 267449.64 2059.5 7.2 7.6 20 м α?, SF?
Z = 114
Uuq-286 0 + 266520.33 2048.0 7.2 2.5 0.16 с SF ≈60%, α ≈40%
Uuq-287 267453.42 2054.4 7.2 6.5 2.5 0.51 с α ≈100%
Uuq-288 0 + 268385.02 2062.4 7.2 8.0 2.9 0.80 с α ≈100%
Uuq-289 269317.91 2069.1 7.2 6.7 2.7 с α ≈100%
Z = 115
Uup-287 267458.11 2048.4 7.1 0.5 32 мс α 100%
Uup-288 268390.81 2055.3 7.1 6.9 0.9 87 мс α 100%
Uup-289 269322.50 2063.2 7.1 7.9 0.8 10 с SF?, α?
Uup-290 270255.30 2070.0 7.1 6.8 0.9 10 с SF?, α?
Uup-291 271187.09 2077.7 7.1 7.8 1 м α?, SF?
Z = 116
Uuh-290 0 + 270258.98 2065.0 7.1 1.8 15 мс α ≈100%
Uuh-291 271191.78 2071.7 7.1 6.8 1.8 6.3 мс α 100%
Uuh-292 0 + 272123.07 2080.0 7.1 8.3 2.3 18 мс α ≈100%
Uuh-293 53 мс α ≈100%
Z = 117
Uus-291 271197.37 2064.9 7.1 -0.1 10 мс SF?, α?
Uus-292 272129.76 2072.0 7.1 7.2 0.3 50 мс SF?, α?
Z = 118
Uuo-294 0 + 1.8 мс α ≈100%

На рис. 12.12 показаны все известные наиболее тяжелые изотопы с Z = 110–118, полученные в реакциях синтеза с указанием экспериментально измеренного периода полураспада. Здесь же показано теоретически предсказанное положение острова стабильности (Z = 114, N = 184).


Рис. 12.12. N-Z-диаграмма элементов Z = 110–118.

Полученные результаты однозначно указывают на рост стабильности изотопов при приближении к дважды магическому ядру (Z = 114, N = 184). Добавление к ядрам с Z = 110 и 112 7–8 нейтронов увеличивает период полураспада от 2.8 ас (Ds-267) до ≈ 10 с (Ds-168, Ds 271). Период полураспада T 1/2 (272 Rg, 273 Rg) ≈ 4–5 мс увеличивается до T 1/2 (283 Rg) ≈ 10 мин. Наиболее тяжелые изотопы элементов Z = 110–112 содержат ≈ 170 нейтронов, что ещё далеко от магического числа N = 184. Все наиболее тяжелые изотопы с Z > 111 и N > 172 распадаются преимущественно в результате
α-распада, спонтанное деление – более редкий распад. Эти результаты находятся в хорошем согласии с теоретическими предсказаниями.
В Лаборатории ядерных реакций им. Г.Н. Флерова (Дубна) синтезирован элемент с Z = 114. Была использована реакция

Идентификация ядра 289 114 проводилась по цепочке α-распадов. Экспериментальная оценка периода полураспада изотопа 289 114 ~30 с. Полученный результат находится в хорошем согласии с ранее выполненными расчетами .
При синтезе 114 элемента в реакции 48 Cu + 244 Pu максимальный выход изотопов с Z = 114 наблюдался в канале с испарением трех нейтронов. При этом энергии возбуждения составного ядра 289 114 была 35 МэВ.
Теоретически предсказываемая последовательность распадов, происходящих с ядром 296 116, образующемся в реакции 248 Cm + 48 Ca → 296 116, приведена на рис.12.13


Рис. 12.13. Схема распада ядра 296 116.

Изотоп 296 116 охлаждается в результате испускания четырех нейтронов и превращается в изотоп 292 116, который далее с 5% -ой вероятностью в результате двух последовательных e-захватов превращается в изотоп 292 114. В результате α-распада (T 1/2 = 85 дней) изотоп 292 114 превращается в изотоп 288 112. Образование изотопа 288 112 происходит и по каналу

Конечное ядро 288 112, образующееся в результате обеих цепочек, имеет период полураспада около 1 часа и распадается в результате спонтанного деления. Примерно с 10%-ой вероятностью в результате α-распада изотопа 288 114 может образовываться изотоп 284 112. Приведенные выше периоды и каналы распада получены расчетным путем.
На рис. 12.14 приведена цепочка последовательных α-распадов изотопа 288 115, измеренная в экспериментах в Дубне. ER − энергия ядра отдачи, имплантированного в позиционно-чувствительный кремниевый детектор. Можно отметить хорошее совпадение в периодах полураспада и энергиях α-распадов в трёх экспериментах, что свидетельствует о надёжности метода идентификации сверхтяжелых элементов с помощью измерений спектров α-частиц.


Рис. 12.14. Цепочка последовательных α-распадов изотопа 288 115, измеренная в экспериментах в Дубне.

Самый тяжелый, полученный в лабораторных условиях элемент с Z = 118, был синтезирован в реакции

48 Ca + 249 Cf → 294 118 + 3n.

При энергии ионов вблизи кулоновского барьера наблюдалось три случая образования 118 элемента. Ядра 294 118 имплантировались в кремниевый детектор и наблюдалась цепочка последовательных α-распадов. Сечение образования 118 элемента составляло ~2 пикобарна. Период полураспада изотопа 293 118 равен 120 мс.
На рис. 12.15 показана теоретически рассчитанная цепочка последовательных α-распадов изотопа 293 118 и приведены периоды полураспада дочерних ядер, образующихся в результате α-распадов.


Рис. 12.15. Цепочка последовательных α-распадов изотопа 293 118.
Приведены средние времена жизни дочерних ядер, образующихся в результате α-распадов.

Анализируя различные возможности образования сверхтяжелых элементов в реакциях с тяжелыми ионами нужно учитывать следующие обстоятельства.

  1. Необходимо создать ядро с достаточно большим отношением числа нейтронов к числу протонов. Поэтому в качестве налетающей частицы надо выбирать тяжелые ионы, имеющие большое N/Z.
  2. Необходимо, чтобы образующееся компаунд-ядро имело малую энергию возбуждения и небольшую величину момента количества движения, так как в противном случае будет снижаться эффективная высота барьера деления.
  3. Необходимо, чтобы образующееся ядро имело форму близкую к сферической, так как даже небольшая деформация будет приводить к быстрому делению сверхтяжелого ядра.

Весьма перспективным методом получения сверхтяжелых ядер являются реакции типа 238 U + 238 U, 238 U + 248 Cm, 238 U + 249 Cf, 238 U + 254 Es. На рис. 12.16 приведены оценочные сечения образования трансурановых элементов при облучении ускоренными ионами 238 U мишеней из 248 Cm, 249 Cf и 254 Es. В этих реакциях уже получены первые результаты по сечениям образования элементов с Z > 100. Для увеличения выходов исследуемых реакций толщины мишеней выбирались таким образом, чтобы продукты реакции оставались в мишени. После облучения из мишени сепарировались отдельные химические элементы. В полученных образцах в течение нескольких месяцев регистрировались продукты α-распада и осколки деления. Данные, полученные с помощью ускоренных ионов урана, ясно указывают на увеличение выхода тяжелых трансурановых элементов по сравнению с более легкими бомбардирующими ионами. Этот факт чрезвычайно важен для решения проблемы синтеза сверхтяжелых ядер. Несмотря на трудности работы с соответствующими мишенями прогнозы продвижения к большим Z выглядят довольно оптимистично.


Рис. 12.16. Оценки сечений образования трансурановых элементов в реакциях 238 U с 248 Cm, 249 Cf и 254 Es

Продвижение в область сверхтяжелых ядер в последние годы оказалось ошеломляюще впечатляющим. Однако все попытки обнаружить Остров Стабильности пока не увенчались успехом. Поиск его интенсивно продолжается.
Оболочечная структура атомных ядер играет существенную роль в повышении стабильности сверхтяжелых ядер. Магические числа Z ≈ 114 и N ≈ 184, если они действительно существуют, могут привести к значительному повышению стабильности атомных ядер. Существенным является также то, что распад сверхтяжелых ядер будет происходить в результате α-распада, что важно для разработки экспериментальных методов детектирования и идентификации новых сверхтяжелых ядер.

Петер Армбрустер, Готфрид Мюнцерберг

Тонкие квантовомеханические эффекты стабилизируют ядра, которые намного тяжелее ядер, существующих в природе. Экспериментаторам пришлось пересматривать представления о том, как лучше синтезировать такие сверхтяжелые элементы

В течение последних 20 лет во многих странах мира внимание физиков привлекала проблема получения сверхтяжелых элементов. В Дармштадте в Институте исследований с тяжелыми ионами (ГСИ) нам удалось добиться определенных успехов, синтезировав ядра элементов 107, 108 и 109. Эти ядра находятся за «порогом» 106-го протона, который отмечает предел для существовавших ранее методов получения и идентификации тяжелых элементов.

Экспериментальные измерения масс ядер и теоретический анализ показывают, что стабильность этих новых элементов обусловлена прежде всего микроструктурой их протонных и нейтронных систем, а не макроскопическими свойствами, определяющими стабильность более легких ядер. Однако мы столкнулись с проблемами, которые до сих пор затрудняют достижение целей, поставленных в конце 60-хгодов, когда казалось, что элементы вплоть до 114-го находятся в пределах досягаемости. Преодолевая эти трудности, мы продвинулись В изучении ядерной структуры и динамики реакций слияния ядер.

Нуклеосинтез прошел долгий путь от раннего периода, когда элементы, которые не существуют в природе, получали в ядерных реакторах. Физики применяли все более тяжелые ускоренные ионы для бомбардировки атомов мишени. Последним этапом в этом развитии стал метод «холодного слияния» ядер, в котором массы частиц и энергия бомбардировки должны быть тщательно определены, чтобы возбуждение вновь образующихся ядер было минимальным.

В процессе нашей работы почти все первоначальные представления о синтезе сверхтяжелых элементов пришлось пересмотреть: ядра элементов, которые можно синтезировать, являются деформированными, анесферическими, как это постулировалось в 1966 г. Для слияния мы использовали стабильные, широко распространенные в природе, сферические ядра и ускоренные ионы средних масс вместо искусственных наиболее тяжелых радиоактивных ядер и соответственноподобранных легких ускоренных ионов, как предполагалось ранее. Слияние должно происходить при возможно более низкой энергии бомбардировки - как можно «мягче», без применения «грубой силы» в виде избыточной энергии взаимодействия, которая, как полагали ранее, способствует процессу слияния.

Идея синтеза трансурановых элементов (с атомным номером более 92) возникла в 30-х годах. В 1934 г. Энрико Ферми бомбардировал таллий медленными нейтронами, чтобы после бета-распада (распад нейтрона на протон и электрон) получить свинец. В результате захвата нейтронов и последующего бета-распада образовывались элементы с атомными номерами, на единицу превышавшими исходные.

В период между 1940 г. и серединой 50-х годов путем нейтронного облучения были получены элементы 93, 94, 99 и 100. Фермий, элемент 100, неслучайно оказался последним в серии элементов, которые можно было получить методом нейтронного захвата и бета-распада, предложенным Ферми: ни один из его изотопов не испытывает бета-распад. В течение того же периода при облучении альфа-частицами были получены элементы от 95 до 98 и 101-й. В этом процессе тяжелое ядро поглощает два протона и два нейтрона; при этом атомный номер увеличивается сразу на две единицы. Подобно всем тяжелым элементам, трансурановые элементы содержат больше нейтронов, чем протонов; например, плутоний (элемент 94) содержит 145 нейтронов при полной массе 239; наиболее долгоживущий изотоп фермия имеет 157 нейтронов при полной массе 257.

Естественным способом получения элементов выше 100-го считалось слияние ядер наиболее тяжелых элементов с ядрами легких элементов, содержащих больше протонов и нейтронов, чем гелий. Элементы вплоть до 99-го доступны, поскольку их можно синтезировать в весовых макроскопических количествах. В Беркли (США)и Дубне (СССР) были построены ускорители для получения тяжелых ионов с энергией, достаточной для преодоления препятствующих слиянию ядер электростатических сил. В период между 1958 и 1974 гг. эти ускорители тяжелых ионов позволили синтезировать элементы от 102 до 106. Приоритет открытия этих элементов и, следовательно, право их наименования остаются до сих пор предметом дискуссий.

Методы, столь успешно применявшиеся в Беркли и Дубне, оказались неэффективными для получения элементов тяжелее 100-го. Чтобы понять, почему так трудно синтезировать сверхтяжелые элементы и почему некоторые из них могут быть особенно стабильны, необходимо выяснить, как ядра сохраняются как единое целое или же разваливаются и как баланс различных сил. определяющий их стабильность, изменяется с увеличением массы. Эффекты, которыми для более легких ядер можно пренебречь, определяют различие между полной нестабильностью и относительно большими временами жизни сверхтяжелых ядер.

Особенно важным для всех ядер является взаимосвязь сильных ядерных сил, притягивающих как протоны, так и нейтроны, и электростатических сил, отталкивающих протоны. Чем тяжелее ядра, тем больше в них нейтронов, что в некоторой степени компенсирует влияние сил отталкивания между протонами. Тем не менее сила связи между нуклонами достигает максимума у железа (26 протонов и 30 нейтронов), что соответствует менее четверти пути по периодической таблице, а затем она уменьшается.

Расщепление любого ядра тяжелее железа должно сопровождаться выделением энергии, однако энергия, необходимая для расщепления менее массивных ядер, чем свинец, так велика, что такую реакцию можно осуществлять только в особых условиях. Поскольку ядра тяжелее свинца, могут переходить в более устойчивое состояние, испуская даже небольшую часть своих нуклонов, они нестабильны. Существующие в природе изотопы тория и урана распадаются в основном путем испускания альфа-частиц. Только у урана и более тяжелых элементов невозбужденные ядра могут испытывать спонтанное деление.

В основном с ростом атомного номера (число протонов в ядре) нестабильность атомных ядер увеличивается: периоды их полураспада уменьшаются от нескольких тысяч лет до миллионных долей секунды. Однако из теории строения ядра следует, что элементы, лишь немного тяжелее полученных к настоящему времени, будут не менее, а более стабильны.

Ядра с определенными комбинациями нейтронов и протонов имеют особенно большую энергию связи; гелий-4, кислород-16, кальций-40, кальций-48 и свинец-208 очень стабильны по сравнению с соседними элементами. Эти большие значения обусловлены оболочечной структурой - ядерным эквивалентом оболочек, на которых находятся электроны вокруг ядра. Конфигурации нуклонов, образующие полностью заполненные (замкнутые) оболочки, особенно стабильны. Для свинца оболочечная структура способствует увеличению энергии связи ядра на 11 млн. электронвольт (МэВ) по сравнению с гипотетической ядерной каплей, лишенной структуры и имеющей то же число нейтронов и протонов. Для большинства ядер с энергиями связи до 2 млрд. эВ такое увеличение сравнительно несущественно. Однако для наиболее тяжелых элементов, находящихся на границе стабильности, «оболочечная стабилизация» может приводить к различию между мгновенным распадом и относительно длительным существованием ядер.

Ядра с замкнутыми нейтронными и протонными оболочками особенно стабильны; после свинца такие оболочки появляются при 114 протонах и 184 нейтронах. Успехи теории оболочек в предсказании энергий связи для легких ядер породили надежду, что ядра с массой, близкой к 298, могут быть настолько сильно стабилизированы, что, подобно урану и торию, могут образовать область относительно стабильных элементов. Такие оболочечно-стабилизированные сверхтяжелые элементы в отличие от элементов в области урана-тория должны быть нестабильны как однородные капли ядерного вещества.

Первый из оболочечно-стабилизированных сверхтяжелых элементов, 107-й,свойства которого, как предположил Ферми, должны соответствовать экарению, был идентифицирован в Дармштадте в 1981 г., спустя 47 лет после этого предсказания.

Затем нами были получены и идентифицированы элементы 108 и 109. Измерения их энергий связи показывают, что мы уже вступили в область сверхтяжелых элементов. В настоящее время мы исследуем ограничения, препятствующие получению еще более тяжелых элементов.

Синтез тяжелых элементов в реакциях слияния требует от экспериментатора умения «пройти по тонкой грани» между теми методами бомбардировки, в которых слияния не происходит, и теми методами, которые приводят к делению ядра-продукта, вместо того чтобы оставить его в относительно стабильном состоянии. Снижение нагрева вновь образовавшегося ядра представляет собой наиболее важную причину перехода от бомбардировки тяжелых мишеней сравнительно легкими ионами к бомбардировке менее массивных мишеней относительно более тяжелыми ионами (перехода, начатого Ю.Ц. Оганесяном и его сотрудниками из Объединенного института ядерных исследований в Дубне).

Например, при слиянии свинца-208 или висмута-209 с хромом-54 или железом-58 энергия возбуждения нового ядра составляет около 20 МэВ. В то же время слияние тяжелых актиноидных мишеней (калифорния-249, берклия-249 или кюрия-248) с углеродом-12, азотом-15 или кислородом-18 приводит к энергии возбуждения около 45 МэВ.

Ядро, образованное с использованием легких ионов и мишеней изактиноидов, остывает, испуская четыре нейтрона. В отличие от этого ядро, образованное из свинца или висмута и более тяжелых ионов, остывает, испуская только один нейтрон. Поскольку вероятность того, что ядро охладится, испустив нейтрон, составляет всего несколько процентов вероятности его деления, конечный выход сверхтяжелых ядер значительно снижается на каждой ступени каскада эмиссии нейтронов. Механизм однонейтронной релаксации намного более пригоден для сохранения вновь образованного ядра.

К сожалению, холодное слияние имеет также и недостаток: в данном случае электростатические силы отталкивания между двумя ядрами в большей степени препятствуют их слиянию. Когда два ядра сближаются, часть их кинетической энергии превращается в энергию возбуждения промежуточной системы сталкивающихся ядер и, следовательно, не может быть использована для преодоления барьера слияния, что в свою очередь снижает вероятность слияния. В случае холодного слияния с использованием более тяжелых ионов в процессе сближения и прохождения барьера слияния преобразуется больше кинетической энергии и вероятность преодоления этого барьера снижается по сравнению с реакциями между легкими ионами и наиболее тяжелыми мишенями.

Если для компенсации этих потерь увеличивать начальную энергию, энергия возбуждения возрастет и число образующихся ядер уменьшится. В результате только за 106-м элементом проявляются преимущества метода холодного слияния.

Нами было показано, что максимальные сечения реакций образования тяжелых элементов находятся в узком энергетическом диапазоне - примерно на 5 МэБ выше барьера слияния.

В то время как теория получения сверхтяжелых ядер может быть весьма интересна сама по себе, на практике это гораздо более сложная задача. Теоретические расчеты должны сочетаться с конструированием ускорителя и мишени, а также с разработкой системы детекторов, которая сможет зарегистрировать существование сверхтяжелого ядра сразу же, как оно будет синтезировано. Когда в конце 60-х годов идея получения сверхтяжелых элементов завладела воображением физиков и химиков, никто в ФРГ не имел опыта проведения нуклеосинтеза. Для начинающих в этой области было открыто много «дверей». Можно было многому научиться на основе экспериментов, проведенных ранее в Беркли и Дубне, однако было ясно, что дальнейшего прогресса нельзя достигнуть путем копирования этих исследований. Были необходимы ускоритель тяжелых ионов, экспрессные методы разделения для выделения новых элементов и соответствующая техника их идентификации. Не было ответа и на вопрос о том, какие именно реакции должны привести к успеху.

В 1969 г. правительство ФРГ совместно с правительством земли Гессен решило финансировать создание нового института для исследований с тяжелыми ионами (Общество исследований с тяжелыми ионами, геи) в Дармштадте. Универсальный линейный ускоритель (УНИЛАК), на котором ведутся эксперименты в геи, начал работать в 1975 г.

УНИЛАК может ускорять все ионы до урана включительно до энергий, превышающих кулоновский барьер. С самого начала эта установка предназначалась для получения возможно более интенсивных ионных пучков. Особые усилия были направлены на то, чтобы можно было плавно изменять энергию ионов и устанавливать ее на заданном уровне с достаточно хорошей воспроизводимостью. Первоначально проект ускорителя разрабатывался К. Шмельцером и его сотрудниками в Гейдельберге. При этом учитывался уже накопленный опыт других научных групп: ионные источники представляли собой модификацию источников, использовавшихся в Дубне для получения высокозарядных ионов, а разработанная в Беркли система Альвареца была использована в высокочастотной системе линейного ускорителя.

Когда УНИЛАК был построен, перед многими учеными был поставлен вопрос: как лучше всего использовать ускоритель? Какие реакции и какие экспериментальные методы должны применяться? В начальный период своего существования УНИЛАК использовался для проверки самых разнообразных идей, однако успешной оказалась единственная стратегия - холодное слияние в сочетании с транспортировкой ядер отдачи (продуктов слияния).

Со времени открытия в 1941 г. плутония было синтезировано около 400 т этого элемента, что соответствует 10 30 атомов. С другой стороны, было получено и идентифицировaно всего несколько атомов 109-го элемента. Почему наиболее тяжелые элементы получают в таких исчезающе малых количествах? Ответ заключается в следующем: для производства плутония тонны нейтронов бомбардируют блоки урана-238 толщиной несколько сантиметров или более, а на УНИЛАКе ускоряется всего 100 мкг железа-58 для бомбардировки мишени из свинца-208 толщиной несколько сотен нанометров. Кроме того, поперечное сечение реакции нейтронного захвата, в которой образуется плутоний-239, приблизительно в 10 триллионов раз больше поперечного сечения реакции слияния, в которой образуется 109-й элемент.

Трудности при получении более тяжелых элементов составляют только часть проблемы. Будучи синтезированными, такие элементы, как 109-й, распадаются столь быстро, что синтез «не поспевает» за распадом. Наиболее тяжелые элементы настолько короткоживущи, что к концу облучения все образовавшиеся атомы уже распадаются. Поэтому эти атомы следует детектировать и идентифицировать в процессе их получения.

Методы получения и регистрации элементов вплоть до 106-го основывались главным образом на механических средствах транспортировки образующихся атомов из зоны реакции к детекторам. Время транспортировки между образованием и детектированием продуктов реакций определялось скоростями их переноса в потоке газа, временем их диффузии из твердых поверхностей или скоростью вращающихся мишеней. Эти методы, однако, были недостаточно хороши для регистрации элементов тяжелее 106-го, вынуждая идти на неприемлемый выбор, между скоростью и точностью детектирования, так что, используя более быстрые методы, оказалось невозможно надежно идентифицировать новые изотопы.

Для транспортировки образующихся ядер к детекторам мы выбрали методику, основанную на использовании скорости отдачи, которую продукты реакции приобретают от тяжелых ионов. Когда тяжелый ион сталкивается с атомом мишени и сливается с ним, образовавшееся ядро движется по направлению первоначального движения иона со скоростью, составляющей около нескольких процентов скорости света. В результате можно детектировать ядра с периодами полураспада до 100 нс.

Хотя методика транспортировки ядер отдачи позволяет детектировать и идентифицировать очень короткоживущие ядра, техника детектирования становится при этом более сложной. Из зоны реакции с высокой скоростью выходят не только отдельные ядра, образовавшиеся в реакции слияния, но и триллионы тяжелых ионов, а также тысячи атомов, выбитых из мишени. Чтобы отделить сверхтяжелые ядра от остаточного пучка, мы построили специальный фильтр скоростей - сепаратор продуктов реакций с тяжелыми ионами SHIP (Separator for Heavy-Ion Reaction Products), разработанный совместно со специалистами Второго физического института Университета в Гиссене. На основе кинематики столкновения и слияния ядер скорость отдачи продуктов слияния можно рассчитать заранее. Следовательно, их можно выделить относительно прямым способом.

Фильтр скоростей состоит из двух ступеней, каждая из которых включает как электрическое, так и магнитное поля. Эти два поля отклоняют заряженные частицы в противоположных направлениях; только для ядра, имеющего определенную скорость, влияние полей взаимно исключается, и оно продолжает движение в медианной плоскости установки. Такой фильтр-тандем уменьшает число ускоренных ионов, попадающих в область детектирования в 100 млрд. раз а число выбитых ядер мишенн - в 1000 раз. Исключая из пучка почти полностью все нежелательные частицы, спектрометр SHIP пропускает более 40070 продуктов слияния. Детекторы, расположенные за спектрометром, регистрируют цепочки распада частиц, прошедших через спектрометр, что позволяет однозначно идентифицировать продукты слияния.

Первым элементом детектирующей системы является время-пролетное устройство, которое позволяет измерить скорость частицы в третий раз (первые два измерения заложены в принципе действия фильтра скоростей). После прохождения этого устройства частица имплантируется в позиционно-чувствительные кремниевые поверхностно-барьерные детекторы, которые регистрируют ее энергию и место попадания. Поскольку комбинация времени пролета и энергии дает возможность приблизительно определить массу частицы, можно отличать продукты слияния от рассеянных ионов и выбитых ядер мишени.

Для надежной идентификации ядра необходимо тем не менее установить корреляцию его распада с распадом его радиоактивных дочерних продуктов. Акты распада, обусловленные одним и тем же ядром, должны иметь одинаковые пространственные координаты, а тип, энергия и период полураспада дочерних ядер известны из предшествующих измерений.

Устанавливая такие коррелированные акты распада, можно однозначно идентифицировать каждое ядро-продукт слияния. Хотя случайное ядро, попавшее в одно и то же место с исследуемым продуктом слияния, может испытывать распад и вызвать пространственно коррелированный сигнал, весьма маловероятно, чтобы его энергия распада, период полураспада и тип распада совпали с ожидаемыми для продукта слияния. Мы наблюдали такие цепочки распада вплоть до четвертого поколения; вероятность того, что подобные серии коррелированных событий случайны, составляет от 10 –15 до 10 –18 . Если коррелированные события, обусловленные исследуемым изотопом, наблюдаются раз в сутки, то случайного появления событий, имитирующих четыре поколения актов распада, можно ждать в течение времени, в 100 раз превышающего возраст Земли. В результате даже одиночное событие может однозначно указывать на существование данного сверхтяжелого изотопа.

В период между 1981 и 1986 гг. совместно с нашими коллегами П. Хессбергером, З. Хофманом, М. Лейно, В. Райсдорфом и К.-Х. Шмидтом мы использовали УНИЛАК, SHIP и его систему детектирования для синтеза и идентификации элементов 107 109. В этих экспериментах было синтезировано 14 изотопов элементов 104 109 (пять из которых были известны ранее), а также еще два изотопа 107-го и 108-го элементов с массовыми числами 261 и 264 соответственно.

В 1981 г. нами был получен изотоп 107-го элемента с массовым числом 262 путем бомбардировки висмута 209 ионами хрома-54. Для нечетно-нечетного изотопа 107-го элемента (имеющего нечетное число и протонов, и нейтронов) мы установили пять значений энергии альфа-частиц, что дает представление об энергетических ядерных уровнях; мы можем сообщить также, что этот изотоп имеет изомер (долгоживущее возбужденное состояние).

109-й элемент был идентифицирован на основе наблюдения единственной цепочки распада, зарегистрированной в 16 ч 10 мин 29 августа 1982 г. в реакции между железом-58 и висмутом-209. Ядро 266 109 существовало 5 мс, прежде чем испустить альфачастицу с энергией 11,1 МэВ; образовавшееся при этом ядро 107-го элемента распалось на 105-й элемент через 22 мс; 105-й элемент распался на 104-й элемент с последовавшим через 12,9 с спонтанным делением его ядра. Из этого единственного события можно было, хотя и с ограниченной точностью, определить энергию распада, период полураспада и поперечное сечение реакции. Еще две цепочки распада наблюдались в начале 1988 г. - через шесть лет после идентификации 100-го элемента. Они подтвердили интерпретацию события, зарегистрированного в 1982 г.

В 1984г. мы идентифицировали три цепочки распада изотопа 265 108 в реакции между железом-58 и свинцом-208. Два идентифицированных изотопа 107-го и 109-го элементов являются нечетно-нечетными и вероятность их деления сильно снижена, однако изотоп 108-го элемента имеет четное число протонов и нечетное число нейтронов. Хотя у четно-нечетных изотопов вероятность деления значительно выше, изотоп 265 108 также испытывает альфа-распад.

Особенно интересно, что ни один из изотопов элементов 107–109 не делится спонтанно, а все четно-четные изотопы 265 104, 260 106 и 264 108 имеют примерно одинаковую стабильность относительно спонтанного деления.

Приблизительно постоянный уровень стабильности показывает, как стабилизирующие обол очечные эффекты конкурируют с общим падением стабильности при увеличении массы ядер.

За 104-м и 105-м элементами находится небольшой «остров» ядер, которые при испускании альфа-частиц распадаются с образованием известных изотопов более легких элементов. Такие акты альфа-распада позволяют определить энергию связи этих сверхтяжелых элементов. Если энергия связи дочернего ядра известна, то на каждой стадии по энергии альфа-распада можно рассчитать энергию связи материнского ядра. Если известна энергия связи конечного продукта, то по цепочке актов альфа-распада можно прийти в энергии-связи начального ядра цепочки. Поскольку был зарегистрирован распад 108-го и 100-го элементов (по одному событию в каждом случае) и 106-го элемента (по нескольким событиям), можно реконструировать цепочку 264 108 260 106 256 104 252 102. Энергии связи этих ядер составляют 120, 106 и 94 МэВ соответственно.

Оболочечная поправка к энергии связи постепенно растет у всех изотопов от урана-232 до 264 108, которые связаны процессом альфа-распада; соответствующие значения увеличиваются от 1-2 до 6-7 МэВ. Фактически все элементы от урана до 108-го элемента имеют одинаково высокие барьеры деления - около 6 МэВ. В отличие от урана, еще стабильного, как ядерная капля, стабильность 100-го и 108-го элементов полностью обусловлена квантовомеханической структурой их многочастичных фермионных систем. В последних теоретических работах предсказываются барьеры деления, которые согласуются с нашими измерениями.

Время жизни элемента относительно деления определяется в основном высотой и шириной барьера деления. Оболочечные поправки увеличивают времена жизни 106-го и 108-го элементов на 15 порядков величины. На логарифмической шкале наблюдаемые времена жизни находятся в середине диапазона между собственным ядерным временем (примерно 10 –21 с для распада несвязанной нуклонной системы) и возрастом Вселенной (10 18 с). Новые элементы нестабильны только по сравнению с продолжительностью человеческой жизни (2·10 9 с). Чтобы соответствовать стабильности по этой шкале, времена жизни должны возрасти на 12 порядков величины. Однако ядерная физика не базируется на человеческом масштабе времени.

Обнаруженный нами «остров» альфа-радиоактивных изотопов является прямым следствием их стабилизации благодаря оболочечным эффектам. Таким образом, предсказанная в конце 60-х годов стабилизация сферических сверхтяжелых ядер вблизи 114-го элемента начинается намного раньше, чем ожидалось, и постепенно нарастает. В узкой области нестабильности за свинцом, между элементами 83 и 90, оболочечные эффекты ослабляются. Однако в интервале между 92-м и 114-м элементами величина оболочечной поправки медленно и монотонно возрастает.

Даже в окрестностях «острова» сверхтяжелых ядер происходит стабилизация вследствие квантовомеханической структуры фермионных систем, в то время как на «материке» стабилизация ядер обусловлена макроскопическими жидкокапельными свойствами. Ядра элементов 107 109 находятся на «дамбе» между «островом» и «материком», поэтому новые изотопы можно отнести и к «острову», и к «материку». В любом случае - подобно сверхтяжелым элементам - их удалось наблюдать только благодаря оболочечной стабилизации их основных состояний.

Из последних теоретических предсказаний для оболочечных поправок к энергиям связи следует, что между элементами 106 и 126 должна быть область примерно из 400 сверхтяжелых ядер, имеющих барьеры деления свыше 4 МэВ. Все эти изотопы должны иметь периоды полураспада более 1 мкс; если их удастся синтезировать, то детектировать их можно будет существующими методами. Особенно стабильные области предполагаются вблизи изотопов 273 109 и 291 115.При числе нейтронов около 166 деформация основного состояния изменяется. Изотопы с меньшим числом нейтронов деформированы, в то время как более тяжелые изотопы имеют сферическую форму.

В течение последних 20 лет все попытки получить изотопы вблизи ожидаемого центра стабильности - ядра 298 114 - оказались безуспешными. Зарегистрировать эти сверхтяжелые изотопы не удалось ни в реакциях слияния, ни в любых других реакциях с участием тяжелых ионов. Тем не менее основная идея о возможности существования оболочечно-стабилизированных нуклонных систем, кроме стабильных ядерных капель, подтверждена экспериментами, описанными выше. Теоретически же сохраняются все основания верить в экстраполяцию к еще более тяжелым элементам.

Теперь возникает интересный вопрос: что в конечном счете препятствует созданию этих «хрупких» объектов? Некоторые важные разъяснения удалось получить в наших интенсивных исследованиях реакций слияния. Оболочечно-стабилизированное ядро, сферическое в основном состоянии, может быть разрушено даже при столь малой энергии возбуждения, как 15 МэВ, это было экспериментально продемонстрировано К.-Х. Шмидтом еще в 1979 г., в то время как деформированные ядра могут сохраняться при энергии возбуждения до 40 МэВ. Даже в реакции между кальцием-48 и кюрием-248 (наиболее подходящей из доступных реакций) энергия возбуждения составляет около 30 МэВ. Отсюда следует, что можно получить сверхтяжелые элементы только с деформированными ядрами. Однако до настоящего времени такие попытки были успешными лишь для элементов с атомными номерами меньше 110.

Как отмечалось ранее, слияние двух ядер, приводящее к образованию сверхтяжелого ядра, с самого начала осложняется необходимостью преодолеть барьер слияния. Для данного ядра-продукта этот барьер минимален, когда наиболее тяжелые мишени бомбардируются по возможности более легкими ионами. Несмотря на это преимущество, такая наиболее асимметричная комбинация имеет недостаток, заключающийся в максимальном нагреве ядра-продукта, что приводит к большим потерям вследствие деления в процессе девозбуждения. Чем менее асимметрична комбинация, тем меньше потери на стадии охлаждения. Наилучший компромисс между малыми потерями на конечной стадии и большой вероятностью образования на начальной представляют собой более симметричные комбинации с ядрами мишени вблизи свинца.

Применение свинца и висмута в качестве мишеней дает двойную пользу от обол очечного эффекта в этих ядрах: сильная связь в этих ядрах с их дважды замкнутыми оболочками приводит к уменьшению более чем на 10 МэВ энергии, передаваемой ядрупродукту, и соответствующему уменьшению потерь из-за деления. Кроме того, вероятность преодолеть барьер слияния увеличивается, если в реакции используются сферические, сильно связанные и относительно жесткие ядра. Здесь снова проявляются сильные оболочечные эффекты у свинца, однако на этот раз в динамике процесса.

Теперь мы начинаем понимать, почему будет очень трудно получить еще более тяжелые элементы. Только сочетание оболочечных поправок у партнеров реакции слияния, имеющих замкнутые оболочки, оболочечных эффектов в динамике и повышенной устойчивости возбужденных деформированных сверхтяжелых ядер позволило нам синтезировать несколько изотопов наиболее легких из сверхтяжелых элементов. Мы должны были распространить первоначальный вопрос о существовании оболочечно-стабилизированных ядер на эффект оболочечных поправок на всех стадиях реакции. Особенно важно при создании этих сложных и «хрупких» объектов ввести уже существующий порядок в процесс слияния, избежав ненужного беспорядка.

Как получить следующие сверхтяжелые элементы? Для 110-го и 111-го элементов можно будет применить разработанные нами методы в реакциях между никелем-62 и свинцом-208 или висмутом-209. Если только эти элементы образуются, для их детектирования потребуются не столько принципиально новые знания, сколько обеспечение потребностей в обогащенном изотопе и терпение для того, чтобы научиться владеть нашей аппаратурой и проводить эксперименты в течение нескольких месяцев.

ЕСТЬ ЛИ ПРЕДЕЛ
ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ
Д.И.МЕНДЕЛЕЕВА?

ОТКРЫТИЕ НОВЫХ ЭЛЕМЕНТОВ

П роблема систематизации химических элементов привлекла к себе пристальное внимание в середине XIX в., когда стало ясно, что многообразие окружающих нас веществ является результатом разных сочетаний сравнительно малого числа химических элементов.

В хаосе элементов и их соединений великий русский химик Д.И.Менделеев первым навел порядок, создав свою периодическую таблицу элементов.

1 марта 1869 г. считается днем открытия периодического закона, когда Менделеев сообщил о нем научному сообществу. Известные в то время 63 элемента ученый разместил в своей таблице таким образом, что главные свойства этих элементов и их соединений менялись периодически по мере увеличения их атомной массы. Наблюдаемые изменения свойств элементов в горизонтальном и вертикальном направлениях таблицы следовали строгим правилам. Например, ярко выраженный у элементов Iа группы металлический (основный) характер с увеличением атомной массы убывал по горизонтали таблицы и возрастал по вертикали.

Опираясь на открытый закон, Менделеев предсказал свойства нескольких еще не открытых элементов и их место в периодической таблице. Уже в 1875 г. был открыт «экаалюминий» (галлий), еще через четыре года – «экабор» (скандий), а в 1886 г. – «экасилиций» (германий). В последующие годы таблица Менделеева служила и до сих пор служит ориентиром в поисках новых элементов и предвидении их свойств.

Однако ни сам Менделеев, ни его современники не могли ответить на вопрос, в чем причины периодичности свойств элементов, существует ли и где проходит граница периодической системы. Менделеев предчувствовал, что причина представленной им взаимосвязи между свойствами и атомной массой элементов кроется в сложности самих атомов.

Лишь спустя много лет после создания периодической системы химических элементов в работах Э.Резерфорда, Н.Бора и других ученых было доказано сложное строение атома. Последующие достижения атомной физики позволили решить многие неясные проблемы периодической системы химических элементов. Прежде всего оказалось, что место элемента в периодической таблице определяется не атомной массой, а зарядом ядра. Стала понятной природа периодичности химических свойств элементов и их соединений.

Атом стали рассматривать как систему, в центре которой находится положительно заряженное ядро, а вокруг него вращаются отрицательно заряженные электроны. При этом электроны группируются в околоядерном пространстве и движутся по определенным орбитам, входящим в электронные оболочки.

Все электроны атома принято обозначать с помощью чисел и букв. Согласно этому обозначению главные квантовые числа 1, 2, 3, 4, 5, 6, 7 относятся к электронным оболочкам, а буквы s , p , d , f , g – к подоболочкам (орбитам) каждой оболочки. Первая оболочка (считая от ядра) имеет только s -электроны, вторая может иметь s - и p - электроны, третья – s -, p - и d -электроны, четвертая – s -,
p -, d - и f - электроны и т.д.

Каждая оболочка может вместить вполне определенное число электронов: первая – 2, вторая – 8, третья – 18, четвертая и пятая – по 32. Этим определяется число элементов в периодах таблицы Менделеева. Химические свойства элементов обусловлены строением внешней и предвнешней электронных оболочек атомов, т.е. тем, сколько электронов они содержат.

Ядро атома состоит из положительно заряженных частиц – протонов и электрически нейтральных частиц – нейтронов, часто называемых одним словом – нуклоны. Порядковый номер элемента (его место в периодической таблице) определяется числом протонов в ядре атома данного элемента. Массовое число А атома элемента равно сумме чисел протонов Z и нейтронов N в ядре: A = Z + N . Атомы одного и того же элемента с разным числом нейтронов в ядре являются его изотопами.

Химические свойства разных изотопов одного и того же элемента не отличаются друг от друга, а ядерные – изменяются в широких пределах. Это проявляется прежде всего в стабильности (или нестабильности) изотопов, которая существенно зависит от соотношения числа протонов и нейтронов в ядре. Легкие стабильные изотопы элементов обычно характеризуются равным числом протонов и нейтронов. С ростом заряда ядра, т. е. порядкового номера элемента в таблице, это соотношение меняется. У стабильных тяжелых ядер нейтронов почти в полтора раза больше, чем протонов.

Как и атомные электроны, нуклоны также образуют оболочки. С увеличением числа частиц в ядре последовательно заполняются протонные и нейтронные оболочки. Ядра с полностью заполненными оболочками являются самыми стабильными. Например, очень устойчивой ядерной структурой характеризуется изотоп свинца Pb-208, который имеет заполненные оболочки протонов (Z = 82) и нейтронов (N = 126).

Подобные заполненные ядерные оболочки аналогичны заполненным электронным оболочкам атомов инертных газов, представляющих отдельную группу в периодической таблице. Стабильные ядра атомов с полностью заполненными протонными или нейтронными оболочками содержат определенные «магические» числа протонов или нейтронов: 2, 8, 20, 28, 50, 82, 114, 126, 184. Таким образом, атомам элементов в целом, как и по химическим свойствам, присуща также периодичность и ядерных свойств. Среди разных сочетаний числа протонов и нейтронов в ядрах изотопов (четно-четных; четно-нечетных; нечетно-четных; нечетно-нечетных) именно ядра, содержащие четное число протонов и четное число нейтронов, отличаются наибольшей устойчивостью.

Природа сил, удерживающих в ядре протоны и нейтроны, пока недостаточно ясна. Полагают, что между нуклонами действуют очень большие гравитационные силы притяжения, которые способствуют увеличению стабильности ядер.

К середине тридцатых годов прошлого столетия периодическая таблица была разработана настолько, что показывала положение уже 92 элементов. Под порядковым номером 92 был уран – последний из найденных на Земле еще в 1789 г. естественных тяжелых элементов. Из 92 элементов таблицы только элементы с порядковыми номерами 43, 61, 85 и 87 в тридцатые годы не были точно установлены. Они были открыты и изучены позже. Редкоземельный элемент с атомным номером 61 – прометий – был обнаружен в малых количествах в рудах как продукт самопроизвольного распада урана. Анализ атомных ядер недостающих элементов показал, что все они радиоактивны, причем из-за коротких периодов их полураспада они не могут существовать на Земле в заметных концентрациях.

В связи с тем, что последним тяжелым элементом, найденным на Земле, был элемент с атомным номером 92, можно было бы предположить, что он и является естественным пределом периодической таблицы Менделеева. Однако достижения атомной физики указали путь, по которому оказалось возможным перешагнуть через поставленную природой границу периодической таблицы.

Элементы с бо льшими атомными номерами, чем у урана, называют трансурановыми. По своему происхождению эти элементы являются искусственными (синтетическими). Их получают путем ядерных реакций трансформации элементов, встречающихся в природе.

Первую попытку, хотя не совсем удачную, открыть трансурановую область периодической системы предпринял итальянский физик Энрико Ферми в Риме вскоре после того, как было доказано существование нейтронов. Но лишь в 1940–1941 гг. успеха в открытии первых двух трансурановых элементов, а именно нептуния (атомный номер 93) и плутония (атомный номер 94), добились американские ученые из Калифорнийского университета в Беркли.

В основе методов получения трансурановых элементов лежит несколько видов ядерных реакций.

Первый вид – нейтронный синтез. В этом методе в ядрах тяжелых атомов, облученных нейтронами, происходит превращение одного из нейтронов в протон. Реакция сопровождается так называемым электронным распадом ( – -распадом) – образованием и выбросом из ядра с огромной кинетической энергией отрицательно заряженной – -частицы (электрона). Реакция возможна при избытке в ядре нейтронов.

Противоположной реакцией является превращение протона в нейтрон с испусканием положительно заряженной + -частицы (позитрона). Подобный позитронный распад ( + -распад) наблюдается при недостатке в ядрах нейтронов и ведет к уменьшению заряда ядра, т.е. к уменьшению атомного номера элемента на единицу. Аналогичный эффект достигается, когда протон превращается в нейтрон за счет захвата ближайшего орбитального электрона.

Новые трансурановые элементы вначале были получены из урана по методу нейтронного синтеза в ядерных реакторах (как продукты взрыва ядерных бомб), а позже синтезированы с помощью ускорителей частиц – циклотронов.

Второй вид – реакции между ядрами атомов исходного элемента («мишени») и ядрами атомов легких элементов (изотопов водорода, гелия, азота, кислорода и других), используемых в качестве бомбардирующих частиц. Протоны в ядрах «мишени» и «снаряда» имеют положительный электрический заряд и испытывают сильное отталкивание при приближении друг к другу. Чтобы преодолеть силы отталкивания, образовать составное ядро, необходимо обеспечить атомы «снаряда» очень большой кинетической энергией. Такой огромной энергией бомбардирующие частицы запасаются в циклотронах. Образовавшееся промежуточное составное ядро обладает довольно большой избыточной энергией, которая должна быть высвобождена для стабилизации нового ядра. В случае тяжелых трансурановых элементов эта избыточная энергия, когда не происходит деления ядер, рассеивается путем испускания -лучей (высокоэнергетического электромагнитного излучения) и «испарения» нейтронов из возбужденных ядер. Ядра атомов нового элемента являются радиоактивными. Они стремятся достигнуть более высокой устойчивости путем изменения внутреннего строения через радиоактивный электронный – -распад либо -распад и самопроизвольное деление. Такие ядерные реакции присущи наиболее тяжелым атомам элементов с порядковыми номерами выше 98.

Реакция спонтанного, самопроизвольного деления ядер атомов радиоактивных элементов была открыта нашим соотечественником Г.Н.Флеровым и чехом К.А.Петржаком в Объединенном институте ядерных исследований (ОИЯИ, г. Дубна) в опытах с ураном-238. Увеличение порядкового номера приводит к быстрому уменьшению времени полураспада ядер атомов радиоактивных элементов.

В связи с этим фактом выдающийся американский ученый Г.Т.Сиборг, лауреат Нобелевской премии, участвовавший в открытии девяти трансурановых элементов, полагал, что открытие новых элементов, вероятно, закончится приблизительно на элементе с порядковым номером 110 (по свойствам аналогичном платине). Эта мысль о границе периодической таблицы была высказана в 60-е годы прошлого столетия с оговоркой: если не будут открыты новые методы синтеза элементов и существование пока неизвестных областей устойчивости самых тяжелых элементов. Некоторые из таких возможностей были выявлены.

Третий вид ядерных реакций синтеза новых элементов – реакции между высокоэнергетическими ионами со средней атомной массой (кальция, титана, хрома, никеля) в качестве бомбардирующих частиц и атомами стабильных элементов (свинца, висмута) в качестве «мишени» вместо тяжелых радиоактивных изотопов. Этот путь получения более тяжелых элементов был предложен в 1973 г. нашим ученым Ю.Ц.Оганесяном из ОИЯИ и успешно использован в других странах. Главное достоинство предложенного метода синтеза заключалось в образовании менее «горячих» составных ядер при слиянии ядер «снаряда» и «мишени». Высвобождение избыточной энергии составных ядер в этом случае происходило в результате «испарения» существенно меньшего числа нейтронов (одного или двух вместо четырех или пяти).

Необычная ядерная реакция между ионами редкого изотопа Са-48, ускоренными в циклотроне
У-400, и атомами актиноидного элемента кюрия Cm-248 с образованием элемента-114 («экасвинца») была открыта в Дубне в 1979 г. Было установлено, что в этой реакции образуется «холодное» ядро, не «испаряющее» ни одного нейтрона, а всю избыточную энергию уносит одна -частица. Это означает, что для синтеза новых элементов может быть реализован также четвертый вид ядерных реакций между ускоренными ионами атомов со средними массовыми числами и атомами тяжелых трансурановых элементов.

В развитии теории периодической системы химических элементов большую роль сыграло сопоставление химических свойств и строения электронных оболочек лантаноидов с порядковыми номерами 58–71 и актиноидов с порядковыми номерами 90–103. Было показано, что сходство химических свойств лантаноидов и актиноидов обусловлено подобием их электронных структур. Обе группы элементов являются примером внутреннего переходного ряда с последовательным заполнением 4f - или 5f -электронных оболочек соответственно после заполнения внешних s - и р -электронных орбиталей.

Элементы с порядковыми номерами в периодической таблице 110 и выше были названы сверхтяжелыми. Продвижение к открытию этих элементов становится все более трудным и долгим, т.к. недостаточно провести синтез нового элемента, нужно его идентифицировать и доказать, что новый элемент обладает лишь ему одному присущими свойствами. Трудности вызваны тем, что для изучения свойств новых элементов доступным оказывается небольшое число атомов. Время же, в течение которого можно изучать новый элемент до того, как произойдет радиоактивный распад, обычно очень невелико. В этих случаях, даже когда получен всего один атом нового элемента, для его обнаружения и предварительного изучения некоторых характеристик используют метод радиоактивных индикаторов.

Элемент-109 – мейтнерий – это последний элемент в периодической таблице, представленной в большинстве учебников по химии. Элемент-110, принадлежащий к той же группе периодической таблицы, что и платина, был впервые синтезирован в г. Дармштадт (Германия) в 1994 г. с помощью мощного ускорителя тяжелых ионов по реакции:

Время полураспада полученного изотопа крайне мало. В августе 2003 г. 42-я Генеральная ассамблея ИЮПАК и Совет ИЮПАК (Международный союз по чистой и прикладной химии) официально утвердили название и символ элемента-110: дармштадтий, Ds.

Там же, в Дармштадте, в 1994 г. впервые был получен элемент-111 путем воздействия пучка ионов изотопа 64 28 Ni на атомы 209 83 Bi в качестве «мишени». Своим решением в 2004 г. ИЮПАК признал открытие и одобрил предложение назвать элемент-111 рентгением, Rg, в честь выдающегося немецкого физика В.К.Рентгена, открывшего Х -лучи, которым он дал такое название из-за неопределенности их природы.

По информации, полученной из ОИЯИ, в Лаборатории ядерных реакций им. Г.Н.Флерова осуществлен синтез элементов с порядковыми номерами 110–118 (за исключением элемента-117).

В результате синтеза по реакции:

в Дармштадте в 1996 г. получено несколько атомов нового элемента-112, распадающегося с выделением -частиц. Период полураспада этого изотопа составлял всего 240 микросекунд. Немного позже в ОИЯИ поиск новых изотопов элемента-112 провели, облучая атомы U-235 ионами Са-48.

В феврале 2004 г. в престижных научных журналах появились сообщения об открытии в ОИЯИ нашими учеными совместно с американскими исследователями из Национальной лаборатории имени Лоуренса в Беркли (США) двух новых элементов с номерами 115 и 113. Этой группой ученых в экспериментах, проведенных в июле–августе 2003 г. на циклотроне У-400 с газонаполненным сепаратором, в реакции между атомами Am-243 и ионами изотопа Ca-48 были синтезированы 1 атом изотопа элемента-115 с массовым числом 287 и 3 атома с массовым числом 288. Все четыре атома элемента-115 быстро распадались с выделением -частиц и образованием изотопов элемента-113 с массовыми числами 282 и 284. Наиболее стабильный изотоп 284 113 имел период полураспада около 0,48 с. Он разрушался с эмиссией -частиц и превращался в изотоп рентгения 280 Rg.

В сентябре 2004 г. группа японских ученых из Физико-химического исследовательского института под руководством Косуки Морита (Kosuke Morita) заявила, что ими синтезирован элемент-113 по реакции:

При его распаде с выделением -частиц получен изотоп рентгения 274 Rg. Поскольку это первый искусственный элемент, полученный японскими учеными, они посчитали, что вправе сделать предложение назвать его «японием».

Выше уже отмечался необычный синтез изотопа элемента-114 с массовым числом 288 из кюрия. В 1999 г. появилось сообщение о получении в ОИЯИ этого же изотопа элемента-114 путем бомбардировки ионами Са-48 атомов плутония с массовым числом 244.

Было также заявлено об открытии элементов с порядковыми номерами 118 и 116 в результате длительных совместных исследований ядерных реакций изотопов калифорния Cf-249 и кюрия Сm-245 c пучком тяжелых ионов Са-48, проведенных российскими и американскими учеными в период 2002–2005 гг. в ОИЯИ. Элемент-118 замыкает 7-й период таблицы Менделеева, по своим свойствам является аналогом благородного газа радона. Элемент-116 должен обладать некоторыми свойствами, общими с полонием.

По сложившейся традиции открытие новых химических элементов и их идентификация должны быть подтверждены решением ИЮПАК, но право предложить названия элементам предоставляется первооткрывателям. Подобно карте Земли, периодическая таблица отразила названия территорий, стран, городов и научных центров, где были открыты и изучены элементы и их соединения, увековечила имена знаменитых ученых, внесших большой вклад в развитие периодической системы химических элементов. И не случайно элемент-101 назван именем Д.И.Менделеева.

Для ответа на вопрос, где может проходить граница периодической таблицы, в свое время была проведена оценка электростатических сил притяжения внутренних электронов атомов к положительно заряженному ядру. Чем больше порядковый номер элемента, тем сильнее сжимается электронная «шуба» вокруг ядра, тем сильнее притягиваются внутренние электроны к ядру. Должен наступить такой момент, когда электроны начнут захватываться ядром. В результате такого захвата и уменьшения заряда ядра существование очень тяжелых элементов становится невозможным. Подобная катастрофическая ситуация должна возникнуть при порядковом номере элемента, равном 170–180.

Эта гипотеза была опровергнута и показано, что нет ограничений для существования очень тяжелых элементов с точки зрения представлений о строении электронных оболочек. Ограничения возникают в результате неустойчивости самих ядер.

Однако надо сказать, что время жизни элементов уменьшается нерегулярно с ростом атомного номера. Следующая ожидаемая область устойчивости сверхтяжелых элементов, обусловленная появлением замкнутых нейтронных или протонных оболочек ядра, должна лежать в окрестности дважды магического ядра с 164 протонами и 308 нейтронами. Возможности открытия таких элементов пока не ясны.

Таким образом, вопрос о границе периодической таблицы элементов по-прежнему сохраняется. Исходя из правил заполнения электронных оболочек с увеличением атомного номера элемента, прогнозируемый 8-й период таблицы Менделеева должен содержать суперактиноидные элементы. Отводимое им место в периодической таблице Д.И.Менделеева соответствует III группе элементов, подобно уже известным редкоземельным и актиноидным трансурановым элементам.