Болезни Военный билет Призыв

Что такое эмпирический закон распределения. Эмпирическая функция распределения, свойства. Ряды распределения изображаются в виде

Указания к выполнению и оформлению лабораторных работ

Работы выполняются на листах формата А-4. На титульном листе записывается название работы, фамилия и имя исполнителя, группа, отделение, текущий год и семестр.

Чертежи, схемы, рисунки, таблицы выполняются с помощью чертежных инструментов. Все они должны сопровождаться названиями и необходимыми надписями. Текущий текст пишется ручкой. Важные места работы можно выделять цветом. Работы можно оформлять на компьютере.

При выполнении работы во всех случаях записываются применяемые формулы, промежуточные вычисления, даются необходимые письменные пояснения. Особо выделяются получаемые результаты при обработке данных.

В конце каждой работы приводится письменный анализ полученных результатов, выдвигаются гипотезы, делаются выводы и обобщения, стоятся прогнозы.

Отбор числового материала для выполнения работ

Работы 1-2 .

Ч исловые данные выбираются из таблицы "Статистические данные". Она находится в приложении к данному комплекту работ. Вариант сообщает преподаватель.

Работа 3.

Исходные числовые данные совпадают с числовыми данными, использованными при выполнении работы 1.

Работа 4.

Требуется две группы числовых данных: показатель Х и показатель У. Показатель Х совпадает с числовыми данными, использованными при выполнении первой работы. Показатель У берется из следующей строки таблицы "Статистические данные", по отношении к строке, использованной в первой работе.

Работа 5

Требуется две группы числовых данных: тест и ретест. Тест совпадает с числовыми данными, использованными при выполнении первой работы. Значения ретеста берутся из второй строки таблицы "Статистические данные", по отношении к строке, использованной в первой работе.

Работа 6

Требуется 5 групп данных (5 тестов). Работа выполняется для 7 спортсменов. Имена их выбираются самостоятельно, фамилии при этом не упоминаются

Для получения значений теста "масса тела", надо взять числовые данные строки таблицы "Статистические данные", использованной в работе 1 и увеличить каждое из них их на одно и тоже число, взятое из промежутка 50 – 100. Полученные числа округлить до целых значений. Обратить внимание на то, что значения массы были правдоподобными.

Для получения значений теста "рост", надо взять числовые данные строки таблицы "Статистические данные", использованной в работе 1 и увеличить каждое из них их на одно и тоже число, взятое из промежутка 100 - 150 Полученные числа округлить до целых значений. Обратите внимание на то, что бы значения роста были правдоподобными.

Откорректируйте полученную Массу и Рост до правдоподобных их значений.

Остальные пять тестов и их числовые значения выбираются самостоятельно.

Работа 7,

Требуется один тест и два критерия. Значения теста берется из строки 33 таблицы "Статистические данные". Для первого критерия берутся числовые данные из строки, которая использовалась при выполнении первой работы. Для второго критерия берется следующая строка таблицы "Статистические данные", по отношении к строке, использованной в первой работе.

Тема 1. Обработка статистического материала методом средних величин

Теоретические сведения

Обработка статистических данных методом средних величин является наиболее популярным среди работников физической культуры и спорта. Он заключается в получении ряда средних показателей, которые позволяют анализировать статистические данные.

а). Первичная обработка поступающих данных

Устанавливается объем выборки, а именно определяется число обрабатываемых данных. Надо иметь в виду, что, чем больше объем выборки, тем точнее получаемые показатели и тем сложнее вести вычисления. В процессе соревнований или иных действий (используются протоколы соревнований) данные поступают в произвольном порядке. Для удобства рекомендуется ведение записей данных в виде таблицы по пять или десять чисел в каждой строчке, что облегчает установления их числа.

б). Построение вариационного ряда (вариационной таблицы ) и определение их параметров и численных характеристик для рассматриваемой совокупности.

Каждый вариационный ряд представляет собой математическую систему, т.е. группу чисел, связанных между собой. Такую систему характеризуется следующими показателями:

~ среднее арифметическое, обозначается: , X сред, , Х ср, х ср

~ дисперсия, обозначается: d или s 2

~ среднее квадратичное отклонение, обозначается: s

~ коэффициент вариации, обозначается: u

2. Последовательность обработки данных:

1. Ранжирование данных.

Данные, взятые из таблицы (см. приложение) запишите в удобном для Вас порядке

а). Строится таблица ранжирования по образцу таблицы 1-1.

В первом столбике записывается числовые значения показателей в порядке возрастания. Рекомендуется записать последовательно все значения от минимального показателя до максимального показателя. Соседние значения могут отличаться на значение точности измерений.

Во втором столбике делается отметка о наличии таковых показателей в выборке. Для этого ставится палочка (звездочка, точка или иной знак) против соответствующего показателя при последовательном просмотре выборки. Некоторые строчки в данном столбике могут оказаться пустыми.

В третьем столбике записывается число встречаемых одинаковых показателей.

б). На основе таблицы 1-1 строится обобщенная таблица 1-2, состоящая из двух столбиком.

Первый (левый) столбик состоит из собственных показателей – вариант. Он обозначается чрез x i и содержит значения очередного показателя.

Второй (правый) столбик содержит число показателей (вариант), называемых частотой Он показывает число соответствующих одинаковых показателей и обозначается через n i

Сумма частот определяет объемом совокупности.

Замечание. Собственный показатель и частота обозначаются латинскими буквами, индекс показывает на номер множества, которому принадлежит соответствующий показатель. Объем совокупности обозначается буквой без индекса. Например, n=40. При одновременном рассмотрении нескольких вариационных рядов, рекомендуется использовать различные буквы.

2. Вычисление среднего арифметического.

Эта характеристика является показателем, который вычисляется наиболее просто и поэтому часто используется исследователями.

, n – объем совокупности; x 1 , x 2 …x n – показатели, взятые из первоначальной таблицы 1-1.

Для вычисления среднего арифметического удобно составить таблицу 1-3 и тогда формула вычисления среднего арифметического имеет вид:

X сред = , где x i – частота; n – объем совокупности

В дальнейшем будут рассмотрены и другие характеристики вариационного ряда.

Замечания:

1. Таблица 3 является частью таблицы 4, поэтому их можно объединить.

2. Точность полученных при вычислениях результатов вычислений и точность измерений должны совпадать. (Иметь одинаковое число десятичных знаков после запятой). Промежуточные результаты должны иметь более высокую точность: одну - две запасные цифры. Окончательный результат округляется до необходимой точности. Если округление с необходимой точность приводит к нулевому результату, то округление проводится до первой значащей цифры, отличной от нуля, считая слева.

3. Вычисление дисперсии.

Дисперсия указывает на варьирование (рассеивание) исходных данных относительно среднего арифметического. Дисперсия обозначается буквами d или σ 2 ивычисляется по формуле:

d =

1. Вычерчивается макет таблицы 1-4, в который вносятся данные полученные ранее. Это, например, с первого по четвертый столбики. Остальные - заполняется по мере проведения вычислений. Обращаем внимание на то, что в этой таблице первые четыре столбика повторяют предыдущую таблицу 1-3. Поэтому, если исследователь заранее планирует вычисление дисперсии, то таблицу1-3 можно отдельно не приводить

2. Определяется X сред

3. Заполняется пятый столбик таблицы 1-4, для этого из каждого показателя второго столбика вычитаются средний показатель: х i - x сред

4. Найденные разности, это показатели пятого столби, возводятся в квадрат: (х i - x сред) 2 и вносятся в шестой столбик таблицы 1-4

5. Полученные квадраты (столбик 6) умножаются на соответствующие частоты (столбик 3), результаты вносятся в последний столбик таблицы 1-4: именно, (х i - x сред) 2 ·n i .

6. Находится сумма S полученных произведений – суммируется последний столбик этой таблицы.

7. Полученная сумма S делится на объем совокупности n=25. Полученный результат и есть дисперсия. Округляется до точности исходных (обрабатываемых) показателей.

4. Вычисление среднего квадратичного отклонения

Средне квадратичное значение вычисляется по формуле s = =

5.Вычисление коэффициента вариации.

Коэффициент вариации вычисляется по формуле: , если коэффициент представляется в виде процентов. Если надо представить его в виде десятичной дроби, то в формуле отсутствует множитель 100%

6. Анализ полученных показателей

Основными параметрами вариационного ряда являются среднее арифметическое, среднее квадратичное, коэффициент дисперсии.

Составляется неравенство

A < X сред < B, где А = X сред - s, В = X сред + s

или X сред - s < X сред < В = X сред + s

Из этих характеристик усматриваются типичные показатели, которые входят в промежуток (A; В) и нетипичные, которыми не входят в указанный промежуток. Можно рекомендовать к рассмотрению промежуток , т.е. включаются границы промежутка.

30. Теоретические и эмпирические распределения как модели рядов распределения

Эмпирическое распределение отличается от теоретического тем, что

на значения признака в нем влияют случайные факторы. С увеличением

объема статистической совокупности влияние случайных факторов

ослабевает, и эмпирическое распределение все менее отличается от

теоретического.

Для оценки близости распределений используются особые

показатели – критерии согласия. Они основаны на использовании

различных мер расстояний между эмпирическим и теоретическим

распределением.

Если нужно получить теоретические частоты f" при выравнивании вариационного ряда по кривой нормального распределения, то можно воспользоваться формулой

где - сумма всех эмпирических частот вариационного ряда; h - величина интервала в группах; - cреднее квадратическое отклонение; - нормированное отклонение вариантов от средней арифметической; все остальные величины легко вычисляются по специальным таблицам.

При помощи этой формулы мы получаем теоретическое (вероятностное) распределение, заменяя им эмпирическое (фактическое) распределение, по характеру они не должны отличаться друг от друга.

При выравнивании эмпирических данных теоретические частоты можно определить по формуле

Сравнивая полученные величины теоретических частот f" c эмпирическими (фактическими) частотами f, убеждаемся, что их расхождения могут быть весьма невелики.

Объективная характеристика соответствия теоретических и эмпирических частот может быть получена при помощи специальных статистических показателей, которые называют критериями согласия.

Для оценки близости эмпирических и теоретических частот применяются критерий согласия Пирсона, критерий согласия Романовского, критерий согласия Колмогорова.

Наиболее распространенным является критерий согласия К. Пирсона , который можно представить как сумму отношений квадратов расхождений между f" и f к теоретическим частотам:

(7.10)

Вычисленное значение критерия необходимо сравнить с табличным (критическим) значением . Табличное значение определяется по специальной таблице, оно зависит от принятой вероятности Р и числа степеней свободы k (при этом k = m - 3, где m - число групп в ряду распределения для нормального распределения). При расчете критерия согласия Пирсона должно соблюдаться следующее условие: достаточно большим должно быть число наблюдений (n 50), при этом если в некоторых интервалах теоретические частоты 5.

Если , то расхождения между эмпирическими и теоретическими частотами распределения могут быть случайными и предположение о близости эмпирического распределения к нормальному не может быть отвергнуто.

В том случае, если отсутствуют таблицы для оценки случайности расхождения теоретических и эмпирических частот, можно использовать критерий согласия В.И. Романовского КРом, который, используя величину , предложил оценивать близость эмпирического распределения кривой нормального распределения при помощи отношения

теоретического распределения, вычисляется по формуле

где D - максимальное значение разности между накопленными эмпирическими и теоретическими частотами; - сумма эмпирических частот.

31 Выборочное наблюдение Годин С 127,ошибка выборки 130

32 Ряды динамики С 210

33 Сглаживание рядов динамики С 220

Уравнение тренда

Экстраполяция на основе функции тренда, полученной в результате аналитического выравнивания, относится к наиболее распространенным и практически применяемым методам прогнозирования.

Нахождение по имеющимся данным за определенный период времени некоторых недостающих значений признака внутри этого периода называется интерполяцией . Нахождение значений признака за пределами анализируемого периода называется экстраполяцией .

Применение экстраполяции для прогнозирования должно основываться на предположении, что найденная закономерность развития внутри динамического ряда сохраняется и вне этого ряда. Это означает, что основные факторы, сформировавшие выявленную закономерность изменений уровней ряда во времени, сохранится в будущем.

При составлении прогнозов уровней социально-экономических явлений обычно оперируют не точечной, а интервальной оценкой, рассчитывая так называемые доверительные интервалы прогноза . Границы интервалов определяются по формуле

, (1.61)

где – точечный прогноз, рассчитанный по модели тренда;

коэффициент доверия по распределению Стьюдента при уровне значимости
и числе степеней свободы = n -1 ;

– ошибка аппроксимации.

Уровень значимости связан с вероятностью следующей формулой

. (1.62)

Ошибка аппроксимации (среднее квадратическое отклонение тренда) определяется по следующей формуле

где и – соответственно фактические и теоретические (расчетные) значения уровней ряда динамики;

n – число уровней ряда;

k – число параметров (членов) в уравнении тренда.

34 Элементы статистического прогнозирования

Разновидность математических методов прогнозирования, позволяющих построить динамические ряды на перспективу. Статистические методы прогнозирования охватывают разработку, изучение и применение современных математико-статистических методов прогнозирования на основе объективных данных (в том числе непараметрических методов наименьших квадратов с оцениванием точности прогноза, адаптивных методов, методов авторегрессии и других); развитие теории и практики вероятностно-статистического моделирования экспертных методов прогнозирования, в том числе методов анализа субъективных экспертных оценок на основе статистики нечисловых данных; разработку, изучение и применение методов прогнозирования в условиях риска и комбинированных методов прогнозирования с использованием совместно экономико-математических и эконометрических (как математико-статистических, так и экспертных) моделей. Научная база статистических методов прогнозирования - прикладная статистика и теория принятия решений. Простейшие методы восстановления используемых для прогнозирования зависимостей исходят из заданного временного ряда, то есть функции, определенной в конечном числе точек на оси времени. При этом временной ряд часто рассматривается в рамках той или иной вероятностной модели, вводятся другие факторы (независимые переменные) помимо времени, напр., объем денежной массы. Временной ряд может быть многомерным. Основные решаемые задачи - интерполяция и экстраполяция. Метод наименьших квадратов в простейшем случае (линейная функция от одного фактора) был разработан К. Гауссом в 1794-1795 гг. Могут оказаться полезными предварительные преобразования переменных, например, логарифмирование. Наиболее часто используется метод наименьших квадратов при нескольких факторах. Метод наименьших модулей, сплайны и другие методы экстраполяции применяются реже, хотя их статистические свойства зачастую лучше. Накоплен опыт прогнозирования индекса инфляции и стоимости потребительской корзины. Оказалось полезным преобразование (логарифмирование) переменной - текущего индекса инфляции. Оценивание точности прогноза (в частности, с помощью доверительных интервалов) - необходимая часть процедуры прогнозирования. Обычно используют вероятностно-статистические модели восстановления зависимости, напр., строят наилучший прогноз по методу максимального правдоподобия. Разработаны параметрические (обычно на основе модели нормальных ошибок) и непараметрические оценки точности прогноза и доверительные границы для него (на основе Центральной Предельной Теоремы теории вероятностей). Так, предложены непараметрические методы доверительного оценивания точки наложения (встречи) двух временных рядов для оценки динамики технического уровня собственной продукции и продукции конкурентов, представленной на мировом рынке. Применяются также эвристические приемы, не основанные на вероятностно статистической теории: метод скользящих средних, метод экспоненциального сглаживания. Многомерная регрессия, в том числе с использованием непараметрических оценок плотности распределения, - основной на настоящий момент статистический аппарат прогнозирования. Подчеркнем, что нереалистическое предположение о нормальности погрешностей измерений и отклонений от линии (поверхности) регрессии использовать не обязательно. Однако для отказа от предположения нормальности необходимо опереться на иной математический аппарат, основанный на многомерной Центральной Предельной Теореме теории вероятностей, технологии линеаризации и наследования сходимости. Он позволяет проводить точечное и интервальное оценивание параметров, проверять значимость их отличия от ноля в непараметрической постановке, строить доверительные границы для прогноза. Весьма важна проблема проверки адекватности модели, а также проблема отбора факторов.

35 Функциональные и статистические связи С 146

Статистич. связь- изменение вариации одного признака в зависимости от второго и => может отражаться не только в изменении его средней величины (кореляц завис-ость) но и любой другой характеристики вариации

36 Формы, виды, теснота связей, линейный коэф. Корреляции . С 156 изм тесноты связи- С 169

Связи: прямолинейная, криволинейная, слабая, умеренная, заметная, высокая, тесная, весьма тесная, полная обратная, полная прямая, частично прямая, частично обратная

прямолинейная

(8.1)

криволинейная в виде:

(8.2)

гиперболы

Наиболее простым вариантом корреляционной зависимости является парная корреляция, т.е. зависимость между двумя признаками (результативным и факторным или между двумя факторными). Математически эту зависимость можно выразить как зависимость результативного показателя у от факторного показателя х. Связи могут быть прямые и обратные. В первом случае с увеличением признака х увеличивается и признак у, при обратной связи с увеличением признака х уменьшается признак у.

Важнейшей задачей является определение формы связи с последующим расчетом параметров уравнения, или, иначе, нахождение уравнения связи (уравнения регрессии).

Могут иметь место различные формы связи:

прямолинейная

криволинейная в виде:

параболы второго порядка (или высших порядков)

гиперболы

показательной функции

Параметры для всех этих уравнений связи, как правило, определяют из системы нормальных уравнений, которые должны отвечать требованию метода наименьших квадратов (МНК):

Если связь выражена параболой второго порядка (), то систему нормальных уравнений для отыскания параметров a0 , a1 , a2 (такую связь называют множественной, поскольку она предполагает зависимость более чем двух факторов) можно представть в виде

Другая важнейшая задача - измерение тесноты зависимости - для всех форм связи может быть решена при помощи вычисления эмпирического корреляционного отношения :

(8.7)

где - дисперсия в ряду выравненных значений результативного показателя ; - дисперсия в ряду фактических значений у.

Для определения степени тесноты парной линейной зависимости служит линейный коэффициент корреляции, для расчета которого можно использовать, например, две следующие формулы:

(8.8)

Линейный коэффициент корреляции может принимать значения в пределах от -1 до + 1 или по модулю от 0 до 1. Чем ближе он по абсолютной величине к 1, тем теснее связь. Знак указывает направление связи: «+» - прямая зависимость, «-» имеет место при обратной зависимости.

37 уравнение парной линейной корреляции.

Он показывает, насколько тесно две переменные связаны между

Формула для вычисления парного коэффициента корреляции:

38 понятие множественной корреляции.

Множественная корреляция - корреляция между одной зависимой переменной и комбинацией двух или более независимых переменных, которая дает оценку смешанного влияния на зависимую переменную.

такую связь называют множественной, поскольку она предполагает зависимость более чем двух факторов) можно представть в виде

При прямолинейной форме связи коэффициент множественной корреляции (совокупный коэффициент корреляции по некоторому числу факторов) может быть вычислен по формуле

где Ry xz – коэффициент множественной корреляции у по x,z;

ryx, ryz, rxz – полные парные коэффициенты корреляции факторов-признаков у, x, z.

В общем случае чем выше значение коэффициента множественной корреляции, тем лучше подобрано уравнение. Обычно при интерпретации расчетов используется величина R-квадрат (R2, коэффициент детерминации).

При предположении криволинейной зависимости следует выбрать (как и при парной корреляции) определенный тип кривой линии и представить ее в виде алгебраического выражения. Последующие расчеты связаны с выявлением показателей по формулам прямолинейной зависимости в множественной корреляции (регрессии). Часто в этих расчетах прибегают к помощи логарифмов.

39. Понятие индексов агрегатные и индивидуальные

Индекс - это результат сравнения двух одноименных показателей, при исчислении которого следует различать числитель индексного отношения (сравниваемый или отчетный уровень) и знаменатель индексного отношения (базисный уровень, с которым производится сравнение). Выбор базы зависит от цели исследования. Если изучается динамика, то за базисную величину может быть взят размер показателя в периоде, предшествующем отчетному. Если необходимо осуществить территориальное сравнение, то за базу можно принять данные другой территории. За базу сравнения могут приниматься плановые показатели, если необходимо использовать индексы как показатели выполнения плана

Агрегатные Индексами называют сравнительные относительные величины, которые характеризуют изменение сложных социально-экономических показателей (показатели, состоящие из несуммируемых элементов) во времени, в пространстве, по сравнению с планом.

Агрегатный индекс является основной формой сводного индекса. "Агрегатным" он называется потому, что его числитель и знаменатель представляют собой набор "агрегат" (от латинского aggregatus складываемый, суммируемый) непосредственно несоизмеримых и не поддающихся суммированию элементов сумму произведений двух величин, одна из которых меняется (индексируется), а другая остается неизменной в числителе и знаменателе (вес индекса). Вес индекса служит для соизмерения индексируемых величин.

Индивидуальные

Индивидуальные индексы обозначаются i и снабжаются подстрочным знаком индексируемого показателя: iq - индивидуальный индекс объема произведенной продукции отдельного вида или количества (объема) проданного товара данного вида, ip индивидуальный индекс цен и т.д.

Индивидуальные индексы относятся к одному элементу (явлению) и не требуют суммирования данных. Они представ-ляют собой относительные величины динамики, выполнения обя-зательств, сравнения. Выбор базы сравнения определяется целью исследования.

Расчет индивидуальных индексов прост, их определяют вычислением отношения двух индексируемых величин:

ip = Р1/Р0 - индивидуальный индекс цен, где Р1 Р0 - цены единицы продукции в текущем (отчетном) и базисном периодах.

iq = q1/q0 ~ индивидуальный индекс физического объема продукции.

41 Средние индексы

Средние индексы – это сочетание индекса в агрегатной форме и индивидуальных индексов. Применяются в том случае, когда отсутствуют какие-либо данные в отчетном или базисном периодах.
Если отсутствуют данные о количестве проданных товаров, но зарегистрированы показатели выручки и индексы цен на отдельные товары, то на базе индекса Пааше можно рассчитать средний гармонический индекс цен. Выводим его через индекс Паше

Эмпирическое распределение отличается от теоретического тем, что на значения признака в нем влияют случайные факторы. С увеличением объема статистической совокупности влияние случайных факторов ослабевает, и эмпирическое распределение все менее отличается от теоретического.

Для оценки близости распределений используются особые показатели - критерии согласия.

Они основаны на использовании различных мер расстояний между эмпирическим и теоретическим распределением.

Наиболее часто на практике используются следующие критерия согласия:

_ «хи-квадрат»- критерий (критерий Пирсона); формат:

_ «лямбда»- критерий» (критерий Колмогорова).

5.9.1. «Хи-квадрат» - критерий является случайной величиной, имеющей распределение, близкое к распределению «хи-квадрат». Его величина определяется по формуле:

2 = у (ni - nT)2

Чем меньше эмпирические и теоретические частоты в отдельных группах отличаются друг от друга, тем меньше эмпирическое распределение отличается от теоретического, то есть тем в большей степени эмпирическое и теоретическое распределения согласуются между собой.

Для оценки существенности расчетной величины «хи- квадрат.» - критерия оно сравнивается с табличным (критическим) значением х2, определяемым по статистическим таблицам значений х2-

критерия. х2 определяют в зависимости от уровня значимости а и параметра k=m- т1 -1, где а - вероятность ошибки, ml - число оцененных параметров теоретического распределения по наблюдаемым значениям признака.

Уровень значимости т выбирается таким образом, что Р(хР > х2)=а.

Обычно а принимается равным 0,05 или 0,01, что соответствует вероятности 95% или 99%.

Если хр ^ Xt , то считают, что распределения близки друг другу,

различия между ними несущественны.

Критерий Пирсона можно использовать можно при соблюдении ф°рмат: спис°к следующих условий:

в совокупности не менее 50 единиц наблюдения (N > 50),

теоретические частоты п, >5,- если это условие не соблюдается, то следует объединить интервалы.

Рассчитаем в таблице 4.6.

Значения отклонений (nt -nh) и фактическое значение х2- критерия. По расчету хр = 1,66. Это значение

сравнивается с табличным, определенном при числе степеней свободы k=4 и уровне значимости = 0,05. Оно равно хр =9,49.

Таким образом хрраспределения признаются близкими друг другу с вероятностью 95%, расхождения между ними - несущественными, вызываемыми случайной вариацией признака в совокупности.

На основе? - критерия может быть рассчитан ещё один критерий согласия - критерий Романовского:

л/2 (т - 3) "

Эмпирическое и теоретическое распределения признаются близкими друг другу, если С 5.9.2. Критерий согласия Колмогорова основан на другой мере близости распределений. Для оценки близости эмпирического распределения к нормальному используется максимальная разница между накопленными эмпирическими и накопленными теоретическими частотами. Расчетное значение «лямбда»- критерия» определяется по формуле:

где Д = max{N - N }

Nt - накопленная эмпирическая частота, N,. - накопленная теоретическая частота.

По рассчитанному значению Хр по специальной таблице вероятностей «лямбда»- критерия» определяется вероятность того, что рассматриваемое эмпирическое распределение подчиняется закону нормального распределения. Для рассматриваемого примера Д=2 - в соответствии с расчетом, приведенным в таблице 4.6.

Тогда Яр = -= = = 0,283.

По таблице вероятностей Р(Я) определяем, что Я =0,283 соответствует вероятность Р(Я), близкая к 1.

Полученное значение вероятности свидетельствует о том, что расхождение между эмпирическим и теоретическим распределениями несущественны, вызваны случайной вариацией признака в статистической совокупности. В основе эмпирического распределения рабочих по стажу лежит закон нормального распределения.

Еще по теме 5.9. Оценка близости эмпирического и теоретического распределений:

  1. Эмпирический и теоретический уровни политического знания
  2. Раздел II УПРАВЛЕНИЕ ПРОДАЖАМИ В КАНАЛАХ РАСПРЕДЕЛЕНИЯ: ТЕОРЕТИЧЕСКИЕ АСПЕКТЫ ГЛАВА 8 Каналы распределения: сущность, функции, виды участников

Для определения способов математически-статистической обработки необходимо оценить характер распределения данных по всем параметрам (признакам). Для параметров, имеющих нормальный или близкий к нормальному распределение, можно использовать методы параметрической статистики, которые часто являются более результативными, чем методы непараметрической. Преимущество их состоит в возможности проверять статистические гипотезы независимо от формы распределения.

Нормальное распределение - вид распределения переменных, наблюдается при изменении признака (переменной) под влиянием многих относительно независимых факторов. Такое воздействие характерен для психических явлений, поэтому исследователь часто рассчитывает нормальное распределение для статистического описания совокупности эмпирических данных, оценки генеральной совокупности по выборке, для стандартного нормирования тестовых баллов и перевод их в шкальные оценки. На свойствах нормального распределения основываются статистические критерии проверки гипотез (г-критерий, критерий х2 "f-критерий Фишера, и критерий Стьюдента и т.п.). Основной целью выявления нормального распределения определение методов математически-статистической обработки данных.

При нормальном распределения показателей психологического признака или приближенного к нему, что описывает кривая Гаусса, можно использовать параметрические методы математической статистики как простые, надежные и достоверные: сравнительный анализ, расчет достоверности различий признаки между выборками по t-критерию Стьюдента, f-критерию Фишера, коэффициентом корреляции Пирсона и др.

Если кривая распределения показателей психологического признака удаленная от нормальной, исследователь вынужден использовать методы не параметрической статистики: расчет достоверности различий по критерию Q Розенбаума (для малых выборок), по U-критерию Манна - Уитни, коэффициент ранговой корреляции Спирмена, факторные, многофакторные, кластерный и другие методы анализа.

По характеру распределения можно получить общее представление об особенностях выборки испытуемых по определенному признаку и валидность методики по выборки.

Статистические выводы, сформированные на основе модели, приближенной к нормальному распределению, тоже приблизительными. Оценка приближения практической кривой с параметрами нормали осуществляется путем расчета коэффициентов асимметрии, эксцесса и критериев согласованности Пирсона, Колмогорова и Ястремского.

Коэффициент асимметрии Аs оценивает размещения вершины практической кривой по теоретической, показывает величину смещения вершины по расчетной вершины по горизонтали (вправо "+"; влево "-") (рис. 2.3).

Рис. 2.3. Социометрический распределение эмпирических данных

Коэффициент асимметрии - показатель скошенности распределения в левый или правый бок по оси абсцисс на рис. 2.4.

Рис. 2.4. Асимметричное распределение эмпирических данных

Если правая ветвь кривой длиннее левой, речь идет о правостороннюю (положительную) асимметрию, а если левая ветвь длиннее правой - о левосторонняя (отрицательную) асимметрию (рис. 2.5).

Рис. 2.5. Бимодальное распределение эмпирических данных (право - и левосторонняя асимметрия)

Коэффициент асимметрии Аs рассчитывают по формуле:

Коэффициент эксцесса Эх, то есть определенных "участков" (групп частот) практической кривой по теоретической нормали, определяет смещение практической кривой (вершины) (по вертикали - вверх "+"; вниз "-"). Эксцесс является показателем гостроверхости. Кривые, выше в средней части (островерхие) называют ексцесивнимы. При уменьшении величины эксцесса кривая становится плоской, приобретая вид плато, а затем и седловидным, то есть с прогибом в средней части (рис. 2.6).

Рис. 2.6. Показатели ексцесивности распределения

Эти параметры помогают получить первое приближенное представление о характере распределения:

В нормальном распределении редко можно найти коэффициент асимметрии, приближенный к единице и больше нее (1 и 1);

Эксцесс признаков с нормальным распределением обычно имеет величину в диапазоне 2-4.

В простом варианте показатели асимметрии и эксцесса с их ошибками репрезентативности определяют по следующим формулам:

Вычислить показатели асимметрии и эксцесса эмпирического распределения можно, используя функцию "Описательная статистика" в программе Excel.

Показатели асимметрии и эксцесса свидетельствуют о достоверной отличие эмпирических распределений от нормального в том случае, если они превышают по абсолютной величине свою ошибку репрезентативности в 3 и более раз:

Общей причиной отклонения формы выборочного распределения признака от нормального вида чаще всего является особенность процедуры измерения: шкала, которую используют, может иметь неравномерную чувствительность к свойству, измеряющие, в разных частях диапазона изменчивости.

Такие эмпирические отклонения от нормального вида, как право - или левосторонняя асимметрия или незначительный эксцесс (или бимодальное распределение) часто наблюдаются на практике. Связано это с особенностями экспериментальной выборки и измерительными процедурами, которые применяют.

Методы статистического анализа эмпирических данных допускают отклонения от нормального распределения (одни - в большей степени, другие - в меньшей). Однако если требуется убедительное обоснование полученных результатов и сделанных на их основе вычислений, как дополнительные следует использовать несложные методы нэп ара метрической статистики.

Кривая распределения тестовых баллов Гаусса в характеристике психологических явлений (оценок, результатов выполнения заданий и т.д.) отражает свойства пунктов, из которых составлен тест (задачи), а также характеризует состав выборки испытуемых (насколько успешно они выполняют задачи, насколько тест или задание дифференцируют выборку по соответствующей качеством, признаком).

Если кривая имеет правостороннюю асимметрию, это означает, что в тесте преобладают тяжелые задачи (для указанной выборки) если кривая имеет левостороннюю асимметрию, это свидетельствует, что большинство пунктов в тесте легкие. Это может быть обусловлено следующими причинами:

Тест (задания) плохо дифференцирует испытуемых с низким уровнем развития способностей (свойств, качеств, характеристик): большинство испытуемых получают примерно одинаковый низкий балл

Тест плохо дифференцирует испытуемых с высоким развитием способностей (свойств, качеств, характеристик): большинство испытуемых получают высокую оценку.

Анализ эксцесса кривой распределения позволяет сделать следующие выводы в зависимости от формы распределения показателей (данных, вариант) психологического признака:

1) когда возникает значительный положительный эксцесс (ексцесив - на кривая) и баллы концентрируются вблизи среднего значения (рис. 2.6, а), это могут вызывать такие причины:

Ключ составлен неправильно, то есть при подсчете соединены негативно связанные признаки, взаимно нейтрализуют балла. Использование валидных и надежных методик делает невозможным возникновение такой проблемы;

Испытуемые применяют, разгадав направленность теста (опросника), специальную тактику "медианного балла": искусственно балансируют ответы "за" и "против" в одном из полюсов психологического признака, измеряемая;

2) по подбору пунктов, тесно положительно коррелируют между собой (т.е. испытания не являются статистически независимыми), в распределении баллов возникает отрицательный эксцесс, что приобретает форму плато (рис. 2.6, б);

3) отрицательный эксцесс достигает максимальных величин с увеличением вогнутости вершины распределения до образования двух вершин - двух мод (с прогибом между ними, рис. 2.6, в). Такая бимодального конфигурация распределения баллов указывает на то, что выборка испытуемых разделилась на две категории, подгруппы (с плавным переходом между ними): одни справились с большинством задач (согласились с большинством вопросов), другие - не справились (не согласились). Распределение свидетельствует, что в основе задач (пунктов) есть одна общая для всех признак, который соответствует определенной свойства испытуемых: если в исследуемых имеется это свойство (способность, знания, умения), то они справляются с большинством пунктов, задач, а при отсутствии ее - не справляются.

Первичные статистики чувствительны к наличию вариант, выпадают. Большие величины эксцесса и асимметрии часто являются индикатором ошибок при подсчетах вручную или при вводе данных с клавиатуры для компьютерного обработки. Грубые ошибки при вводе данных можно найти, сравнив величины сигм в аналогичных параметрах. Сигма может указывать на ошибки.

При этом соблюдаются правила, по которым все действия следует выполнять дважды (особо ответственные - трижды), желательно разными способами, с вариацией последовательности обращения к числового массива.

Большие показатели эксцесса и асимметрии могут быть вызваны недостаточной надежностью и валидностью методик.

В отдельной выборке нельзя полностью охарактеризовать целое (генеральную совокупность, популяцию), всегда есть вероятность недостаточно точной, даже ошибочной оценки генеральной совокупности на основе выборочных данных. Ошибки, обобщения, экстраполяции, связанные с переносом результатов, полученных при изучении выборки, на всю генеральную совокупность, их называют ошибками репрезентативности.

Репрезентативность - степень соответствия выборочных показателей генеральным параметрам.

Статистические ошибки репрезентативности показывают, в каких пределах могут отклоняться от параметров генеральной совокупности (от математического ожидания или истинных значений) частичные результаты, полученные на основе конкретных выборок. Величина ошибки тем выше, чем больше варьирования признака и чем меньше выборка. Это отражают формулы для вычисления статистических ошибок, характеризующие варьирование выборочных показателей вокруг их генеральных параметров. Поэтому в первичных статистик обязательно причисляют статистическую ошибку среднего арифметического. ее вычисляют по формуле:

Основные методы параметрической и непараметрической статистики позволяют обосновать результаты эмпирического психологического исследования.

Теоретической базой для математической статистики служит теория вероятностей, которая изучает закономерности случайных явлений в абстрактном виде. На основе этих закономерностей разрабатываются модели или законы распределения случайных величии.

Закон распределения дискретной величины - это задание вероятностей ее возможных значений X = х i . Закон распределения непрерывной случайной величины представляют в виде функции распределения значений X < x i , т. е. в интегральной форме и в виде плотности распределения. Вероятность отдельного значения непрерывной случайной величины равна 0, а вероятность значений, входящих в заданную градацию, равна приращению функции распределения на участке, занимаемом данной градацией Δх.

Каждое теоретическое распределение имеет характеристики, аналогичные характеристикам статистических распределений (математическое ожидание М, дисперсию D, коэффициенты вариации, асимметрии и эксцесса). Эти или другие константы, связанные с ними, носят название параметров распределения.

Подыскание теоретического распределения, соответствующего эмпирическому, или «выравнивание» его является одной из важных задач климатологической обработки. Если найдено и найдено удачно теоретическое распределение, то климатолог получает не только удобную форму представления изучаемой величины, которую можно закладывать в машинные расчеты, но и возможность расчета характеристик, непосредственно не содержащихся в исходном ряду, а также выявления определенных закономерностей. Так, наблюдавшиеся в пункте экстремумы, безусловно, представляют интерес. Однако их появление в имеющейся выборке в значительной степени случайно, поэтому они плохо картируются и иногда существенно различаются на соседних станциях. Если же с помощью найденных распределений определять экстремальные характеристики определенной обеспеченности, то они в значительной мере свободны от указанных недостатков и поэтому являются более представительными. Именно на расчетных экстремумах основаны различные нормативные требования. Поэтому подысканию теоретического распределения и проверке его правильности должно быть уделено особое внимание.

Параметры распределения можно определить разными способами, наиболее точным, но и одновременно сложным является метод максимума правдоподобия. В климатологической практике используется метод моментов.

Статистические характеристики рассматриваются как оценки параметров распределений, характеризующих генеральную совокупность значений данной случайной величины.

Метод моментов определения оценок параметров состоит в следующем. Математическое ожидание, теоретические коэффициенты асимметрии и эксцесса просто заменяются эмпирическим средним и эмпирическими коэффициентами; теоретическая дисперсия равна эмпирической, умноженной на . Если параметрами служат функции моментов, то они вычисляются по эмпирическим моментам.


Рассмотрим некоторые вероятностные модели, часто используемые в климатологии.

Для дискретных случайных величин используются биномиальные распределения и распределения Пуассона (простое и сложное).

Биномиальное распределение (Бернулли) возникает в результате повторения при постоянных условиях одного и того же испытания, имеющего два исхода: появления или непоявления события (в климатологии, например, отсутствие или наличие явления в каждый день года или месяца).

Случайная дискретная величина понимается при этом как число случаев осуществления некоторого случайного события (явления) из n возможных случаев и может принимать значения 0, 1, 2, ..., n.

Аналитическое выражение биномиального закона распределения имеет вид (5.1)

Закон определяет вероятность того, что событие, вероятность которого р, будет наблюдаться х раз при n испытаниях. Например, в климатологии день может быть либо с явлением, либо без явления (с туманом, с определенным количеством осадков, температурой воздуха определенных градаций и т. д.). Во всех этих случаях возможны два исхода, и на вопрос, сколько раз будет наблюдаться событие (например, день с туманом), ответ можно получить с помощью биномиального закона (5.1). При этом р принимается равным р*, т. е. относительной частоте - отношению числа случаев с явлением к общему числу случаев (формула (2.3)).

Например, если рассматривается число дней с туманом в августе и по многолетнему ряду установлено, что в среднем в августе бывает 5 дней с туманом, то относительная частота (вероятность) дня с туманом в августе {31 день) равна

Параметрами биномиального распределения являются n и р, которые связаны с математическим ожиданием (средним значением), средним квадратическим отклонением, коэффициентами асимметрии и эксцесса этого распределения следующими выражениями:

На рис. 5.1 приведены графики биномиального распределения при разных параметрах n и р.

Рассчитаем, например, пользуясь биномиальным законом, вероятность того, что в августе на станции будет наблюдаться три дня с туманом, если вероятность образования тумана в любой день августа (т. е. отношение среднего числа дней с туманом в августе к общему числу дней за месяц) составляет 0,16.

Так как n= 31, а 1 - р = 0,84, по формуле (5.1) получим

p(3)=0.1334≈0.13

Пределом биномиального распределения при условии, что рассматриваются маловероятные события в длинной серии независимых испытаний (наблюдений), является распределение Пуассона.

Случайная величина, распределенная по закону Пуассона, может принимать ряд значений, образующих бесконечную последовательность целых чисел 0, 1, 2, ∞ с вероятностью

где λ. -параметр, являющийся математическим ожиданием распределения.

Закон определяет вероятность того, что случайная величина будет наблюдаться х раз, если среднее ее значение (математическое ожидание) равно λ.

Обратим внимание на то, что параметром биномиального закона служит вероятность события р, и поэтому надо указать, из какого общего количества случаев n определяется вероятность р(х). В законе Пуассона параметром является среднее число случаев λ за рассматриваемый период, поэтому продолжительность периода непосредственно не входит в формулу.

Дисперсия распределения Пуассона и третий центральный момент равны математическому ожиданию, т. е. тоже равны λ.

При больших различиях между средним и дисперсией законом Пуассона пользоваться нельзя. Распределение Пуассона затабулировано и приводится во всех сборниках статистических таблиц, справочниках и учебниках по статистике. На рис. 5.2 приведено распределение числа дней с грозой (редкое событие) по закону Пуассона. Для Архангельска за год λ,= 11 дней и за июль λ = 4 дня. Как видно из рис. 5.2, в Архангельске вероятность восьми дней с грозой в июле составляет примерно 0,03, а вероятность восьми дней в году -около 0,10. Обратим внимание на одно обстоятельство. Часто среднее число дней с явлением в году λ при λ≤1 трактуют как величину, обратную периоду повторения T (например, λ= 0,3 - один день в три года, λ = 1-практически ежегодно).

Такой «осредненный» подход чреват ошибками, тем большим, чем больше λ. Даже если дни с явлением не связаны между собой, вероятны годы не с одним, а с несколькими днями. В результат соотношение Т = 1/λ оказывается неправильным. Так, при λ= 1 явление, как легко убедиться из формулы закона Пуассона, наблюдается не ежегодно, а только в 6-7 годах из 10. Вероятность того, что в году явление наблюдаться не будет, равна вероятности, что будет один день с явлением (0,37) и почти такая же, как вероятность, что будет два и более дней. Только при λ≤ 0,2 указанным соотношением можно пользоваться с достаточным основанием; потому что вероятность двух и более дней в году в этом случае менее 0,02 (реже, чем один раз в 50 лет).

Применение закона Пуассона к редким метеорологическим явлениям не всегда оказывается полезным. Например, иногда редкие явления могут следовать одно за другим вследствие того, что условия, их вызывающие, сохраняются длительное время, и условия закона Пуассона не выполняются.

Больше соответствует природе редких метеорологических явлений сложное распределение Пуассона (отрицательное биномиальное распределение). Оно возникает, когда ряд явлений можно рассматривать как значения разных случайных величин (выборки из разных генеральных совокупностей). Все эти величины имеют распределение Пуассона, но с разными параметрами λ 1 , λ 2 ..., λ k .

Сложное распределение Пуассона зависит с одной стороны от распределения совокупности параметров, а с другой - от распределения каждой из величин. Выражение для вероятности в случае данного распределения имеет вид

(5.2)

или в более удобной для расчетов форме

Математическое ожидание М и дисперсия D этого распределения связаны с его параметрами γ и λ формулами

(5.3)

Заменяя величины М и D их оценками и , получим

(5.4)

Расчеты p(x) можно упростить, пользуясь тем, что существует равенство

, (5.5)

. (5.6)

Следовательно,

Пример расчета . Рассчитаем распределение числа дней с сильным ветром на ст. Чулым для июля, если =1 день, σ=1,7 дня. Определим α и γ:

α≈

γ≈

Вероятность того, что не будет ни одного дня с сильным ветром, составит

p(0)=

Вероятность того, что будет один день с сильным ветром, равна p(1)= . График сложного распределения Пуассона представлен на рис. 5.3.

Для непрерывных случайных величин в климатологии чаще всего используются нормальное, логнормальное распределения, распределение Шарлье, гамма-распределение, распределения Вейбулла и Гумбеля, а также композиционный закон нормальной и равномерной плотности.

Наибольшее теоретическое и практическое значение имеет нормальный, или гауссовский, закон распределения. Этот закон является предельным для многих других теоретических распределений и образуется тогда, когда каждое значение случайной величины можно рассматривать как сумму достаточно большого числа независимых случайных величин.

Нормальный закон задается выражениями для плотности и функции распределения вида