Болезни Военный билет Призыв

Кислород побочный продукт фотосинтеза образуется. История изучения фотосинтеза. Роль фотосинтеза для биосферы

Фотосинтезом называют процесс, результатом которого является образование и выделение кислорода клетками растений и некоторыми видами бактерий.

Основное понятие

Фотосинтез - это не что иное, как цепочка уникальных физико-химических реакций. В чем же он заключается? Зеленые растения, а также некоторые бактерии поглощают солнечные лучи и преобразовывают их в электромагнитную энергию. Конечным результатом фотосинтеза является энергия химических связей разнообразных органических соединений.

В растении, которое осветили солнечные лучи, в определенной последовательности происходят окислительно-восстановительные реакции. Вода и водород, представляющие собой доноров-восстановителей, перемещаются в виде электронов к акцептору-окислителю (углекислому газу и ацетату). В результате образуются восстановленные соединения углеводов, а также кислород, который и выделяют растения.

История изучения фотосинтеза

На протяжении многих тысячелетий человек был убежден в том, что питание растения происходит по его корневой системе через почву. В начале шестнадцатого века голландским натуралистом Яном Ван Гельмонтом был проведен эксперимент с выращиванием растения в горшке. После взвешивания почвы до посадки и после того как растение достигло определенных размеров, им был сделан вывод о том, что все представители флоры получают питательные вещества в основном из воды. Этой теории придерживались ученые в течение двух последующих столетий.

Неожиданное для всех, но правильное предположение о питании растений было сделано в 1771 г. химиком из Англии Джозефом Пристли. Поставленные им опыты убедительно доказали, что растения способны очистить воздух, который ранее был не пригоден для дыхания человека. Несколько позже был сделан вывод о том, данные процессы невозможны без участия солнечного света. Ученые выяснили, что зеленые листочки растений не просто превращают полученный ими углекислый газ в кислород. Без этого процесса невозможна их жизнь. В совокупности с водой и минеральными солями углекислый газ служит пищей растениям. В этом заключено основное значение фотосинтеза для всех представителей флоры.

Роль кислорода для жизни на Земле

Опыты, которые были проведены английским химиком Пристли, помогли человечеству объяснить, почему воздух на нашей планете остается пригодным для дыхания. Ведь жизнь поддерживается, несмотря на существование огромного количества живых организмов и горение бесчисленного количества огней.

Возникновение жизни на Земле миллиарды лет назад было попросту невозможно. Атмосфера нашей планеты не содержала в себе свободного кислорода. Все изменилось с появлением растений. Весь находящийся сегодня в атмосфере кислород - это результат фотосинтеза, происходящего в зеленых листьях. Данный процесс изменил облик Земли и дал толчок к развитию жизни. Это бесценное значение фотосинтеза было до конца осознано человечеством лишь в конце 18 века.

Не является преувеличением утверждение, что само существование людей на нашей планете зависит от того, каково состояние растительного мира. Значение фотосинтеза заключено в его ведущей роли для протекания различных биосферных процессов. В глобальных масштабах эта удивительная физико-химическая реакция приводит к образованию органических веществ из неорганических.

Классификация процессов фотосинтеза

В зеленом листе происходит три важных реакции. Они и представляют собой фотосинтез. Таблица, в которую заносят данные реакции, применяется при изучении биологии. В ее строки вносят:

Фотосинтез;
- газообмен;
- испарение воды.

Те физико-химические реакции, которые происходят в растении при свете дня, позволяют зеленым листикам выделять двуокись углерода и кислород. В темное время суток - только первый из этих двух компонентов.

Синтез хлорофилла в некоторых растениях происходит даже при слабом и рассеянном освещении.

Основные этапы

Различают две фазы фотосинтеза, которые тесно связаны между собой. На первом этапе энергия лучей света преобразуется в высокоэнергетические соединения АТФ и универсальные восстановители НАДФН. Эти два элемента являются первичными продуктами фотосинтеза.

На втором (темновом) этапе полученные АТФ и НАДФН используются для фиксации углекислоты вплоть до ее восстановления в углеводы. Две фазы фотосинтеза имеют различия не только во времени. Они происходят и в различном пространстве. Тому, кто изучает по биологии тему "фотосинтез", таблица с точным указанием характеристик двух фаз поможет в более точном понимании процесса.

Механизм выработки кислорода

После поглощения растениями углекислого газа в них происходит синтез питательных веществ. Данный процесс осуществляется в зеленых пигментах, называемых хлорофиллами, под воздействием солнечных лучей. Основными составляющими этой удивительной реакции являются:

Свет;
- хлоропласты;
- вода;
- углекислый газ;
- температура.

Последовательность фотосинтеза

Выработка растениями кислорода осуществляется поэтапно. Основными стадиями фотосинтеза являются следующие:

Поглощение света хлорофиллами;
- разделение хлоропластами (внутриклеточными органоидами зеленого пигмента) полученной из почвы воды на кислород и водород;
- перемещение одной части кислорода в атмосферу, а другой - для осуществления дыхательного процесса растениями;
- образование молекул сахара в белковых гранулах (пиреноидах) растений;
- производство крахмалов, витаминов, жиров и т.д. в результате смешивания сахара с азотом.

Несмотря на то, что для осуществления фотосинтеза необходим солнечный свет, данная реакция способна протекать и при искусственном освещении.

Роль растительного мира для Земли

Основные процессы, происходящие в зеленом листе, уже достаточно полно изучила наука биология. Значение фотосинтеза для биосферы огромно. Это единственная реакция, приводящая к росту количества свободной энергии.

В процессе фотосинтеза каждый год происходит образование ста пятидесяти миллиардов тонн вещества органического типа. Кроме того, за указанный период растениями выделяется практически 200 млн. тонн кислорода. В связи с этим можно утверждать, что роль фотосинтеза огромна для всего человечества, так как данный процесс служит основным источником энергии на Земле.

В процессе уникальной физико-химической реакции происходит круговорот углерода, кислорода, а также многих других элементов. Из этого вытекает еще одно немаловажное значение фотосинтеза в природе. Данной реакцией поддерживается определенный состав атмосферы, при котором возможна жизнь на Земле.

Процесс, происходящий в растениях, ограничивает количество углекислого газа, не позволяя ему скапливаться в увеличенных концентрациях. Это также немаловажное значение фотосинтеза. На Земле благодаря зеленым растениям не создается так называемого парникового эффекта. Флора надежно защищает нашу планету от перегрева.

Растительный мир как основа питания

Немаловажна роль фотосинтеза для лесного и сельского хозяйства. Растительный мир является питательной базой для всех гетеротрофных организмов. Однако значение фотосинтеза кроется не только в поглощении зелеными листьями углекислого газа и получения такого готового продукта уникальной реакции, как сахар. Растения способны преобразовывать азотистые и серные соединения в вещества, из которых слагаются их тела.

Как же это происходит? Каково значение фотосинтеза в жизни растений? Данный процесс осуществляется посредством получения растением ионов нитратов. Эти элементы находятся в почвенной воде. В растение они попадают благодаря корневой системе. Клеточки зеленого организма перерабатывают ионы нитратов в аминокислоты, из которых слагаются белковые цепочки. В процессе фотосинтеза образуются и компоненты жиров. Они для растений являются важными запасными веществами. Так, в семенах многих плодов находится питательное масло. Этот продукт важен и для человека, так как находит применение в пищевой и сельскохозяйственной промышленности.

Роль фотосинтеза в получении урожая

В мировой практике работы сельскохозяйственных предприятий широко используются результаты изучения основных закономерностей развития и роста растений. Как известно, основой формирования урожая является фотосинтез. Его интенсивность, в свою очередь, зависит от водного режима культур, а также от их минерального питания. Каким же образом человек добивается увеличения плотности посевов и размеров листьев для того, чтобы растение максимально использовало энергию Солнца и забирало углекислый газ из атмосферы? Для этого оптимизируются условия минерального питания и водоснабжения сельскохозяйственных культур.

Научно доказано, что урожайность зависит от площади зеленых листьев, а также от интенсивности и длительности протекающих в них процессов. Но в то же время увеличение плотности посевов приводит к затенению листьев. К ним не может пробиться солнечный свет, и из-за ухудшения вентиляции воздушных масс в малых объемах поступает углекислый газ. В итоге происходит снижение активности процесса фотосинтеза и уменьшается продуктивность растений.

Роль фотосинтеза для биосферы

По самым приблизительным подсчетам, только автотрофные растения, обитающие в водах Мирового океана, ежегодно превращают от 20 до 155 млрд. тонн углерода в органическое вещество. И это при том, что энергия солнечных лучей используется ими лишь на 0,11%. Что касается наземных растений, то они ежегодно поглощают от 16 до 24 млрд. тонн углерода. Все эти данные убедительно говорят о том, насколько велико значение фотосинтеза в природе. Только в результате данной реакции атмосфера восполняется необходимым для жизни молекулярным кислородом, который необходим для горения, дыхания и разнообразной производственной деятельности. Некоторые ученые полагают, что в случае повышения содержания углекислого газа в атмосфере происходит увеличение скорости фотосинтеза. При этом атмосфера пополняется недостающим кислородом.

Космическая роль фотосинтеза

Зеленые растения являются посредниками между нашей планетой и Солнцем. Они улавливают энергию небесного светила и обеспечивают возможность существования жизни на нашей планете.

Фотосинтез представляет собой процесс, о котором можно говорить в космических масштабах, так как он в свое время способствовал преображению образа нашей планеты. Благодаря реакции, проходящей в зеленых листьях, энергия солнечных лучей не рассеивается в пространстве. Она переходит в химическую энергию вновь образованных органических веществ.

Человеческому обществу продукты фотосинтеза нужны не только для пищи, но и для осуществления хозяйственной деятельности.

Однако человечеству важны не только те лучи солнца, которые падают на нашу Землю в настоящее время. Крайне необходимы для жизни и осуществления производственной деятельности те продукты фотосинтеза, которые были получены миллионы лет назад. Они находятся в недрах планеты в виде пластов каменного угля, горючего газа и нефти, торфяных месторождений.

Вопрос 1. Что такое ассимиляция?

Ассимиляция, или пластический обмен, - это совокупность всех процессов биосинтеза, протекающих в живых организмах. Ассимиляция всегда сопровождается поглощением энергии, источником которой могут являться молекулы АТФ (например, в ходе биосинтеза белка) или солнечный свет (в случае фотосинтеза). Кроме энергии для осуществления процессов ассимиляции нужен материал, из которого организм сможет образовывать необходимые ему органические соединения. Для автотрофов это углекислый газ (CO2), вода, минеральные соли. Гетеротрофам нужны готовые органические соединения. В их числе так называемые незаменимые вещества: молекулы, которые гетеротрофы самостоятельно синтезировать не могут и должны получать с пищей. В случае человека это витамины, жирные кислоты с большим количеством двойных связей, многие аминокислоты.

Вопрос 2. Опишите известные вам типы питания.

Существует три типа питания.

Автотрофное питание. Автотрофные организмы способны самостоятельно синтезировать необходимые органические соединения, используя в качестве источника углерода углекислый газ. Источником энергии при этом является солнечный свет или окисление неорганических соединений.

Гетеротрофное питание. Гетеротрофные организмы в качестве источника углерода и в качестве источника энергии используют готовые органические вещества.

Вопрос 3. Какие организмы называют автотрофными?

Как указано в предыдущем ответе, автотрофными называют организмы, способные синтезировать органические вещества за счет энергии солнечного света или энергии, выделяющейся при окислении неорганических соединений. При этом источником углерода является углекислый газ. К организмам, использующим энергию солнечного света, относятся растения, цианобактерии и некоторые бактерии. Все они объединены в группу фотосинтетиков. Растения и цианобактериии (сине - зеленые водоросли) осуществляют фотосинтез с выделением кислорода; бактерии - без выделения кислорода. Автотрофов, использующих для получения энергии окисление неорганических веществ, называют хемосинтетиками. К ним относят несколько древних групп прокариот: серобактерии (окисляют сероводород до серы), железобактерии (окисляют Fe2+ до Fe3+) и др.

Вопрос 4. Почему у зеленых растений в результате фотосинтеза выделяется в атмосферу свободный кислород?

Если вода находится в жидком состоянии, то небольшая часть ее молекул обязательно распадается на ионы Н+ и ОН. Во время световой фазы фотосинтеза часть избыточной энергии хлорофилла тратится на превращение ионов Н+ в атомы водорода. Оставшиеся без своей "пары" ионы ОН отдают электроны хлорофиллу, превращаясь в свободные радикалы ОН. Радикалы активно взаимодействуют между собой, образуя воду и молекулярный кислород: 40Н -> 2Н2О + О2.

Таким образом, выделение в атмосферу свободного кислорода происходит в ходе световой фазы фотосинтеза. Источником кислорода являются молекулы Н20, в связи с чем описанный процесс называют еще фотолизом воды (разложением воды под действием света). Кислород является побочным продуктом фотосинтеза. Однако в ходе эволюции живые организмы быстро научились использовать его для дыхания, т. е. для более полного окисления органических веществ.

Вопрос 5. Каковы признаки гетеротрофного типа питания? Приведите примеры гетеротрофных организмов.

При гетеротрофном типе питания в качестве источника углерода и источника энергии организмы используют готовые органические соединения. Следовательно, гетеротрофные организмы полностью зависят от автотрофных, которые служат для них поставщиками органических веществ - прямыми (в случае травоядных) либо опосредованными (в случае, например, хищников). Гетеротрофные организмы - это все животные, грибы, большинство бактерий.

Вопрос 6. Как вы думаете, почему все живое на Земле можно назвать "детьми Солнца"?

Основным процессом, обеспечивающим появление на Земле органических веществ, является фотосинтез. Источником же энергии для фотосинтеза является солнечный свет. Почти все живые организмы используют энергию солнечного света, одни напрямую, запасая ее в виде органических соединений (фотосинтетики-автотрофы), другие опосредованно через использование готовых органических соединений, созданных растениями (гетеротрофы). Исключение составляет лишь уникальная группа бактерий-хемосинтетиков.

Как скачать бесплатное сочинение? . И ссылка на это сочинение; Пластический обмен. Фотосинтез уже в твоих закладках.
Дополнительные сочинения по данной теме

    Вопрос 1. На какие эры делится история Земли? В истории Земли выделяют следующие эры, названия которых имеют греческое происхождение: катархей (ниже древнейшего), архей (древнейший), протерозой (первичная жизнь), палеозой (древняя жизнь), мезозой (средняя жизнь), кайнозой (новая жизнь). Вопрос 2. Как деятельность живых организмов повлияла на изменение состава атмосферы планеты? В состав древней атмосферы входили метан, аммиак, углекислый газ, водород, пары воды и другие неорганические соединения. В результате жизнедеятельности первых организмов в атмосфере начало снижаться
    Вопрос 1. За счет чего получают энергию автотрофы? Автотрофами называют организмы, способные создавать все необходимые им органические соединения. Энергию для синтеза органических соединений автотрофы получают за счет солнечного света (фотоавтотрофы) или за счет химических превращений минеральных веществ (хемотрофы). Гетеротрофами называются живые организмы, неспособные к самостоятельному синтезу нужных органических соединений и использующие для питания белки, жиры и углеводы, произведенные другими видами. При окислении органических веществ в клетках гетеротрофов выделяется энергия, которая используется ими
    Вопрос 1. Почему Солнце - главнейший источник энергии на Земле? Для синтеза органических веществ всем организмам необходима энергия. Основным источником первичных органических соединений на планете являются растения. Растения используют для их синтеза энергию Солнца. Другие живые существа обеспечиваются питанием, а следовательно, и энергией за счет веществ, полученных растениями. Таким образом, именно Солнце является главным источником энергии. Вопрос 2. Почему ассимиляция невозможна без диссимиляции, и наоборот? Процесс ассимиляции характеризуется образованием новых, необходимых клетке соединений.
    Вопрос 1. В чем состоят отличия между понятиями "условия" и "ресурсы"? Ресурсами называют вещества и энергию, вовлекаемые организмами в процессы их жизнедеятельности. Ресурс (в отличие от условий) может расходоваться и исчерпываться. При этом один и тот же фактор, например солнечное излучение или влажность, может рассматриваться и как условие, и как ресурс. Вопрос 2. Перечислите известные вам виды ресурсов животных и растений. Среди важнейших ресурсов животных и растений следует назвать энергетические и пищевые. Эти
    Вопрос 1. Почему можно говорить о взаимосвязи развития органического мира и эволюции биосферы? Биосфера - не только сфера распространения жизни, но и результат ее деятельности. Начиная с момента зарождения, жизнь постоянно развивается и усложняется, оказывая воздействие на окружающую среду, изменяя ее. Таким образом, эволюция биосферы протекает параллельно с историческим развитием органической жизни. Вопрос 2. Какие процессы были характерны для раннего этапа эволюции биосферы? Сначала живые организмы использовали органические соединения первичного океана, запасы которого
    Вопрос 1. О чем говорит длина цепи питания? Цепь питания обычно не может состоять более чем из 4-6 звеньев, включая организмы, потребляющие трупы животных, что объясняется потерей энергии на каждом ее уровне (в каждом звене). Длина цепи питания говорит об эффективности использования энергии в ее звеньях (чем полнее используется энергия, тем длиннее цепь). Вопрос 2. Почему численность (число видов) консументов в цепи питания сокращается? В цепи питания каждое последующее звено теряет часть органического
    Вопрос 1. Сколько глюкозы, синтезируемой в процессе фотосинтеза, приходится на каждого из 4 млрд жителей Земли в год? Если учесть, что за год вся растительность планеты производит около 130 ООО млн т сахаров, то на одного жителя Земли (при условии, что население Земли составляет 4 млрд жителей) их приходится 32,5 млн т. Вопрос 2. Откуда берется кислород, выделяемый в процессе фотосинтеза? Кислород, поступающий в атмосферу в процессе фотосинтеза, образуется из воды в результате

Молекулы хлорофилла и вспомогательных пигментов расположены в фотосистемах, подразделяемых на два типа: фотосистемы I и II (ФС1 и ФС11). Эти фотосистемы можно обнаружить в виде частиц в составе тилакоидных мембран. Каждая из таких частиц содержит пигментные молекулы, организованные в так называемый антенный, или светособирающий комплекс.

В состав светособирающего комплекса входят 200-300 пигментных молекул, которые накапливают световую энергию, как это показано на рисунке. Различные пигменты улавливают свет с различной длиной волны, что делает этот процесс более эффективным. Вся энергия передается от молекулы к молекуле и, в конце концов, на специализированную форму хлорофилла о, известную как Р 700 в ФСl и Р 680 в ФСl. Р 700 и Р 680 - это пигменты (Р), у которых максимумы пиков в спектрах поглощения составляют соответственно 700 и 680 нм (оба пика в красной области спектра).

В результате поглощения энергии молекулы хлорофиллов Р700 и Р680 переходят в «возбужденное» состояние и становятся источниками электронов, обладающих высокой энергией (как описывалось выше). Судьба этих электронов будет обсуждаться ниже. Теперь мы можем рассмотреть суммарный процесс фотосинтеза.

Для описания процесса фотосинтеза обычно используется следующее уравнение:

В таком виде уравнение удобно использовать, если надо показать образование одной молекулы сахара , однако это лишь суммарное отображение многих событий. Более подходящей формой записи является уравнение:

Соединения СН 2 О не существует в природе, это просто условное обозначение любого углевода.

Посмотрев на суммарное уравнение фотосинтеза , мы вправе задаться вопросом: какое сосдинение - диоксид углерода или вода - служит источником кислорода? Наиболее очевидным кажется ответ, что таким источником является диоксид углерода. Тогда для образования углевода оставшемуся углероду следует только присоединиться к воде. Точный ответ удалось получить в сороковых годах XX в., когда в распоряжении биологов оказались изотопы.

Обычный изотоп кислорода имеет массовое число 16 и обозначается как 16 O (8 протонов, 8 нейтронов). Существует еще редкий изотоп с массовым числом 18 (18 O). Это стабильный изотоп, но из-за большей, чем у 16 O , массы его можно обнаружить, используя масс-спектрометр, аналитический прибор, позволяющий выявлять различия между атомами и молекулами на основе значений их масс. В 1941 г. был проведен эксперимент, результаты которого суммированы в следующем уравнении:

Иными словами, источником кислорода является вода. В итоге уравновешенное уравнение выглядит как:

Это наиболее точное выражение процесса фотосинтеза , которое, кроме того, наглядно показывает, что вода не только используется при фотосинтезе, но и является одним из его продуктов. Данный эксперимент позволил заглянуть глубоко внутрь природы фотосинтеза, показав, что фотосинтез протекает в две стадии, первая из которых состоит в образовании водорода в результате расшепления воды на водород и кислород. Для этого требуется энергия, которую дает свет (поэтому процесс называют фотолизом: photos - свет; lysis - расщепление). Кислород высвобождается как побочный продукт. На второй стадии водород взаимодействует с диоксидом углерода, образуя сахар. Присоединение водорода - это пример химической реакции восстановления.

Тот факт, что фотосинтез является двухстадийным процессом, был впервые установлен в двадцатых-тридцатых годах XX в. Реакции первой стадии нуждаются в свете, поэтому они называются световыми реакциями. Реакции второй стадии света не требуют, поэтому они носят название темновых реакций, хотя и протекают на свету! Установлено, что световые реакции протекают на мембранах хлоропластов, а темновые реакции - в строме хлоропластов.

После того как установили, что темновые реакции фотосинтеза протекают вслед за световыми, в 1950-х годах оставалось только выявить природу этих реакций.

Фотосинтез - это преобразование энергии света в энергию химических связей органических соединений.

Фотосинтез характерен для растений, в том числе всех водорослей, ряда прокариот, в том числе цианобактерий, некоторых одноклеточных эукариот.

В большинстве случаев при фотосинтезе в качестве побочного продукта образуется кислород (O 2). Однако это не всегда так, поскольку существует несколько разных путей фотосинтеза. В случае выделения кислорода его источником является вода, от которой на нужды фотосинтеза отщепляются атомы водорода.

Фотосинтез состоит из множества реакций, в которых участвуют различные пигменты, ферменты, коферменты и др. Основными пигментами являются хлорофиллы, кроме них - каротиноиды и фикобилины.

В природе распространены два пути фотосинтеза растений: C 3 и С 4 . У других организмов есть своя специфика реакций. Все, что объединяет эти разные процессы под термином «фотосинтез», – во всех них в общей сложности происходит преобразование энергии фотонов в химическую связь. Для сравнения: при хемосинтезе происходит преобразование энергии химической связи одних соединений (неорганических) в другие - органические.

Выделяют две фазы фотосинтеза - световую и темновую. Первая зависит от светового излучения (hν), которое необходимо для протекания реакций. Темновая фаза является светонезависимой.

У растений фотосинтез протекает в хлоропластах. В результате всех реакций образуются первичные органические вещества, из которых потом синтезируются углеводы, аминокислоты, жирные кислоты и др. Обычно суммарную реакцию фотосинтеза пишут в отношении глюкозы - наиболее распространенного продукта фотосинтеза :

6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2

Атомы кислорода, входящие в молекулу O 2 , берутся не из углекислого газа, а из воды. Углекислый газ – источник углерода , что более важно. Благодаря его связыванию у растений появляется возможность синтеза органики.

Представленная выше химическая реакция есть обобщенная и суммарная. Она далека от сути процесса. Так глюкоза не образуется из шести отдельных молекул углекислоты. Связывание CO 2 происходит по одной молекуле, которая сначала присоединяется к уже существующему пятиуглеродному сахару.

Для прокариот характерны свои особенности фотосинтеза. Так у бактерий главный пигмент - бактериохлорофилл, и не выделяется кислород, так как водород берется не из воды, а часто из сероводорода или других веществ. У сине-зеленых водорослей основным пигментом является хлорофилл, и при фотосинтезе выделяется кислород.

Световая фаза фотосинтеза

В световой фазе фотосинтеза происходит синтез АТФ и НАДФ·H 2 за счет лучистой энергии. Это происходит на тилакоидах хлоропластов , где пигменты и ферменты образуют сложные комплексы для функционирования электрохимических цепей, по которым передаются электроны и отчасти протоны водорода.

Электроны в конечном итоге оказываются у кофермента НАДФ, который, заряжаясь отрицательно, притягивает к себе часть протонов и превращается в НАДФ·H 2 . Также накопление протонов по одну сторону тилакоидной мембраны и электронов по другую создает электрохимический градиент, потенциал которого используется ферментом АТФ-синтетазой для синтеза АТФ из АДФ и фосфорной кислоты.

Главными пигментами фотосинтеза являются различные хлорофиллы. Их молекулы улавливают излучение определенных, отчасти разных спектров света. При этом некоторые электроны молекул хлорофилла переходят на более высокий энергетический уровень. Это неустойчивое состояние, и по-идее электроны путем того же излучения должны отдать в пространство полученную из вне энергию и вернуться на прежний уровень. Однако в фотосинтезирующих клетках возбужденные электроны захватываются акцепторами и с постепенным уменьшением своей энергии передаются по цепи переносчиков.

На мембранах тилакоидов существуют два типа фотосистем, испускающих электроны при действия света. Фотосистемы представляют собой сложный комплекс большей частью хлорофильных пигментов с реакционным центром, от которого и отрываются электроны. В фотосистеме солнечный свет ловит множество молекул, но вся энергия собирается в реакционном центре.

Электроны фотосистемы I, пройдя по цепи переносчиков, восстанавливают НАДФ.

Энергия электронов, оторвавшихся от фотосистемы II, используется для синтеза АТФ. А сами электроны фотосистемы II заполняют электронные дырки фотосистемы I.

Дырки второй фотосистемы заполняются электронами, образующимися в результате фотолиза воды . Фотолиз также происходит при участии света и заключается в разложении H 2 O на протоны, электроны и кислород. Именно в результате фотолиза воды образуется свободный кислород. Протоны участвуют в создании электрохимического градиента и восстановлении НАДФ. Электроны получает хлорофилл фотосистемы II.

Примерное суммарное уравнение световой фазы фотосинтеза:

H 2 O + НАДФ + 2АДФ + 2Ф → ½O 2 + НАДФ · H 2 + 2АТФ



Циклический транспорт электронов

Выше описана так называемый нецикличная световая фаза фотосинтеза . Есть еще циклический транспорт электронов, когда восстановления НАДФ не происходит . При этом электроны от фотосистемы I уходят на цепь переносчиков, где идет синтез АТФ. То есть эта электрон-транспортная цепь получает электроны из фотосистемы I, а не II. Первая фотосистема как бы реализует цикл: в нее возвращаются ей же испускаемые электроны. По дороге они тратят часть своей энергии на синтез АТФ.

Фотофосфорилирование и окислительное фосфорилирование

Световую фазу фотосинтеза можно сравнить с этапом клеточного дыхания - окислительным фосфорилированием, которое протекает на кристах митохондрий. Там тоже происходит синтез АТФ за счет передачи электронов и протонов по цепи переносчиков. Однако в случае фотосинтеза энергия запасается в АТФ не для нужд клетки, а в основном для потребностей темновой фазы фотосинтеза. И если при дыхании первоначальным источником энергии служат органические вещества, то при фотосинтезе – солнечный свет. Синтез АТФ при фотосинтезе называется фотофосфорилированием , а не окислительным фосфорилированием.

Темновая фаза фотосинтеза

Впервые темновую фазу фотосинтеза подробно изучили Кальвин, Бенсон, Бэссем. Открытый ими цикл реакций в последствии был назван циклом Кальвина, или C 3 -фотосинтезом. У определенных групп растений наблюдается видоизмененный путь фотосинтеза – C 4 , также называемый циклом Хэтча-Слэка.

В темновых реакциях фотосинтеза происходит фиксация CO 2 . Темновая фаза протекает в строме хлоропласта.

Восстановление CO 2 происходит за счет энергии АТФ и восстановительной силы НАДФ·H 2 , образующихся в световых реакциях. Без них фиксации углерода не происходит. Поэтому хотя темновая фаза напрямую не зависит от света, но обычно также протекает на свету.

Цикл Кальвина

Первая реакция темновой фазы – присоединение CO 2 (карбоксилировани е ) к 1,5-рибулезобифосфату (рибулезо-1,5-дифосфат ) – РиБФ . Последний представляет собой дважды фосфорилированную рибозу. Данную реакцию катализирует фермент рибулезо-1,5-дифосфаткарбоксилаза, также называемый рубиско .

В результате карбоксилирования образуется неустойчивое шестиуглеродное соединение, которое в результате гидролиза распадается на две трехуглеродные молекулы фосфоглицериновой кислоты (ФГК) – первый продукт фотосинтеза. ФГК также называют фосфоглицератом.

РиБФ + CO 2 + H 2 O → 2ФГК

ФГК содержит три атома углерода, один из которых входит в состав кислотной карбоксильной группы (-COOH):

Из ФГК образуется трехуглеродный сахар (глицеральдегидфосфат) триозофосфат (ТФ) , включающий уже альдегидную группу (-CHO):

ФГК (3-кислота) → ТФ (3-сахар)

На данную реакцию затрачивается энергия АТФ и восстановительная сила НАДФ · H 2 . ТФ - первый углевод фотосинтеза.

После этого большая часть триозофосфата затрачивается на регенерацию рибулозобифосфата (РиБФ), который снова используется для связывания CO 2 . Регенерация включает в себя ряд идущих с затратой АТФ реакций, в которых участвуют сахарофосфаты с количеством атомов углерода от 3 до 7.

В таком круговороте РиБФ и заключается цикл Кальвина.

Из цикла Кальвина выходит меньшая часть образовавшегося в нем ТФ. В перерасчете на 6 связанных молекул углекислого газа выход составляет 2 молекулы триозофосфата. Суммарная реакция цикла с входными и выходными продуктами:

6CO 2 + 6H 2 O → 2ТФ

При этом в связывании участвую 6 молекул РиБФ и образуется 12 молекул ФГК, которые превращаются в 12 ТФ, из которых 10 молекул остаются в цикле и преобразуются в 6 молекул РиБФ. Поскольку ТФ - это трехуглеродный сахар, а РиБФ - пятиуглеродный, то в отношении атомов углерода имеем: 10 * 3 = 6 * 5. Количество атомов углерода, обеспечивающих цикл не изменяется, весь необходимый РиБФ регенерируется. А шесть вошедших в цикл молекул углекислоты затрачиваются на образование двух выходящих из цикла молекул триозофосфата.

На цикл Кальвина в расчете на 6 связанных молекул CO 2 затрачивается 18 молекул АТФ и 12 молекул НАДФ · H 2 , которые были синтезированы в реакциях световой фазы фотосинтеза.

Расчет ведется на две выходящие из цикла молекулы триозофосфата, так как образующаяся в последствии молекула глюкозы, включает 6 атомов углерода.

Триозофосфат (ТФ) - конечный продукт цикла Кальвина, но его сложно назвать конечным продуктом фотосинтеза, так как он почти не накапливается, а, вступая в реакции с другими веществами, превращается в глюкозу, сахарозу, крахмал, жиры, жирные кислоты, аминокислоты. Кроме ТФ важную роль играет ФГК. Однако подобные реакции происходят не только у фотосинтезирующих организмов. В этом смысле темновая фаза фотосинтеза – это то же самое, что цикл Кальвина.

Из ФГК путем ступенчатого ферментативного катализа образуется шестиуглеродный сахар фруктозо-6-фосфат , который превращается в глюкозу . В растениях глюкоза может полимеризоваться в крахмал и целлюлозу. Синтез углеводов похож на процесс обратный гликолизу.

Фотодыхание

Кислород подавляет фотосинтез. Чем больше O 2 в окружающей среде, тем менее эффективен процесс связывания CO 2 . Дело в том, что фермент рибулозобифосфат-карбоксилаза (рубиско) может реагировать не только с углекислым газом, но и кислородом. В этом случае темновые реакции несколько иные.

Фосфогликолат - это фосфогликолевая кислота. От нее сразу отщепляется фосфатная группа, и она превращается в гликолевую кислоту (гликолат). Для его «утилизации» снова нужен кислород. Поэтому чем больше в атмосфере кислорода, тем больше он будет стимулировать фотодыхание и тем больше растению будет требоваться кислорода, чтобы избавиться от продуктов реакции.

Фотодыхание - это зависимое от света потребление кислорода и выделение углекислого газа. То есть обмен газов происходит как при дыхании, но протекает в хлоропластах и зависит от светового излучения. От света фотодыхание зависит лишь потому, что рибулозобифосфат образуется только при фотосинтезе.

При фотодыхании происходит возврат атомов углерода из гликолата в цикл Кальвина в виде фосфоглицериновой кислоты (фосфоглицерата).

2 Гликолат (С 2) → 2 Глиоксилат (С 2) →2 Глицин (C 2) - CO 2 → Серин (C 3) →Гидроксипируват (C 3) → Глицерат (C 3) → ФГК (C 3)

Как видно, возврат происходит не полный, так как один атом углерода теряется при превращении двух молекул глицина в одну молекулу аминокислоты серина, при этом выделяется углекислый газ.

Кислород необходим на стадиях превращения гликолата в глиоксилат и глицина в серин.

Превращения гликолата в глиоксилат, а затем в глицин происходят в пероксисомах, синтез серина в митохондриях. Серин снова поступает в пероксисомы, где из него сначала получается гидрооксипируват, а затем глицерат. Глицерат уже поступает в хлоропласты, где из него синтезируется ФГК.

Фотодыхание характерно в основном для растений с C 3 -типом фотосинтеза. Его можно считать вредным, так как энергия бесполезно тратится на превращения гликолата в ФГК. Видимо фотодыхание возникло из-за того, что древние растения были не готовы к большому количеству кислорода в атмосфере. Изначально их эволюция шла в атмосфере богатой углекислым газом, и именно он в основном захватывал реакционный центр фермента рубиско.

C 4 -фотосинтез, или цикл Хэтча-Слэка

Если при C 3 -фотосинтезе первым продуктом темновой фазы является фосфоглицериновая кислота, включающая три атома углерода, то при C 4 -пути первыми продуктами являются кислоты, содержащие четыре атома углерода: яблочная, щавелевоуксусная, аспарагиновая.

С 4 -фотосинтез наблюдается у многих тропических растений, например, сахарного тростника, кукурузы.

С 4 -растения эффективнее поглощают оксид углерода, у них почти не выражено фотодыхание.

Растения, в которых темновая фаза фотосинтеза протекает по C 4 -пути, имеют особое строение листа. В нем проводящие пучки окружены двойным слоем клеток. Внутренний слой - обкладка проводящего пучка. Наружный слой - клетки мезофилла. Хлоропласты клеток слоев отличаются друг от друга.

Для мезофильных хлоропласт характерны крупные граны, высокая активность фотосистем, отсутствие фермента РиБФ-карбоксилазы (рубиско) и крахмала. То есть хлоропласты этих клеток адаптированы преимущественно для световой фазы фотосинтеза.

В хлоропластах клеток проводящего пучка граны почти не развиты, зато высока концентрация РиБФ-карбоксилазы. Эти хлоропласты адаптированы для темновой фазы фотосинтеза.

Углекислый газ сначала попадает в клетки мезофилла, связывается с органическими кислотами, в таком виде транспортируется в клетки обкладки, освобождается и далее связывается также, как у C 3 -растений. То есть C 4 -путь дополняет, а не заменяет C 3 .

В мезофилле CO 2 присоединяется к фосфоенолпирувату (ФЕП) с образованием оксалоацетата (кислота), включающего четыре атома углерода:

Реакция происходит при участии фермента ФЕП-карбоксилазы, обладающего более высоким сродством к CO 2 , чем рубиско. К тому же ФЕП-карбоксилаза не взаимодействует с кислородом, а значит не затрачивается на фотодыхание. Таким образом, преимущество C 4 -фотосинтеза заключается в более эффективной фиксации углекислоты, увеличению ее концентрации в клетках обкладки и следовательно более эффективной работе РиБФ-карбоксилазы, которая почти не расходуется на фотодыхание.

Оксалоацетат превращается в 4-х углеродную дикарбоновую кислоту (малат или аспартат), которая транспортируется в хлоропласты клеток обкладки проводящих пучков. Здесь кислота декарбоксилируется (отнятие CO 2), окисляется (отнятие водорода) и превращается в пируват. Водород восстанавливает НАДФ. Пируват возвращается в мезофилл, где из него регенерируется ФЕП с затратой АТФ.

Оторванный CO 2 в хлоропластах клеток обкладки уходит на обычный C 3 -путь темновой фазы фотосинтеза, т. е. в цикл Кальвина.


Фотосинтез по пути Хэтча-Слэка требует больше энергозатрат.

Считается, что C 4 -путь возник в эволюции позже C 3 и во многом является приспособлением против фотодыхания.