Болезни Военный билет Призыв

Размер ядра атома в сравнении. Атомное ядро: состав, характеристики, модели, ядерные силы. Масса. Размеры ядер

Атомное ядро — это центральная часть атома, состоящая из протонов и нейтронов (которые вместе называются нуклонами ).

Ядро было открыто Э. Резерфордом в 1911 г. при исследовании прохождения α -частиц через вещество. Оказалось, что почти вся масса атома (99,95%) сосредоточена в ядре. Размер атомного ядра имеет порядок величины 10 -1 3 -10 - 12 см, что в 10 000 раз меньше размера электронной оболочки.

Предложенная Э. Резерфордом планетарная модель атома и экспериментальное наблюдение им ядер водорода , выбитых α -частицами из ядер других элементов (1919-1920 гг.), привели уче-ного к представлению о протоне . Термин протон был введен в начале 20-х гг XX ст.

Протон (от греч. protons — первый, символ p ) — стабильная элементарная частица, ядро ато-ма водорода.

Протон — положительно заряженная частица, заряд которой по абсолютной величине равен заряду электрона e = 1,6 · 10 -1 9 Кл. Масса протона в 1836 раз больше массы электрона. Масса покоя протона m р = 1,6726231 · 10 -27 кг = 1,007276470 а.е.м.

Второй частицей, входящей в состав ядра, является нейтрон .

Нейтрон (от лат. neuter — ни тот, ви другой, символ n ) — это эле-ментарная частица, не имеющая заряда, т. е. нейтральная.

Масса нейтрона в 1839 раз превышает массу электрона. Масса нейтрона почти равна (незначительно больше) массе протона: масса покоя свободного нейтрона m n = 1,6749286 · 10 -27 кг = 1,0008664902 а.е.м. и превосходит массу протона па 2,5 массы электрона. Нейтрон, наря-ду с протоном под общим названием нуклон входит в состав атомных ядер.

Нейтрон был открыт в 1932 г. учеником Э. Резерфорда Д. Чедвигом при бомбардировке бериллия α -частицами. Возникающее при этом излучение с большой проникающей способностью (преодолевало пре-граду из свинцовой пластины толщиной 10-20 см) усиливало свое действие при прохождении через парафиновую пластину (см. рисунок). Оценка энергии этих частиц по трекам в камере Вильсона, сделанная супругами Жолио-Кюри, и дополнительные наблюдения позволили исключить первоначальное предположение о том, что это γ -кванты. Большая проникающая способность новых частиц, названных ней-тронами, объяснялась их электронейтральностью. Ведь заряженные частицы активно взаимодействуют с веществом и быстро теряют свою энергию. Существование нейтронов было предсказано Э. Резерфордом за 10 лет до опытов Д. Чедвига. При попадании α -частиц в ядра бериллия происходит следующая реакция:

Здесь — символ нейтрона; заряд его равен нулю, а относительная атомная масса прибли-зительно равна единице. Нейтрон — нестабильная частица: свободный нейтрон за время ~ 15 мин. распадается на протон, электрон и нейтрино — частицу, лишенную массы покоя.

После открытия Дж. Чедвиком нейтрона в 1932 г. Д. Иваненко и В. Гейзенберг независимо друг от друга предложили протонно-нейтронную (нуклонную) модель ядра . Согласно этой моде-ли, ядро состоит из протонов и нейтронов. Число протонов Z совпадает с порядковым номером элемента в таблице Д. И. Менделеева .

Заряд ядра Q определяется числом протонов Z , входящих в состав ядра, и кратен абсолютной величине заряда электрона e :

Q = +Ze.

Число Z называется зарядовым числом ядра или атомным номером .

Массовым числом ядра А называется общее число нуклонов, т. е. протонов и нейтронов, содер-жащихся в нем. Число нейтронов в ядре обозначается буквой N . Таким образом, массовое число равно:

А = Z + N.

Нуклонам (протону и нейтрону) приписывается массовое число, равное единице, электрону — нулевое значение.

Представлению о составе ядра содействовало также открытие изотопов .

Изотопы (от греч. isos — равный, одинаковый и topoa — место) — это разновидности атомов одного и того же химического элемента, атомные ядра которых имеют одинаковое число прото-нов (Z ) и различное число нейтронов (N ).

Изотопами называются также ядра таких атомов. Изотопы являются нуклидами одного эле-мента. Нуклид (от лат. nucleus — ядро) — любое атомное ядро (соответственно атом) с заданными числами Z и N . Общее обозначение нуклидов имеет вид ……. где X — символ химического эле-мента, A = Z + N — массовое число.

Изотопы занимают одно и то же место в Периодической системе элементов, откуда и про-изошло их название. По своим ядерным свойствам (например, по способности вступать в ядерные реакции) изотопы, как правило, существенно отличаются. Химические (b почти в той же мере физические) свойства изотопов одинаковы. Это объясняется тем, что химические свойства элемен-та определяются зарядом ядра, поскольку именно он влияет на структуру электронной оболочки атома.

Исключением являются изотопы легких элементов. Изотопы водорода 1 Н протий , 2 Н дейтерий , 3 Н тритий столь сильно отличаются по массе, что и их физические и хими-ческие свойства различны. Дейтерий стабилен (т.е. не радиоактивен) и входит в качестве неболь-шой примеси (1: 4500) в обычный водород. При соединении дейтерия с кислородом образуется тяжелая вода . Она при нормальном атмосферном давлении кипит при 101,2 °С и замерзает при +3,8 ºС. Тритий β -радиоактивен с периодом полураспада около 12 лет.

У всех химических элементов имеются изотопы. У некоторых элементов имеются только нестабильные (радиоактивные) изотопы. Для всех элементов искусственно получены радиоактив-ные изотопы.

Изотопы урана. У элемента урана есть два изотопа — с массовыми числами 235 и 238. Изотоп составляет всего 1/140 часть от более распространенного .

Ядром называется центральная часть атома, в которой сосредоточенна практически вся масса и его положительный заряд. Атомное ядро состоит из элементарных частиц – протонов и нейтронов (протонно-нейтронная модель была предложена сов. физиком Иваненко, а в последствии развита Гейзенбергом). Ядро атома характеризуется зарядом. Зарядом ядра является величина , где е – заряд протона, Z – порядковый номер химического элемента в периодической системе, равный числу протонов в ядре. Число нуклонов в ядре А=N+Z называется массовым числом, где N-число нейтронов в ядре.

Ядра с одинаковыми Z, но различными А называются изотопами. Ядра которые при одинаковом А имеют различные Z,называются изобарами. Ядро хим. элемента Х обозначается

Где Х - символ хим. элемента. Размер ядра характеризуется радиусом ядра. Эмпирическая формула для радиуса ядра , где м, может быть истолкована как пропорциональность объёма ядра числу нуклонов в нем. Плотность для ядерного вещества составляет по порядку величины и постоянна для всех ядер. Масса ядра меньше, чем сумма масс составляющих его нуклонов и этот дефект массы определяется по следующей формуле . Точно массу ядра можно определить с помощью масс-спектрометров. Нуклоны в атоме являются фермионами и имеют спин . Ядро атома имеет собственный момент импульса – спин ядра, равный ,где I – внутреннее (полное) спиновое квантовое число.

Число I принимает целочисленные или полуцелые значения и т.д. Ядерные частицы имеют собственные магнитные моменты, которыми определяется магнитный момент ядра в целом. Единицей магнитных моментов ядер служит ядерный магнетон : , где е – абсолютное значение заряда электрона, - масса протона. Между спином ядра , выраженным в , и его магнитным моментом имеется соотношение , где - ядерное гиромагнитное отношение. Распределение электрического заряда протонов по ядру в общем случае несиметрично. Мерой отклонения этого распределения от сферически-симметричного является квадрупольный электрический момент Q ядра. Если плотность заряда считается везде одинаковой, то Q определяется только формой ядра. Так для ядра, имеющего форму эллипсоида вращения, , где b – полуось эллипсоида вдоль направления спина; а – полуось в перпендикулярном направлении. Для ядра, вытянутого вдоль направления спина, b>a и Q>0. Для ядра сплющенного в этом направлении, b

Между составляющими ядро нуклонами действуют особые, специфические для ядра силы, значительно превышающие кулоновские силы отталкивания между протонами. Они называются ядерными силами. Ядерные относятся к классу так называемых сильных взаимодействий. Основные свойства ядерных сил:

1. яд. силы являются силами притяжения;

2. яд. силы являются короткодействующими;

3. яд. силам свойственна зарядовая независимость: ядерные силы, действующие между двумя протонами, или протоном и нейтроном, одинаковы по величине, т.е. ядерные силы имеют не эл. природу;

4. яд. силам свойственно насыщение, т.е. каждый нуклон в ядре взаимодействует только с ограниченным числом ближайших к нему нуклонов;

5. яд. силы зависят от взаимной ориентации спинов взаимодействующих нуклонов;

6. яд. силы не являются центральными.

Модели ядра.

1.Капельная модель ядра является первой моделью. Она основана на аналогии между поведением нуклонов в ядре и поведением молекул в капле жидкости. Так, в обоих случаях силы, действующие между составными частицами – молекулами в жидкости и нуклонами в ядре, - являются короткодействующими и им свойственно насыщение. Для капли жидкости при данных внешних условиях характерна постоянная плотность её вещества. Ядра же характеризуются практически постоянной удельной энергией связи и постоянной плотностью, не зависимо от числа нуклонов в ядре. Объём капли и объём ядра пропорциональны числу частиц. Существенное отличие ядра от капли жидкости в этой модели закл. в том, что она трактует ядро как каплю эл. Заряженной несжимаемой жидкости, подчиняющуюся законам квантовой механики. Капельная модель ядра, объяснила механизм ядерных реакций деления ядер, но не смогла объяснить повышенную устойчивость ядер, содержащих магические числа протонов и нейтронов.

2.Оболочечная модель ядра предполагает распределение нуклонов в ядре по дискретным эн. уровням, заполняемым по принципу Паули, и связывает устойчивость ядер с заполнением этих уровней. Считается, что ядра с полностью заполненными оболочками являются наиболее устойчивыми. Оболочечная модель ядра позволила объяснить спины и магнитные моменты ядер, различную устойчивость атомных ядер, а также для описания лёгких и средних ядер, а также для ядер, находящимся в основном состоянии. По мере дальнейшего накопления экспериментальных данных о свойствах атомных ядер появлялись все новые факты, не укладывающиеся в рамки описанных моделей. Так возникли обобщённая модель ядра, оптическая модель ядра и т.д.

Ядерные реакции.

Ядерными реакциями называются превращения атомных ядер, вызванные взаимодействием их друг с другом или с элементарными частицами.

Как правило, в ядерных реакциях участвуют два ядра и две частицы. Одна пара ядро-частица является исходной, другая пара - конечной.

Ядро – центральная часть атома. В ядре сосредоточены положительный электрический заряд и основная часть массы атома.
По сравнению с размерами атома, который определяется радиусом электронных орбит, размеры ядра Чрезвычайный малые 10 -15 -10 -14 м, то есть примерно в 10 миллионов раз меньше размера самого атома.
Ядра всех атомов состоят из протонов и нейтронов, близких по массе и другими свойствами частиц, из которых лишь протоны несут электрический заряд. Полное число протонов называется атомным номером Z атома и совпадает с числом электронов в нейтральном атоме. Протоны и нейтроны, их еще называют нуклонами, удерживаются вместе очень большими силами. По своей природе эти силы не могут быть ни электрическими, ни гравитационными, а по величине они на много порядков превышают силы, которые связывают электроны с ядром. Это взаимодействие получило название сильного взаимодействия.
Ядро простейшего атома – атома водорода – один протоном.
Масса ядра несколько меньше суммарную массу протонов и нейтронов, его составляющих, что обусловлено притяжением между нуклонами. Притяжения уменьшает общую энергию ядра, которая связана с массой формуле Эйнштейна. Уменьшение массы ядра по сравнению с массой его составляющих называется дефектом массы.
Количество протонов в составе ядра определяет химический элемент. При постоянном числе протонов ядро определенного химического элемента может иметь разное количество нейтронов. Ядра с разным количеством нейтронов, но одинаковым количеством протонов называются изотопами химического элемента. Например, ядро водорода имеет три изотопа: без всякого нейтрона – Однако, с одним нейтроном – дейтерий и с двумя нейтронами – тритий. Для большинства элементов периодической таблицы число нейтронов несколько превышает число протонов.
Среди изотопов различают стабильные и нестабильные. Нестабильные изотопы превращаются в ядра других элементов в результате одного из типов радиоактивного распада. Некоторые тяжелые химические элементы не имеют стабильных изотопов.
Один элемент можно преобразовать в другой с помощью ядерной реакции. Ядерные реакции, отличные от реакций радиоактивного распада, происходящих при столкновении очень быстрых ядер. Энергии столкновения должно хватить на преодоление кулоновского барьера, то есть сил кулоновского отталкивания между положительно заряженными ядрами. Исключение составляют реакции, в которых одним из реагентов является незаряженным частица – нейтрон.
Ядро характеризуется зарядовой числом Z, числом нейтронов N, и их суммой массовым числом A. Протоны и нейтроны, входящие в состав ядра, относятся к фермионов, то есть имеют полуцелым спином. Спин ядра является суммой спинов нуклонов, однако эта сумма не является алгебраической, учитывая особые правила сложения спинов и орбитальных моментов в квантовой механике. Соответственно, ядра имеют магнитные моменты, связанные со спином ядерным гиромагнитное отношение, в котором магнетон Бора заменяется на ядерный магнетон.
Ядра большинства химических элементов, встречающихся в природе возникли в результате ядерных реакций в звездах. При большом взрыва возникли протоны и электроны. Остальные элементы являются продуктами нуклеосинтеза, который проходил внутри в звездах. Образованные химические элементы выбрасываются звездами в межзвездное пространство при возникновении новых и сверхновых. Со временем выплюнуть звездами вещество вновь собирается вместе, образуя новые звезды и планеты.
Понятие о ядре атома ввел в 1911 году Эрнест Резерфорд, проведя эксперименты по рассеянию альфа-частиц на металлической фольги и предложив планетарную модель атома.
Ядра атомов и их преобразования изучает ядерная физика.

Атом состоит из положительно заряженного ядра и окружающих его электронов. Атомные ядра имеют размеры примерно 10 -14 … 10 -15 м (линейные размеры атома – 10 -10 м).

Атомное ядро состоит из элементарных частиц  протонов и нейтронов. Протонно-нейтронная модель ядра была предложена российским физиком Д. Д. Иваненко, а впоследствии развита В. Гейзенбергом.

Протон (р ) имеет положительный заряд, равный заряду электрона, и массу покоят p = 1,6726∙10 -27 кг 1836m e , гдеm e масса электрона. Нейтрон (n )нейтральная частица с массой покояm n = 1,6749∙10 -27 кг 1839т e ,. Массу протонов и нейтронов часто выражают в других единицах – в атомных единицах массы (а.е.м., единица массы, равная 1/12 массы атома углерода
). Массы протона и нейтрона равны приблизительно одной атомной единице массы. Протоны и нейтроны называют­сянуклонами (от лат.nucleus ядро). Общее число нуклонов в атомном ядре называ­етсямассовым числомА ).

Радиусы ядер возрастают с увеличением массового числа в соответствии с соотношением R = 1,4А 1/3 10 -13 см.

Эксперименты показывают, что ядра не имеют резких границ. В центре ядра существует определенная плотность ядерного вещества, и она постепенно уменьшается до нуля с увеличением расстояния от центра. Из-за отсутствия четко определенной границы ядра его «радиус» определяется как расстояние от центра, на котором плотность ядерного вещества уменьшается в два раза. Среднее распределение плотности материи для большинства ядер оказывается не просто сферическим. Большинство ядер деформировано. Часто ядра имеют форму вытянутых или сплющенных эллипсоидов

Атомное ядро характеризуетсязарядом Ze, гдеZ зарядовое число ядра, равное числу протонов в ядре и совпадающее с порядковым номером химического элемента в Периодической системе элементов Менделеева.

Ядро обозначается тем же символом, что и нейтральный атом:
, гдеX символ химического элемента,Z атомный номер (число протонов в ядре),А массовое число (число нуклонов в ядре). Массовое числоА приблизительно равно массе ядра в атомных единицах массы.

Так как атом нейтрален, то заряд ядра Z определяет и число электронов в атоме. От числа электронов зависитих распределение по состояниям в атоме. Заряд ядра определяет специфику данного химического элемента, т. е. определяет число электро­нов в атоме, конфигурациюих электронных оболочек, величину и характер внутри­атомного электрического поля.

Ядра с одинаковыми зарядовыми числами Z , но с разными массовыми числамиА (т. е. с разными числами нейтронов N = A – Z ), называются изотопами, а ядра с одинаковымиА, но разнымиZ – изобарами. Например, водород (Z = l) имеет три изотопа: Н – протий (Z = l,N = 0), Н – дейтерий (Z = l,N = 1), Н – тритий (Z = l,N = 2), олово – десять изотопов и т. д. В подавляющем большинстве случаев изотопы одного и того же химического элемента обладают одинаковыми химическими и почти одинаковыми физическими свойствами.

Е , МэВ

Уровни энергии

и наблюдаемые переходы для ядра атома бора

Квантовая теория строго ограничивает значения энергий, которыми могут обладать составные части ядер. Совокупности протонов и нейтронов в ядрах могут находиться только в определенных дискретных энергетических состояниях, характерных для данного изотопа.

Когда электрон переходит из более высокого в более низкое энергетическое состояние, разность энергий излучается в виде фотона. Энергия этих фотонов имеет порядок нескольких электронвольт. Для ядер энергии уровней лежат в интервале примерно от 1 до 10 МэВ. При переходах между этими уровнями испускаются фотоны очень больших энергий (γ–кванты). Для иллюстрации таких переходов на рис. 6.1 приведены пять первых уровней энергии ядра
.Вертикальными линиями указаны наблюдаемые переходы. Например, γквант с энергией 1,43 МэВ испускается при переходе ядра из состояния с энергией 3,58 МэВ в состояние с энергией 2,15 МэВ.

Размеры ядер.

Размеры ядер зависят от числа содержащихся в них нуклонов. Средняя плотность числа р нуклонов в ядре (их число в единице объёма) для всех многонуклонных ядер (A > 0) практически одинакова. Это означает, что объём ядра пропорционален числу нуклонов А, а его линейный размер ~А1/3. Эффективный радиус ядра R определяется соотношением:

R = а A1/3, (2)

где константа а близка к Гц, но отличается от него и зависит от того, в каких физических явлениях измеряется R. В случае так называемого зарядового радиуса ядра, измеряемого по рассеянию электронов на ядрах или по положению энергетических уровней m-мезоатомов: а = 1,12 ф. Эффективный радиус, определённый из процессов взаимодействия адронов (нуклонов, мезонов, a-частиц и др.) с ядрами, несколько больше зарядового: от 1,2 ф до 1,4 ф.

Плотность ядерного вещества фантастически велика сравнительно с плотностью обычных веществ: она равна примерно 1014 г/см3. В ядре r почти постоянно в центральной части и экспоненциально убывает к периферии. Для приближённого описания эмпирических данных иногда принимают следующую зависимость r от расстояния r от центра ядра:

Эффективный радиус ядра R равен при этом R0 + b. Величина b характеризует размытость границы ядра, она почти одинакова для всех ядер (» 0,5 ф). Параметр r0 - удвоенная плотность на «границе» ядра, определяется из условия нормировки (равенства объёмного интеграла от р числу нуклонов А). Из (2) следует, что размеры ядер варьируются по порядку величины от 10-13 см до 10-12 см для тяжёлых ядер (размер атома ~ 10-8 см). Однако формула (2) описывает рост линейных размеров ядер с увеличением числа нуклонов лишь огрублённо, при значительном увеличении А. Изменение же размера ядра в случае присоединения к нему одного или двух нуклонов зависит от деталей структуры ядра и может быть иррегулярным. В частности (как показали измерения изотопического сдвига атомных уровней энергии), иногда радиус ядра при добавлении двух нейтронов даже уменьшается.

Энергия связи и масса ядра.

Энергией связи ядра xсв называется энергия, которую необходимо затратить на расщепление ядра на отдельные нуклоны. Она равна разности суммы масс входящих в него нуклонов и массы ядра, умноженной на c2:

xсв = (Zmp + Nmn - М) c2. (4)

Здесь mp, mn и M - массы протона, нейтрона и ядра. Замечательной особенностью ядер является тот факт, что xсв приблизительно пропорциональна числу нуклонов, так что удельная энергия связи xсв/А слабо меняется при изменении А (для большинства ядер xсв/А » 6-8 Мэв). Это свойство, называемое насыщением ядерных сил, означает, что каждый нуклон эффективно связывается не со всеми нуклонами ядра (в этом случае энергия связи была бы пропорциональна A2 при A»1), а лишь с некоторыми из них. Теоретически это возможно, если силы при измененном расстоянии изменяют знак (притяжение на одних расстояниях сменяется отталкиванием на других). Объяснить эффект насыщения ядерных сил, исходя из имеющихся данных о потенциале взаимодействия двух нуклонов, пока не удалось (известно около 50 вариантов ядерного межнуклонного потенциала, удовлетворительно описывающих свойства дейтрона и рассеяние нуклона на нуклоне; ни один из них не может описать эффект насыщения ядерных сил в многонуклонных ядрах).

Независимость плотности р и удельной энергии связи ядер от числа нуклонов А создаёт предпосылки для введения понятия ядерной материи (безграничного ядра). Физическими объектами, отвечающими этому понятию, могут быть не только макроскопические космические тела, обладающие ядерной плотностью (например, нейтронные звёзды), но, в определённом аспекте, и обычные ядра с достаточно большими А.

Здесь первое (и наибольшее) слагаемое определяет линейную зависимость xсв от A; второй член, уменьшающий xсв, обусловлен тем, что часть нуклонов находится на поверхности ядра. Третье слагаемое - энергия электростатического (кулоновского) отталкивания протонов (обратно пропорциональна радиусу ядра и прямо пропорциональна квадрату его заряда). Четвёртый член учитывает влияние на энергию связи неравенства числа протонов и нейтронов в ядре, пятое слагаемое d(A, Z) зависит от чётности чисел А и Z; оно равно:

Эта сравнительно небольшая поправка оказывается, однако, весьма существенной для ряда явлений и, в частности, для процесса деления тяжёлых ядер. Именно она определяет делимость ядер нечётных по А изотопов урана под действием медленных нейтронов, что и обусловливает выделенную роль этих изотопов в ядерной энергетике. Все константы, входящие в формулу (5), подбираются так, чтобы наилучшим образом удовлетворить эмпирическим данным. Оптимальное согласие с опытом достигается при e = 14,03 Мэв, a = 13,03 Мэв, b = 0,5835 Мэв, g= 77,25 Мэв. Формулы (5) и (6) могут быть использованы для оценки энергий связи ядер, не слишком удалённых от полосы стабильности ядер. Последняя определяется положением максимума xсв как функции Z при фиксированном А. Это условие определяет связь между Z и А для стабильных ядер:

Z=A (1,98+0,15A2/3)-1 (7)

Формулы типа (5) не учитывают квантовых эффектов, связанных с деталями структуры ядер, которые могут приводить к скачкообразным изменениям xсв вблизи некоторых значений А и Z (см. ниже).

Структурные особенности в зависимости xсв от A и Z могут сказаться весьма существенно в вопросе о предельном возможном значении Z, т. е. о границе периодической системы элементов. Эта граница обусловлена неустойчивостью тяжёлых ядер относительно процесса деления. Теоретические оценки вероятности спонтанного деления ядер не исключают возможности существования «островов стабильности» сверхтяжёлых ядер вблизи Z = 114 и Z = 126.

Квантовые характеристики ядер.

Я. а. может находиться в разных квантовых состояниях, отличающихся друг от друга значением энергии и других сохраняющихся во времени физических величин. Состояние с наименьшей возможной для данного ядра энергией называется основным, все остальные - возбуждёнными. К числу важнейших квантовых характеристик ядерного состояния относятся спин I и чётность Р. Спин I - целое число у ядер с чётным А и полуцелое при нечётном. Чётность состояния Р = ± 1 указывает на изменение знака волновой функции ядра при зеркальном отображении пространства. Эти две характеристики часто объединяют единым символом IP или I±. Имеет место следующее эмпирическое правило: для основных состояний ядер с чётными А и Z спин равен 0, а волновая функция чётная (IP = 0+). Квантовое состояние системы имеет определённую чётность Р, если система зеркально симметрична (т. е. переходит сама в себя при зеркальном отражении). В ядрах зеркальная симметрия несколько нарушена из-за наличия слабого взаимодействия между нуклонами, не сохраняющего чётность (его интенсивность по порядку величины ~ 10-5% от основных сил, связывающих нуклоны в ядрах). Однако обусловленное слабым взаимодействием смешивание состояний с разной чётностью мало и практически не сказывается на структуре ядер.