Болезни Военный билет Призыв

Схема независимых испытаний формула бернулли. Схема Бернулли. Примеры решения задач. Обобщенная схема Бернулли

Поэтому ваше ближайшее времяпровождение будет крайне полезным. Кроме того, я расскажу, в чём заблуждается подавляющее большинство участников лотерей и азартных игр. …Нееет, вера или слабая надежда «сорвать куш» тут совершенно не при чём;-) Не успев и глазом моргнуть, погружаемся в тему:

Что такое независимые испытания ? Практически всё понятно уже из самого названия. Пусть производится несколько испытаний. Если вероятность появления некоего события в каждом из них не зависит от исходов остальных испытаний, то… заканчиваем фразу хором =) Молодцы. При этом под словосочетанием «независимые испытания» часто подразумевают повторные независимые испытания – когда они осуществляются друг за другом.

Простейшие примеры:
– монета подбрасывается 10 раз;
– игральная кость подбрасывается 20 раз.

Совершенно ясно, что вероятность выпадения орла либо решки в любом испытании не зависит от результатов других бросков. Аналогичное утверждение, естественно, справедливо и для кубика.

А вот последовательное извлечение карт из колоды не является серией независимых испытаний – как вы помните, это цепочка зависимых событий . Однако если карту каждый раз возвращать обратно, то ситуация станет «такой, какой надо».

Спешу обрадовать – у нас в гостях очередной Терминатор, который абсолютно равнодушен к своим удачам/неудачам, и поэтому его стрельба представляет собой образец стабильности =):

Задача 1

Стрелок совершает 4 выстрела по мишени. Вероятность попадания при каждом выстреле постоянна и равна . Найти вероятность того, что:

а) стрелок попадёт только один раз;
б) стрелок попадёт 2 раза.

Решение : условие сформулировано в общем виде и вероятность попадания в мишень при каждом выстреле считается известной . Она равна (если совсем тяжко, присвойте параметру какое-нибудь конкретное значение, например, ) .

Коль скоро, мы знаем , то легко найти вероятность промаха в каждом выстреле:
, то есть, «ку» – это тоже известная нам величина .

а) Рассмотрим событие «Стрелок попадёт только один раз» и обозначим его вероятность через (индексы понимаются как «одно попадание из четырёх») . Данное событие состоит в 4 несовместных исходах: стрелок попадёт в 1-й или во 2-й или в 3-й или в 4-й попытке.

Найти вероятность того, что при броске 10 монет орёл выпадет на 3 монетах.

Здесь испытания не повторяются, а скорее, производятся одновременно, но, тем не менее, работает та же самая формула: .

Решение будет отличаться смыслом и некоторыми комментариями, в частности:
способами можно выбрать 3 монеты, на которых выпадет орёл.
– вероятность выпадения орла на каждой из 10 монет
и т.д.

Однако на практике подобные задачи встречаются не столь часто, и, видимо, по этой причине формула Бернулли чуть ли не стереотипно ассоциируется только с повторными испытаниями. Хотя, как только что было показано, повторяемость вовсе не обязательна.

Следующая задача для самостоятельного решения:

Задача 3

Игральную кость бросают 6 раз. Найти вероятность того, что 5 очков:

а) не выпадут (выпадут 0 раз) ;
б) выпадут 2 раза;
в) выпадут 5 раз.

Результаты округлить до 4 знаков после запятой.

Краткое решение и ответ в конце урока.

Очевидно, что в рассматриваемых примерах некоторые события более вероятны, а некоторые – менее вероятны. Так, например, при 6 бросках кубика даже безо всяких расчётов интуитивно понятно, что вероятности событий пунктов «а» и «бэ» значительно больше вероятности того, что «пятёрка» выпадет 5 раз. А теперь поставим задачу найти

НАИВЕРОЯТНЕЙШЕЕ число появлений события в независимых испытаниях

Опять же на уровне интуиции в Задаче №3 можно сделать вывод о том, что наивероятнейшее количество появлений «пятёрки» равно единице – ведь всего граней шесть, и при 6 бросках кубика каждая из них должна выпасть в среднем по одному разу. Желающие могут вычислить вероятность и посмотреть, будет ли она больше «конкурирующих» значений и .

Сформулируем строгий критерий : для отыскания наивероятнейшего числа появлений случайного события в независимых испытаниях (с вероятностью в каждом испытании) руководствуются следующим двойным неравенством:

, причём:

1) если значение – дробное, то существует единственное наивероятнейшее число ;
в частности, если – целое, то оно и есть наивероятнейшее число: ;

2) если же – целое, то существуют два наивероятнейших числа: и .

Наивероятнейшее число появлений «пятёрки» при 6 бросках кубика подпадает под частный случай первого пункта:

В целях закрепления материала решим пару задач:

Задача 4

Вероятность того, что при броске мяча баскетболист попадёт в корзину, равна 0,3. Найти наивероятнейшее число попаданий при 8 бросках и соответствующую вероятность.

А это уже если и не Терминатор, то, как минимум, хладнокровный спортсмен =)

Решение : для оценки наивероятнейшего числа попаданий используем двойное неравенство . В данном случае:

– всего бросков;
– вероятность попадания в корзину при каждом броске;
– вероятность промаха при каждом броске.

Таким образом, наивероятнейшее количество попаданий при 8 бросках находится в следующих пределах:

Поскольку левая граница – дробное число (пункт №1) , то существует единственное наивероятнейшее значение, и, очевидно, что оно равно .

Используя формулу Бернулли , вычислим вероятность того, что при 8 бросках будет ровно 2 попадания:

Ответ : – наивероятнейшее количество попаданий при 8 бросках,
– соответствующая вероятность.

Аналогичное задание для самостоятельного решения:

Задача 5

Монета подбрасывается 9 раз. Найти вероятность наивероятнейшего числа появлений орла

Примерный образец решения и ответ в конце урока.

После увлекательного отступления рассмотрим ещё несколько задач, а затем я поделюсь секретом правильной игры в азартные игры и лотереи.

Задача 6

Среди изделий, произведенных на станке-автомате, в среднем бывает 60% изделий первого сорта. Какова вероятность того, что среди 6 наудачу отобранных изделий будет:

а) от 2 до 4 изделий первого сорта;
б) не менее 5 изделий первого сорта;
в) хотя бы одно изделие более низкого сорта.

Вероятность производства первосортного изделия не зависит от качества других выпущенных изделий, поэтому здесь идёт речь о независимых испытаниях. Старайтесь не пренебрегать анализом условия, а то может статься – события-то зависимые или задача вообще о другом.

Решение : вероятность зашифрована под проценты, которые, напоминаю, нужно разделить на сто: – вероятность того, что выбранное изделие будет 1-го сорта.
Тогда: – вероятность того, что оно не будет первосортным.

а) Событие «Среди 6 наудачу отобранных изделий будет от 2 до 4 изделий первого сорта» состоит в трёх несовместных исходах:

среди изделий будет 2 первосортных или 3 первосортных или 4 первосортных.

С исходами удобнее разделаться по отдельности. Трижды используем формулу Бернулли :

– вероятность того, что в течение дня безотказно будут работать, как минимум, 5 компьютеров из шести.

Данное значение нас тоже не устроит, так как оно меньше требуемой надёжности работы вычислительного центра:

Таким образом, шести компьютеров тоже не достаточно. Добавляем ещё один:

3) Пусть в вычислительном центре компьютеров. Тогда безотказно должны работать 5, 6 или 7 компьютеров. Используя формулу Бернулли и теорему сложения вероятностей несовместных событий , найдём вероятность того, что в течение дня безотказно будут работать, как минимум, 5 компьютеров из семи.

Предположим, что имеется n независимых испытаний с двумя исходами в каждом испытании. Один из исходов будем называть успехом и кодировать цифрой 1, другой исход будем называть неудачей и кодировать цифрой 0. Предполагаем, что вероятность успеха в каждом испытании одна и та же и равна числу p , следовательно, вероятность неудачи равна . Эта схема, очевидно, является обобщением схемы независимого бросания монеты.

Пусть вероятность того, что общее число успехов равно m. Тогда основная формула схемы Бернулли имеет вид .

Когда числа n и m становятся большими, вычисления по этой формуле становятся затруднительны. Поэтому используются три предельные теоремы: теорема Пуассона, локальная теорема Муавра–Лапласа и интегральная теорема Муавра–Лапласа. Приведем их формулировки.

Теорема Пуассона . (Формулировка приводится в упрощенном виде.) Пусть имеется n независимых испытаний. – вероятность успеха в одном испытании, – вероятность неудачи. Пусть . Тогда для любого фиксированного m справедливо соотношение

при

Комментарий. На практике эта теорема применяется при Это означает, что p должно быть очень малым числом, а n большим.

Локальная теорема Муавра-Лапласа . Пусть имеется n независимых испытаний Бернулли с вероятностью успеха p () в одном испытании и – вероятностью неудачи. Величина не зависит от n . Предположим, что для некоторой постоянной выполнено условие , где Тогда при

.

Комментарий. Эта теорема применяется, когда p отделено от нуля и единицы.

Интегральная теорема Муавра-Лапласа . Пусть имеется n независимых испытаний с вероятностью успеха p () в одном испытании и вероятностью неудачи. Величина не зависит от n . Тогда для любых вещественных чисел при

.

Комментарий. Здесь – функция распределения стандартного нормального закона, значения которой затабулированы в таблицах, приведенных в большинстве задачников по теории вероятностей и математической статистике.

Приведем задачи на применение схемы Бернулли и соответствующих предельных теорем.

Задача 30. Случайное блуждание по прямой.Частица движется по целым точкам вещественной прямой, перемещаясь каждую секунду либо на единицу вправо, либо на единицу влево с равными вероятностями. Найти вероятность того, что через n секунд частица вернется в точку 0.

Решение. Очевидно, вернуться в 0 частица может только за четное число секунд. Поэтому считаем, что . Считая успехом движение частицы вправо, заметим, что для возвращения за n секунд должно быть ровно k успехов. Поэтому из формулы Бернулли следует, что вероятность возвращения равна .

Задача 31. Имеется 5 студенческих групп по 25 человек, в каждой из которых по 5 отличников. Из каждой группы выбирается случайным образом по одному студенту. Найти вероятность того, что среди выбранных студентов будет 3 отличника.

Решение. Вероятностьвыбрать отличника в одной группе равна . Выбор отличника будем считать успехом. Тогда число успехов среди испытаний должно равняться . Таким образом, по основной формуле схемы Бернулли искомая вероятность равна .

Задача 32. (Задача Банаха) У рассеянного курильщика в правом и левом карманах пиджака находится по коробку спичек. В каждом коробке по n спичек. Каждый раз, когда ему требуется закурить, курильщик вынимает новую спичку либо из левого, либо из правого кармана с вероятностью 1/2. Найти вероятность того, что в тот момент, когда окажется пустым один из коробков, во втором коробке останется k спичек.

Решение. Пусть A – это событие, сформулированное в вопросе задачи. Будем считать испытанием Бернулли вытаскивание спичек, причем вытаскивание спички из правого кармана будем считать успехом, а из левого – неудачей. Очевидно, вероятность успеха равна 1/2. Поскольку к моменту окончания «эксперимента» из одного коробка вытащили n спичек, а из другого – спичек, то общее число испытаний Бернулли можно считать равным , причем событие A реализуется, если число успехов равно n или k . Поэтому . Здесь использовано свойство биномиальных коэффициентов, согласно которому слагаемые в скобках равны между собой.

Задача 33. Монета бросается 100 раз. Найти приближенно вероятность того, что герб выпадет 40 раз. (Воспользоваться таблицей.)

,

где Таким образом, используя таблицы для плотности нормального распределения, получим .

Задача 34. Город ежедневно посещают 1000 туристов, которые днем идут обедать. Каждый из них выбирает для обеда один из двух городских ресторанов с равными вероятностями и независимо друг от друга. Владелец одного из ресторанов желает, чтобы с вероятностью близкой к 0,99, все пришедшие в ресторан туристы смогли бы там одновременно пообедать. Сколько мест должно быть для этого в ресторане?

Решение. Обозначим через событие, состоящее в том, что i-й турист пообедал у заинтересованного владельца ресторана i= 1, 2,…, 1000. Наступление события будем называть успехом в i- м испытании. Вероятность успеха . Пусть m – общее число успехов, событие A состоит в переполнении ресторана, k – общее число мест в ресторане. Тогда нам надо подобрать k таким образом, чтобы выполнялось приближенное равенство

времени используют электрическую энергию. Чтобы получить грубое представление об ожидаемой нагрузке представим себе, что в любой момент времени каждому рабочему с одной и той же вероятностью p может потребоваться единица энергии. Если они работают независимо, то вероятность того, что энергия потребуется одновременноk рабочим, будет равнаb (k ;n ,p ). Здесь «испытанием» является проверка факта использования энергии в данный момент j -м рабочим (j = 1,2,...,n ), а «успехом» является положительный результат проверки. Так, если один рабочий потребляет энергию в среднем 12 минут в течение часа40 , следует положитьp = 1260= 0,2. В этом случае вероятность того, что не менее 7 из 10 рабочих

Другими словами, если снабжение рассчитано на 6 единиц энергии, то вероятность перегрузки равна 0.000864. Это означает, что одна перегрузка приходится в среднем на 10.000864≈ 1157 минут, т.е. примерно на 12 часов рабочего времени. Поэтому, если перегрузки наблюдаются чаще, то это должно явиться сигналом для усиленного контроля над производственным циклом.

Следующий пример имеет несколько иной характер. При бросании двух правильных игральных костей, вероятность появления 12 очков равна,

очевидно, 1 6 2 ≈ 0,0278 , т.е. в среднем одно появление за 36 бросаний. Если в

казино за игорным столом в процессе игры эта пропорция существенно нарушается, то это означает либо тот факт, что кости дефектны, и их надо заменить, либо что игра идет нечестно. В любом случае, возникает основание для более тщательного наблюдения за игрой на данном игорном столе.

6.2. Обобщенная схема Бернулли

Предположим, как и выше, что проводится серия из n независимых

40 Эта величина может определяться, например, производственным циклом или технологией производства.

между собой испытаний. Однако в отличие от предыдущего, мы предположим, что результатом каждого испытания может быть одно и только одно из k попарно несовместимых событийA 1 ,A 2 , ...,A k , причем вероятности появления каждого из этих событий в каждом отдельном испытании постоянны и равны соответственно

p 1 ,p 2 , ...,p k ;p j > 0;p 1 + p 2 + ...+ p k = 1.

Найдем вероятность того, что в результате n испытаний событиеA 1 появится

m 1 +m 2 +... +m k =n .

Прежде всего, отметим, что рассужденияпредыдущего пункта приводят нас к выводу о том, что вероятность каждой допустимой комбинации будет

pm 1

pm 2

P m k . С другой стороны, число допустимых комбинаций равно

способов, которыми можно n элементов разбить

k групп

m 1 ,m 2 ,...,m k

элементов соответственно. Это число, согласно

теореме 5.5,

m ! m!... m!

образом, искомая вероятность того, что

результате

независимых испытаний событие A 1 появится ровноm 1 раз, событиеA 2 – ровноm 2 раза и т.д., событиеA k появится ровноm k раз, будет равна

Pn (m1 , m2

p j> 0;

m j≥ 0;

M )=

pm 1

pm 2

P m k ;

m ! m!... m!

p 1 +p 2 +... +p k

m 1 +m 2 +... +m k =n .

p 1 = 0,4,p 2 = 0,35,p 3 = 0,25 . Какова вероятность того, что в матче из 12 партий у данного шахматиста будет 5 побед, 4 поражения и 3 ничьи?

Решение. Мы в точности находимся в ситуации обобщенной схемы Бернулли с n = 12. Подставляя значения из данных задачи в формулу (6.2),

получим: P 12 (5, 4, 3)= 5!4!3! 12! (0.4)5 (0.35)4 (0.25)3 ≈ 0.067 .

6.3. Некоторые следствия

Возвратимся к классической схеме Бернулли разд. 6.1 и поставим следующую задачу. Пусть целые числа a ,b таковы, что 0≤ a < b ≤ n . Чему равна вероятность того, что в результатеn независимых испытаний Бернулли число «успехов» будет заключено между числамиa иb ? Ответ на этот вопрос дается легко, поскольку допустимые комбинации для различных чисел «успехов» несовместимы. Соответствующая вероятность, очевидно, равна

P n (a , b ) = ∑ C n kp kq n− k=

C n ap aq n− a+ C n a+ 1 p a+ 1 q n− a− 1 + C n a+ 2 p a+ 2 q n− a− 2 + ... + C n bp bq n− b.

Замечание . Для обозначения вероятности числа успехов вn испытаниях Бернулли используются различные обозначения, в зависимости от контекста рассматриваемых задач. Так, черезP n (k < m ) часто обозначается вероятность того,чтоврезультатеn испытанийчислоk успеховбудетменьше ,чемm ;черезP n (m 1 ≤ k < m 2 ) обозначается вероятность того, в результатеn испытаний числоk успехов будетбольше либо равно m 1 , номеньше m 2 ; вместо обозначенияP n (a ,b ) может использоваться обозначениеP n (a ≤ k ≤ b ) и т.п. Как правило, проблем с однозначным пониманием смысла подобных обозначений в контексте той или иной конкретной задачи не возникает.

Наиболее вероятное число успехов. Вычислим теперь значение числа m= m0 , при котором функция b(m; n, p) достигает своего наибольшего значения. В этом случае число m0 называют наиболее вероятным числом

успехов (в n испытаниях).

Напомним, что функция b (m ;n ,p ) определяется как вероятностьm «успехов» вn испытаниях Бернулли с вероятность «успеха»p , и вычисляется

по формуле (6.1).

Рассмотрим величину

b (m ;n ,p )

(n− m+ 1) p

(n+ 1) p− m

b (m − 1;n ,p )

где учтено, что q = 1− p . Отсюда видно, что функцияb (m ;n ,p ) возрастает поm приm < (n + 1)p и убывает приm > (n + 1)p . Имея в виду, чтоm 0 должно быть неотрицательным целым числом, получаем, что наиболее вероятное число «успехов»m 0 есть (единственное) неотрицательное целое число, удовлетворяющее неравенству

(n + 1)p − 1< m 0 ≤ (n + 1)p .

Рассмотрим теперь несколько примеров .

1. Задача де Мере . Сколько раз нужно бросить пару игральных костей, чтобысвероятностьюболее½ ожидатьсуммуочков,равную12,хотябыодин раз?

Решение. Вероятность p «успеха», т. е. выпадения 12 очков, при каждом бросании одинакова и равнаp = 1 36 . Пустьn – искомое число бросаний,k – число «успехов». ТогдаP n (k ≥ 1)= 1− P n (k = 0) . Но

P n (k = 0)= C n 0 p 0 (1− p )n = (35 36 ) n ≈ (0.972)n .

Таким образом, требуемое значение n находится из неравенства

(0.972)n ≤ 0.5 .

Решая это неравенство, получаем: n ≥ 25.

2. Трое стрелков при стрельбе по мишени попадают в нее при одном выстреле с вероятностями 0.2, 0.3 и 0.4 соответственно. Кому из троих стрелять по мишени, определяют с помощью шести подбрасываний монеты,

причем если гербов выпадет больше, чем решек, то стреляет первый стрелок, если гербов выпадет меньше, чем решек, то стреляет второй стрелок, в противном случае – третий стрелок. Стреляющий производит 3 выстрела. Определить вероятность того, что две пули попадут в цель.

Решение. Пусть А – событие, состоящее в том, что в мишень попадут две пули. Обозначим черезB 1 ,B 2 ,B 3 – события, состоящие в том, что стреляет первый, второй и третий стрелок соответственно. Так как событияB 1 ,B 2 ,B 3 образуют полную группу событий, то по формуле полной вероятности (2.6) имеем:

P (A )= P (A /B 1 )P (B 1 )+ P (A /B 2 )P (B 2 )+ P (A /B 3 )P (B 3 ) .

Вычислим по отдельности вероятности, входящие в формулу (6.5). Начнем с вероятностей P (B j ) . Поскольку предоставление права стрельбы тому или иному стрелку зависит от результатов последовательности независимых испытаний – шести подбрасываний монеты, то соответствующие вероятности должны вычисляться в соответствии со схемой Бернулли. Именно, пусть «успех» – это выпадение герба; тогда в соответствии с условиями задачи:

P (B 1 )= P 6 (k ≥ 4)= C 6 4 (0.5)6 + C 6 5 (0.5)6 + C 6 6 (0.5)6 = 11 32 ;P (B 2 )= P 6 (k ≤ 2)= C 6 0 (0.5)6 + C 6 1 (0.5)6 + C 6 2 (0.5)6 = 11 32 ;P (B 3 )= P 6 (k = 3)= C 6 3 (0.5)6 = 5 16 .

P (A /B )= b (2; 3, 0,2)

(0,2)2 0,8= 0,096;

P (A /B )= b (2; 3, 0,3)

(0,3)2 0,7= 0,189 ;

P (A /B )= b (2; 3, 0,4)= C 2

(0,4)2 0,6= 0,288.

По формуле полной вероятности (6.5) получаем окончательно

P (A )= 0,188 .

3. Каждый из n = 50

приглашенных приходит на собрание с

Производится n опытов по схеме Бернулли с вероятностью успеха p . Пусть X - число успехов. Случайная величина X имеет область значений {0,1,2,...,n}. Вероятности этих значений можно найти по формуле: , где C m n - число сочетаний из n по m .
Ряд распределения имеет вид:

x 0 1 ... m n
p (1-p) n np(1-p) n-1 ... C m n p m (1-p) n-m p n
Этот закон распределения называется биноминальным .

Назначение сервиса . Онлайн-калькулятор используется для построения биноминальным ряда распределения и вычисления всех характеристик ряда: математического ожидания, дисперсии и среднеквадратического отклонения. Отчет с решением оформляется в формате Word (пример).

Число испытаний: n = , Вероятность p =
При малой вероятности p и большом количестве n (np формула Пуассона.

Видеоинструкция

Схема испытаний Бернулли

Числовые характеристики случайной величины, распределенной по биноминальному закону

Математическое ожидание случайной величины Х, распределенной по биноминальному закону.
M[X]=np

Дисперсия случайной величины Х, распределенной по биноминальному закону.
D[X]=npq

Пример №1 . Изделие может оказаться дефектным с вероятностью р = 0.3 каждое. Из партии выбирают три изделия. Х – число дефектных деталей среди отобранных. Найти (все ответы вводить в виде десятичных дробей): а) ряд распределения Х; б) функцию распределения F(x) .
Решение . Случайная величина X имеет область значений {0,1,2,3}.
Найдем ряд распределения X.
P 3 (0) = (1-p) n = (1-0.3) 3 = 0.34
P 3 (1) = np(1-p) n-1 = 3(1-0.3) 3-1 = 0.44

P 3 (3) = p n = 0.3 3 = 0.027

x i 0 1 2 3
p i 0.34 0.44 0.19 0.027

Математическое ожидание находим по формуле M[X]= np = 3*0.3 = 0.9
Проверка: m = ∑x i p i .
Математическое ожидание M[X] .
M[x] = 0*0.34 + 1*0.44 + 2*0.19 + 3*0.027 = 0.9
Дисперсию находим по формуле D[X]=npq = 3*0.3*(1-0.3) = 0.63
Проверка: d = ∑x 2 i p i - M[x] 2 .
Дисперсия D[X] .
D[X] = 0 2 *0.34 + 1 2 *0.44 + 2 2 *0.19 + 3 2 *0.027 - 0.9 2 = 0.63
Среднее квадратическое отклонение σ(x) .

Функция распределения F(X) .
F(xF(0F(1F(2F(x>3) = 1
  1. Вероятность появления события в одном испытании равна 0.6 . Производится 5 испытаний. Составить закон распределения случайной величины Х – числа появлений события.
  2. Составить закон распределения случайной величины Х числа попаданий при четырех выстрелах, если вероятность попадания в цель при одном выстреле равна 0.8 .
  3. Монету подбрасывают 7 раз. Найти математическое ожидание и дисперсию числа появлений герба. Примечание: здесь вероятность появление герба равна p = 1/2 (т.к. у монеты две стороны).

Пример №2 . Вероятность появления события в отдельном испытании равна 0.6 . Применяя теорему Бернулли, определите число независимых испытаний, начиная с которого вероятность отклонения частоты события от его вероятности по абсолютной величине меньше 0.1 , больше 0.97 . (Ответ: 801)

Пример №3 . Студенты выполняют контрольную работу в классе информатики. Работа состоит из трех задач. Для получения хорошей оценки нужно найти правильные ответы не меньше чем на две задачи. К каждой задаче дается 5 ответов из которых только одна правильная. Студент выбирает ответ наугад. Какая вероятность того, что он получит хорошую оценку?
Решение . Вероятность правильно ответить на вопрос: p=1/5=0.2; n=3.
Эти данные необходимо ввести в калькулятор. В ответ см. для P(2)+P(3).

Пример №4 . Вероятность попадания стрелка в мишень при одном выстреле равна (m+n)/(m+n+2) . Производится n+4 выстрела. Найти вероятность того, что он промахнется не более двух раз.

Примечание . Вероятность того, что он промахнется не более двух раз включает в себя следующие события: ни разу не промахнется P(4), промахнется один раз P(3), промахнется два раза P(2).

Пример №5 . Определите распределение вероятностей числа отказавших самолётов, если влетает 4 машины. Вероятность безотказной работы самолета Р=0.99 . Число отказавших в каждом вылете самолётов распределено по биноминальному закону.

Не будем долго размышлять о высоком — начнем сразу с определения.

Схема Бернулли — это когда производится n однотипных независимых опытов, в каждом из которых может появиться интересующее нас событие A , причем известна вероятность этого события P (A ) = p. Требуется определить вероятность того, что при проведении n испытаний событие A появится ровно k раз.

Задачи, которые решаются по схеме Бернулли, чрезвычайно разнообразны: от простеньких (типа «найдите вероятность, что стрелок попадет 1 раз из 10») до весьма суровых (например, задачи на проценты или игральные карты). В реальности эта схема часто применяется для решения задач, связанных с контролем качества продукции и надежности различных механизмов, все характеристики которых должны быть известны до начала работы.

Вернемся к определению. Поскольку речь идет о независимых испытаниях, и в каждом опыте вероятность события A одинакова, возможны лишь два исхода:

  1. A — появление события A с вероятностью p;
  2. «не А» — событие А не появилось, что происходит с вероятностью q = 1 − p.

Важнейшее условие, без которого схема Бернулли теряет смысл — это постоянство. Сколько бы опытов мы ни проводили, нас интересует одно и то же событие A , которое возникает с одной и той же вероятностью p.

Между прочим, далеко не все задачи в теории вероятностей сводятся к постоянным условиям. Об этом вам расскажет любой грамотный репетитор по высшей математике. Даже такое нехитрое дело, как вынимание разноцветных шаров из ящика, не является опытом с постоянными условиями. Вынули очередной шар — соотношение цветов в ящике изменилось. Следовательно, изменились и вероятности.

Если же условия постоянны, можно точно определить вероятность того, что событие A произойдет ровно k раз из n возможных. Сформулируем этот факт в виде теоремы:

Теорема Бернулли. Пусть вероятность появления события A в каждом опыте постоянна и равна р. Тогда вероятность того, что в n независимых испытаниях событие A появится ровно k раз, рассчитывается по формуле:

где C n k — число сочетаний, q = 1 − p.

Эта формула так и называется: формула Бернулли. Интересно заметить, что задачи, приведенные ниже, вполне решаются без использования этой формулы. Например, можно применить формулы сложения вероятностей. Однако объем вычислений будет просто нереальным.

Задача. Вероятность выпуска бракованного изделия на станке равна 0,2. Определить вероятность того, что в партии из десяти выпущенных на данном станке деталей ровно k будут без брака. Решить задачу для k = 0, 1, 10.

По условию, нас интересует событие A выпуска изделий без брака, которое случается каждый раз с вероятностью p = 1 − 0,2 = 0,8. Нужно определить вероятность того, что это событие произойдет k раз. Событию A противопоставляется событие «не A », т.е. выпуск бракованного изделия.

Таким образом, имеем: n = 10; p = 0,8; q = 0,2.

Итак, находим вероятность того, что в партии все детали бракованные (k = 0), что только одна деталь без брака (k = 1), и что бракованных деталей нет вообще (k = 10):

Задача. Монету бросают 6 раз. Выпадение герба и решки равновероятно. Найти вероятность того, что:

  1. герб выпадет три раза;
  2. герб выпадет один раз;
  3. герб выпадет не менее двух раз.

Итак, нас интересует событие A , когда выпадает герб. Вероятность этого события равна p = 0,5. Событию A противопоставляется событие «не A », когда выпадает решка, что случается с вероятностью q = 1 − 0,5 = 0,5. Нужно определить вероятность того, что герб выпадет k раз.

Таким образом, имеем: n = 6; p = 0,5; q = 0,5.

Определим вероятность того, что герб выпал три раза, т.е. k = 3:

Теперь определим вероятность того, что герб выпал только один раз, т.е. k = 1:

Осталось определить, с какой вероятностью герб выпадет не менее двух раз. Основная загвоздка — во фразе «не менее». Получается, что нас устроит любое k , кроме 0 и 1, т.е. надо найти значение суммы X = P 6 (2) + P 6 (3) + ... + P 6 (6).

Заметим, что эта сумма также равна (1 − P 6 (0) − P 6 (1)), т.е. достаточно из всех возможных вариантов «вырезать» те, когда герб выпал 1 раз (k = 1) или не выпал вообще (k = 0). Поскольку P 6 (1) нам уже известно, осталось найти P 6 (0):

Задача. Вероятность того, что телевизор имеет скрытые дефекты, равна 0,2. На склад поступило 20 телевизоров. Какое событие вероятнее: что в этой партии имеется два телевизора со скрытыми дефектами или три?

Интересующее событие A — наличие скрытого дефекта. Всего телевизоров n = 20, вероятность скрытого дефекта p = 0,2. Соответственно, вероятность получить телевизор без скрытого дефекта равна q = 1 − 0,2 = 0,8.

Получаем стартовые условия для схемы Бернулли: n = 20; p = 0,2; q = 0,8.

Найдем вероятность получить два «дефектных» телевизора (k = 2) и три (k = 3):

\[\begin{array}{l}{P_{20}}\left(2 \right) = C_{20}^2{p^2}{q^{18}} = \frac{{20!}}{{2!18!}} \cdot {0,2^2} \cdot {0,8^{18}} \approx 0,137\\{P_{20}}\left(3 \right) = C_{20}^3{p^3}{q^{17}} = \frac{{20!}}{{3!17!}} \cdot {0,2^3} \cdot {0,8^{17}} \approx 0,41\end{array}\]

Очевидно, P 20 (3) > P 20 (2), т.е. вероятность получить три телевизора со скрытыми дефектами больше вероятности получить только два таких телевизора. Причем, разница неслабая.

Небольшое замечание по поводу факториалов. Многие испытывают смутное ощущение дискомфорта, когда видят запись «0!» (читается «ноль факториал»). Так вот, 0! = 1 по определению.

P . S . А самая большая вероятность в последней задаче — это получить четыре телевизора со скрытыми дефектами. Подсчитайте сами — и убедитесь.