Болезни Военный билет Призыв

Свойства бериллия. Большой Адронный Коллайдер. В поисках названия — от Велура до Берилловой земли

Бериллий - это элемент второй группы 2-го периода таблицы Менделеева, имеющий атомный номер 4 и обозначающийся символом Ве. Он высокотоксичный и обладает множеством специфических свойств, которые обусловили его широкое применение во многих сферах. И сейчас будет рассказано как о характеристиках данного элемента, так и об его использовании.

Физические свойства

Выглядит данное вещество как светло-серый металл. Он относительно твердый, по оценен в 5,5 баллов. Это значит, что его можно повредить лишь с усилием, и только чем-то острым. Он является одним из самых твердых металлов, существующих в чистом виде. По данному показателю его опережает иридий, осмий, вольфрам и уран.

Можно выделить следующие физические характеристики:

  • Плотность - 1,848 г/см³.
  • Молярный объем - 5,0 см³/моль.
  • Температура плавления и кипения - 1278 °C и 2970 °C соответственно.
  • Молярная теплоемкость - 16,44 Дж/(K.моль).
  • Удельная теплота плавления и испарения - 12,21 и 309 кДж/моль соответственно.

Еще у этого металла высокий составляющий 300 Гпа. Даже у сталей этот показатель равен 200-210 Гпа. Находясь на воздухе, он активно покрывается стойкой пленкой атмосферного оксида ВеО. Также стоит отметить, что в бериллии очень высокая скорость звука. Она равна 12 600 м/с. А это в два-три раза выше, чем в остальных металлах.

Хрупкость

Несмотря на свою впечатляющую твердость, бериллий - это очень хрупкий металл. Скорее всего, данное качество связано с присутствием в нем кислорода. Но эта особенность легко устраняется. Бериллий отправляют в вакуум на переплавку. В данном процессе обязательно участвует раскислитель (титан, например). В результате получается прочный металл с достаточной ковкостью.

Также хрупкость бериллия - это особенность, связанная с распространением в монокристаллах трещин. Учитывая данный факт, повысить пластичность металла можно посредством обработки, уменьшающей размер зерен и препятствующей их росту. Это свойство бериллия всегда устраняется, поскольку из-за него он крайне плохо сваривается и паяется. Кстати, хрупкость может и повыситься - для этого достаточно добавить в металл немного селена (неметалл, халькоген).

Химические особенности

Данный металл по целому ряду своих свойств похож на алюминий - это прослеживается даже в уравнениях реакций бериллия, которые, кстати, весьма специфичны. При комнатной температуре металл имеет низкую реакционную способность, а в компактном виде не взаимодействует даже с водой и паром.

Воздухом он окисляется до температуры 600 °C. Когда данный показатель превышается, то становятся возможными реакции с галогенами. А вот для взаимодействия с халькогенами необходимы еще более высокие температуры. С аммиаком, например, бериллий может вступить в реакцию, только если будет более 1200 °C. Вследствие этого образуется нитрид Be 3 N 2 . Но зато порошок данного вещества горит впечатляющим ярким пламенем. И при этом образуется нитрид и оксид.

Be(OH)2

Это гидроксид бериллия. При нормальных условиях он выглядит как гелеобразное вещество белого цвета, которое почти не растворяется в воде. Но зато этот процесс успешно происходит, когда он попадает в разбавленную минеральную кислоту. Вот так, кстати, выглядит реакция серной кислоты и гидроксида бериллия по формуле: Ве(ОН) 2 + H 2 SO 4 → BeSO 4 + 2Н 2 О. В результате, как можно видеть, образуется соль и вода. С щелочами оксид тоже взаимодействует. Выглядит это так: Ве(ОН) 2 + 2NaOH → Na 2 Be(OH) 4 .

Еще интересная реакция происходит при температурном воздействии. Если увеличить показатель до 140 °C, то вещество разложится на оксид и воду: Ве(ОН) 2 → ВеО + Н 2 О. Кстати, получают гидроксид посредством обработки солей бериллия, которая происходит либо с участием щелочных металлов, либо в ходе гидролиза натрия. Также в данном процессе может участвовать фосфид металла.

BeSO4

Это сульфат бериллия. Это вещество представляет собой твердые кристаллы белого цвета. Его получают в результате взаимодействия серной кислоты и любой соли бериллия в воде. Сопровождается процесс выпариванием и последующей кристаллизацией получающегося в итоге продукта. Если нагреть гидрат до 400 °C, то получится разложить его на Н 2 О и безводную соль. У BeSO 4 было весьма специфичное применение. Его смешивали с сульфатом радия (неорганическое вещество щелочноземельного радиоактивного металла) и использовали в атомных реакторах в качестве источника нейтронов. На сегодняшний день его нередко применяют в таком виде альтернативной медицины, как гомеопатия.

Ве(NO3)2

Это нитрат бериллия. Он является средней солью этого металла и азотной кислоты. Данное соединение может существовать лишь как кристаллогидраты различного состава. Безводных нитратов просто не существует. Вследствие добавления концентрированной азотной кислоты удается выделить из водного раствора тетрагидрат бериллия. Формула выглядит так: Ве(NO 3) 2 .4Н 2 О. Интересно, что кристаллы данного вещества расплываются на воздухе. А в результате реакций, проводимых в растворе с 54-процентным содержанием азотной кислоты, может образовываться тригидрат. Также с участием данных веществ можно образовать дигидрат.

Нитрат данного металла раньше активно использовался в производстве колпачков так называемых газокалильных ламп. Он идеально для этого подходил, ведь мог термически разлагаться, образовывая оксид. Но потом повсеместно начало распространяться электрическое освещение, и данная технология канула в лету, как и применение нитрата. Он, к слову, является токсичным, как и любые другие бериллиевые соединения. Более того, даже в малых количествах данное вещество - раздражитель, провоцирующий острую пневмонию.

Получение металла

В промышленности бериллий - это активно используемый металл, который нужно производить в большом количестве. Поэтому используется самый оперативный метод. Заключается он в переработке берилла (минерала, кольцевого силиката) в сульфат или гидроксид данного элемента. Металлический бериллий производят посредством восстановления фторида BeF 2 при помощи магния. Осуществляется данный процесс при температурном режиме в 900-1300 °С или другим методом - электролизом хлорида BeCl 2 . В этой реакции участвует хлорид натрия (NaCl), а происходит все при температуре 350 °С.

Получаемое в итоге вещество отправляют на дистилляцию в вакуум. Результатом данного процесса становится металл высокой чистоты.

Металлопроизводство

В этой сфере активно применяется такой химический элемент, как бериллий. Он - эффективная легирующая добавка. Бериллий включают в состав сплавов для того, чтобы повысить их прочности и твердость. С присутствием данного металла они также обретают коррозионную устойчивость. Изделия, произведенные из сплавов с бериллием, очень долговечные и прочные. Какие, например? Яркий пример - пружинные контакты. Всего 0,5 % этого металла достаточно добавить в бронзу, из которой их делают. Пружины получаются крепкими и остаются упругими вплоть до температуры красного каления. Они, в отличие от изделий из любого другого сплава, выдерживают миллиарды циклов огромной нагрузки.

Аэрокосмические технологии

В производстве систем наведения и тепловых экранов ни один другой конструкционный металл не проявляет себя так, как бериллий. Ему в данной сфере нет равных. Этот металл добавляют в конструкционные материалы, чтобы они обрели легкость и при этом получили увеличенную стойкость к высоким температурам и прочность. Такие сплавы получаются в полтора раза легче алюминия и прочнее.

Еще в строении аэрокосмической техники используются бериллиды, являющиеся интерметаллическими соединениями данного вещества с другими металлами. Они очень твердые, имеют малую удельную плотность и поразительную устойчивость к температуре. Поэтому из бериллидов делают обшивки самолетов и ракет, используют их в производстве двигателей, систем наведения, тормозов. Даже сплавы титана по своим качествам проигрывают данным веществам. Кстати, немалому количеству бериллидов свойственны специфические ядерные характеристики. Именно поэтому их еще применяют в атомной энергетике (делают отражатели нейтронов, например).

Другие сферы применения

Помимо перечисленного, бериллий (точнее его алюминат) также используют в производстве твердотельных излучателей. Были выявлены и топлива, содержащие это вещество. Они являются менее токсичными и более дешевыми, чем все остальные. В частности, было обнаружено ракетное топливо с гидридом бериллия. Важно отметить, что уже упомянутый ранее оксид бериллия - самый теплопроводный из всех существующих. Поэтому его используют в качестве высокотемпературного изолятора и стойкого огнеупорного материала.

А еще бериллий является популярным веществом для изготовления электродинамических громкоговорителей. Ведь он твердый и легкий. Вот только из-за хрупкости, дорогостоящей обработки и токсичности динамики с этим металлом применяют лишь в профессиональных аудиосистемах. А некоторые производители, чтобы улучшить показатели своих продаж, заявляют об использовании этого металла в своей технике, даже если это не так.

Бериллий относят к группе металлов. И, несмотря на то, что в природе он довольно редкое явление, его часто используют в промышленности. Кто знает, возможно, без него не осуществилась бы давняя мечта человечества — полёт в космос, ведь этот серебристо-серый металл практически незаменим в строении ракет и в аэрокосмической отрасли.

В поисках названия — от Велура до Берилловой земли

Несложно догадаться, что свое наименование бериллий получил от минерала берилла. Но что известно о происхождении корня слова — «берилл»? Предполагается, что название минерала связано с торговым городом Велур на юге Индии, в окрестностях которого было найдено месторождение изумрудов — разновидностей берилла. Берилл означает «кристалл», «жемчуг», или «отбелить, становиться бледным».

В 1798 известный французский химик Луи Никола Воклен выявил в минерале берилле окись неизвестного ранее металла бериллия. Его работа была опубликована в научном журнале. Редактор издания решил дать элементу название «глицина» (с древнегреческого. «глюциний» означает сладкий), так как при растворении в воде его соединения принимали сладковатый вкус. Однако немецкому химику Мартину Клапроту и шведскому минералогу Андерсу Экебергу такое название хим.элемента пришлось не по душе, и приведя в аргумент то, что у солей иттрия также сладкий вкус и дали свое название элементу – «берриловая земля».

Тем не менее, примерно до середины 19 века бериллий все равно называли «глицинием» или «глюцинием». Стоит отметить, что в выявлении этого элемента оставлен и русский след. Русский горный инженер И. В. Авдеев в ходе своих исследований выявил точный состав соединений бериллия. Данные этого ученого пригодилось Дмитрию Менделееву при составлении знаменитой Периодической таблицы, в ней Менделеев отнес бериллий ко 2-ой группе элементов.

Еще один важный факт — Вокленом металл был выделен не в чистом виде, а лишь в виде оксида ВеО, а беспримесный бериллий получили лишь в 1828 году.

Насколько опасен бериллий для организма человека

Бериллий , в отличие от своего минерала бериллонита, для магов, литотерапевтов и астрологов не представляет никакого интереса. Все дело в ядовитых качествах элемента, из-за которых человеку попросту опасно работать с ним без использования специальных приборов.

Известно, что в организм человека с пищей и водой бериллий поступает в малых количествах, в основном он присутствует в томатах и листовом салате.

Преимущественно бериллий попадает в организм человека ингаляционно, через органы дыхания в виде дыма и пара. Поэтому люди, чья работа сопряжена с частым вдыханием пыли, содержащей бериллий, рискуют приобрести такое профессиональное заболевание как бериллиоз (саркоидоз легких). Печальная статистика гласит, что из 100 отравлений бериллием, 10 случаев заканчивались летальным исходом для человека. Первый случай со смертельным исходом был зафиксирован в 1930 году, тогда в воздухе на 1 кубический метр было всего 25 мг бериллия.

При чрезмерной насыщенности бериллия в пище может произойти процесс, вследствие чего разовьется неизлечимый бериллиевый рахит. От него страдают животные, чья область обитания попадает под провинции, богатые бериллием.

Агентство по охране окружающей среды США заявило, что преимущественно поступление элемента в среду обитания и деятельности человека происходит через сжигание каменного угля. Чаще всего он загрязняет почву, поступление его в воду невелико.

В ходе исследований, проведенных Международным агентством по изучению рака, и связанных с влиянием бериллия на здоровье человека, этот химический элемент причислен к потенциально канцерогенным веществам.

Где применяется бериллий

Наибольшие запасы бериллия находятся в США, преимущественно в Юте, кроме того залежи бериллия имеются в Бразилии и России. Бериллий используют для надобностей оборонной промышленности. К примеру, этот металл применяют в производстве реакторов для атомных подлодок, кораблей — в электронном, оптическом и спутниковом оборудовании.

Находят применение бериллию в атомной отрасли. Распространено использование этого металла в нефтедобывающей и газовой промышленностях, а также в изготовлении компьютеров. Может быть использован бериллий для изготовления медицинского оборудования, в частности для ренгтен-аппаратов.

Пик частого применения бериллия в производстве самолетов выпал на 40-ые, военные годы, так как во время Второй Мировой выросла необходимость в быстром и высококачественном изготовлении боевых воздушных кораблей.

Кроме того бериллий незаменим при изготовлении тормозов для аэрокосмического оборудования, тепловых экранов.

Материалы, созданные на основе бериллия, ценны множеством свойств: они и легки, и прочны, и стойки к высоким температурам.

БЕРИЛЛИЙ, Be (лат. Beryllium * а. berillium; н. Beryllium; ф. beryllium; и. berilio), — химический элемент II группы периодической системы Менделеева, атомный номер 4, атомная масса 9,0122. Имеет один стабильный изотоп 9 Ве. Открыт в 1798 французским химиком Л. Вокленом в виде оксида ВеО, выделенного из . Металлический бериллий независимо друг от друга получили в 1828 немецкий химик Ф. Вёлер и французский химик А. Бюсси.

Свойства бериллия

Бериллий — лёгкий светло-серый металл. Кристаллическая структура а-Be (269-1254°С) гексагональная; Я-Be (1254-1284°С) — объёмноцентрированная, кубическая. 1844 кг/м 3 , t плавления 1287°С, t кипения 2507°С. Обладает наиболее высокой из всех металлов теплоёмкостью 1,80 кДж/кг. К, высокой теплопроводностью 178 Вт/м. К при 50°С, низким удельным электрическим сопротивлением (3,6-4,5) . 10 Ом. м при 20°С; коэффициентом термического линейного расширения 10,3-13,1 . 10 -6 град -1 (25- 100°С). Бериллий — хрупкий металл; ударная 10-50 кДж/м 2 . Бериллий обладает малым поперечным сечением захвата тепловых нейтронов.

Химические свойства бериллия

Бериллий — типичный амфотерный элемент с высокой химической активностью; компактный бериллий устойчив на воздухе благодаря образованию плёнки ВеО; степень окисления берилля +2.

Соединения бериллия

При нагревании соединяется с , галогенами и другими неметаллами. С кислородом образует оксид ВеО, с азотом — нитрид Be 3 N 2 , с — карбид Ве 2 С, с — сульфид BeS. Растворим в щелочах (с образованием гидрооксобериллатов) и большинстве кислот. При высоких температурах бериллий взаимодействует с большинством металлов, образуя бериллиды. Расплавленный бериллий взаимодействует с оксидами, нитридами, сульфидами, карбидами. Из соединений бериллий наибольшее промышленное значение имеют ВеО, Ве(ОН) 2 , фторбериллаты, например Na 2 BeF 4 и др. Летучие соединения бериллий и пыль, содержащая бериллий и его соединения, токсичны.

Бериллий — редкий (кларк 6.10 -4 %), типично литофильный элемент, характерный для кислых и щелочных пород. Из 55 собственных минералов бериллий 50% принадлежит к силикатам и бериллийсиликатам, 24% — к фосфатам, 10% — к окислам, остальные — к , . Близость потенциалов ионизации определяет сродство бериллия и цинка в щелочной среде, так что они одновременно находятся в некоторых , а также входят в состав одного и того же минерала — . В нейтральных и кислых средах пути миграции бериллия и цинка резко расходятся. Некоторое рассеивание бериллия в горных породах определяется его химическим сходством с Al и Si. Особенно близки эти элементы в виде тетраэдрических группировок ВеО 4 6- , AlO 4 5- и SiO 4 4- . В гранитах проявляется большее сродство бериллия к , а в щелочных породах — к . Т. к. энергетически более выгодно замещение Аl 3+ IV на Ве 2+ IV, чем Si 4+ IV на Ве 2+ IV, то изоморфное рассеивание бериллия в щелочных породах, как правило, выше, чем в кислых. Геохимическая миграция бериллия связана с , с которым он образует весьма устойчивые комплексы BeF 4 2- , BeF 3 1- , BeF 2 0 , BeF 1+ . При повышении температуры и щёлочности эти комплексы легко гидролизуются до соединений Be(OH)F 0 , Be(OH) 2 F 1- , в виде которых бериллий мигрирует.

Об основных генетических типах месторождений бериллия и схемы обогащения см. в ст. Бериллиевые руды. В промышленности металлический бериллий получают термическим восстановлением BeF 2 магнием, бериллий высокой чистоты — переплавкой в вакууме и вакуумной дистилляцией.

Применение бериллия

Бериллий и его соединения применяют в технике (свыше 70% общего потребления металла) как легирующую добавку к сплавам на основе Cu, Ni, Zn, Al, Pb и других цветных металлов. В ядерной технике Be и ВеО используют в качестве отражателей и замедлителей нейтронов, а также в качестве источника нейтронов. Малая плотность, высокая прочность и жаростойкость, большой модуль упругости и хорошая теплопроводность позволяют применять бериллий и его сплавы как конструкционный материал в авиа-, ракетостроении и космической технике. Сплавы бериллия и оксида бериллия отвечают требованиям прочности и коррозионной устойчивости в качестве материалов для оболочек твэлов. Бериллий служит для изготовления окон рентгеновских трубок, нанесения твёрдого диффузионного слоя на поверхность стали (бериллизация), в качестве присадок к ракетному топливу. Потребителем Be и ВеО являются также электротехника и радиоэлектроника; ВеО используют как материал корпусов, теплоотводов и изоляторов полупроводниковых приборов. Благодаря высокой огнеупорности, инертности по отношению к большинству расплавленных металлов и солей оксид бериллий применяется для изготовления тиглей и специальной керамики.

Прежде всего несколько (их может быть гораздо больше!) ответов на вопрос: «Что может нам дать бериллий?»... Самолет, вес которого вдвое меньше обычного; ...ракетное топливо с наивысшим удельным импульсом; ...пружины, способные выдержать до 20 миллиардов (!) циклов нагрузки – пружины, не знающие усталости, практически вечные.

А в начале нашего века в справочниках и энциклопедиях о бериллии говорилось: «Практического применения не имеет». Открытый еще в конце XVIII в. бериллий 100 с лишним лет оставался «безработным» элементом, хотя химикам уже были известны его уникальные и очень полезные свойства. Для того чтобы эти свойства перестали быть «вещью в себе», требовался определенный уровень развития науки и техники. В 30-х годах академик А.Е. Ферсман называл бериллий металлом будущего. Сейчас о бериллии можно и должно говорить как о металле настоящего.

Недоразумение с периодической системой

История элемента №4 началась с того, что его долго не могли открыть. Многие химики XVIII в. анализировали берилл (основной минерал бериллия), но никто из них не смог обнаружить в этом минерале нового элемента.

Даже современному химику, вооруженному фотометрическим, полярографическим, радиохимическим, спектральным, радиоактивационным и флуориметрическим методами анализа, нелегко выявить этот элемент, словно прячущийся за спину алюминия и его соединений, – настолько похожи их признаки. Первым исследователям бериллия приходилось, разумеется, гораздо труднее.

Но вот в 1798 г. французский химик Луи Никола Воклен, занимаясь сравнительным анализом берилла и изумруда, открыл в них неизвестный окисел – «землю». Она была очень похожа на окись алюминия (глинозем), однако Воклен заметил и отличия. Окисел растворялся в углекислом аммонии (а окись алюминия не растворяется); сернокислая соль нового элемента не образовывала квасцов с сернокислым калием (а сернокислая соль алюминия такие квасцы образует). Именно этой разницей в свойствах Воклен и воспользовался для разделения окислов алюминия и неизвестного элемента. Редакция журнала «Annales de chimie», опубликовавшего работу Воклена, предложила для открытой им «земли» название «глицина» (от греческого γλυμυς – сладкий) из-за сладкого вкуса ее солей. Однако известные химики М. Клапрот и А. Экеберг сочли это название неудачным, так как соли иттрия также имеют сладковатый вкус. В их работах «земля», открытая Вокленом, называется берилловой. Тем не менее, в научной литературе XIX в., вплоть до 60-х годов, элемент №4 сплошь и рядом называется «глицием», «глицинием» или «глюцинием». Ныне это название сохранилось только во Франции.

Интересно отметить, что с предложением называть элемент №4 бериллием еще в 1814 г. выступал харьковский профессор Ф.И. Гизе.

Окисел был получен, но еще долгое время никому не удавалось выделить бериллий в чистом виде. Только через 30 лет Ф. Вёлер и А. Бюсси получили немного порошкообразного металла действием металлического калия на хлористый бериллий, но металл этот содержал много примесей. Прошло еще почти 70 лет, прежде чем П. Лебо смог получить (в 1898 г.) чистый бериллий электролизом бериллиево-фтористого натрия.

Сходство бериллия с алюминием принесло немало хлопот и автору периодического закона Д.И. Менделееву. Именно из-за этого сходства в середине прошлого века бериллий считали трехвалентным элементом с атомным весом 13,8. Но, будучи помещен в таблице между углеродом и азотом, как того требовал его атомный вес, бериллий вносил полную путаницу в закономерное изменение свойств элементов. Это было серьезной угрозой периодическому закону. Однако Менделеев был уверен в правильности открытой им закономерности и доказывал, что атомный вес бериллия определен неверно, что бериллий должен быть не трехвалентным, а двухвалентным элементом «с магнезиальными свойствами». Исходя из этого, Менделеев поместил бериллий во вторую группу периодической системы вместе с двухвалентными щелочноземельными металлами, исправив его атомный вес на 9.

Первое подтверждение своих взглядов Менделеев нашел в одной из малоизвестных работ русского химика И.В. Авдеева, который считал, что окись бериллия химически подобна окиси магния. А в конце 70-х годов прошлого века шведские химики Ларе Фредерик Нильсон и Отто Петерсон (некогда бывшие самыми ярыми сторонниками мнения о трехвалентном бериллии), повторно определив атомный вес бериллия, нашли его равным 9,1.

Так бериллий, бывший первым камнем преткновения на пути периодического закона, только подтвердил его всеобщность. Благодаря периодическому закону стало более четким понятие о физической и химической сущности бериллия. Образно говоря, бериллий получил, наконец, свой «паспорт».

Сейчас бериллием интересуются люди многих профессий. В каждой из них – свой подход к элементу №4, своя «бериллиевая» проблематика.

Бериллий с точки зрения геолога

Типично редкий элемент. На тонну земного вещества в среднем приходится лишь 4,2 г бериллия. Это, конечно, очень немного, но и не так уж мало, если вспомнить, например, что такого известного элемента как свинец, на Земле вдвое меньше, чем бериллия. Обычно бериллий встречается как незначительная примесь в различных минералах земной коры. И лишь ничтожная часть земного бериллия сконцентрирована в собственных бериллиевых минералах. Их известно более 30, но только шесть из них считаются более или менее распространенными (берилл, хризоберилл, бертрандит, фенакит, гельвин, даналит). А серьезное промышленное значение приобрел пока только один берилл, известный человеку с глубокой древности.

Бериллы встречаются в гранитных пегматитах, имеющихся почти во всех странах земного шара. Это красивые зеленоватые кристаллы, достигающие иногда очень больших размеров; известны бериллы-гиганты весом до тонны и длиной до 9 м.

К сожалению, пегматитовые месторождения очень малы, и добывать там берилл в широких промышленных масштабах не удается. Однако есть и другие источники бериллия, в которых его концентрация гораздо выше. Это так называемые пневмато-гидротермальные месторождения (т.е. месторождения, образовавшиеся в результате взаимодействия высокотемпературных паров и растворов с определенными типами горных пород).

Природный бериллий состоит из единственного устойчивого изотопа 9 Be. Интересно, что бериллий – единственный элемент периодической системы, имеющий при четном номере всего один стабильный изотоп. Известны еще несколько нестабильных, радиоактивных изотопов бериллия. (О двух из них – 10 Be и 7 Be – будет сказано ниже.)

Бериллий с точки зрения металлурга

Свойства бериллия чаще всего именуются «удивительными», «чудесными» и т.п. Отчасти это справедливо, причем главная «удивительность» заключается в сочетании противоположных, иногда, казалось бы, взаимоисключающих свойств. Бериллий обладает одновременно и легкостью, и прочностью, и теплостойкостью. Этот металл серебристо-серого цвета в полтора раза легче алюминия и в то же время прочнее специальных сталей. Особенно важно, что бериллий и многие его сплавы не утрачивают полезных свойств при температуре 700...800°C и могут работать в таких условиях.

Чистый бериллий очень тверд – им можно резать стекло. К сожалению, твердости сопутствует хрупкость.

Бериллий очень устойчив против коррозии. Как и алюминий, он покрывается при взаимодействии с воздухом тонкой окисной пленкой, защищающей металл от действия кислорода даже при высоких температурах. Лишь за порогом 800°C идет окисление бериллия в массе, а при температуре 1200°C металлический бериллий сгорает, превращаясь в белый порошок BeO.

Бериллий легко образует сплавы со многими металлами, придавая им большую твердость, прочность, жаростойкость и коррозионную стойкость. Один из его сплавов – бериллиевая бронза – это материал, позволивший решить многие сложные технические задачи.

Бериллиевыми бронзами называют сплавы меди с 1...3% бериллия. В отличие от чистого бериллия они хорошо поддаются механической обработке, из них можно, например, изготовить ленты толщиной всего 0,1 мм. Разрывная прочность этих бронз больше, чем у многих легированных сталей. Еще одна примечательная деталь: с течением времени большинство материалов, в том числе и металлы, «устают» и теряют прочность. Бериллиевые бронзы – наоборот. При старении их прочность возрастает! Они немагнитные. Кроме того, они не искрят при ударе. Из них делают пружины, рессоры, амортизаторы, подшипники, шестерни и многие другие изделия, от которых требуются большая прочность, хорошая сопротивляемость усталости и коррозии, сохранение упругости в широком интервале температур, высокие электро- и теплопроводные характеристики. Одним из потребителей этого сплава стала авиационная промышленность: утверждают, что в современном тяжелом самолете насчитывается больше тысячи деталей из бериллиевой бронзы.

Добавки бериллия облагораживают сплавы на основе алюминия и магния. Это понятно: плотность бериллия всего 1,82 г/см 3 , а температура плавления – вдвое выше, чем у этих металлов. Самые небольшие количества бериллия (достаточно 0,005%) намного уменьшают потери магниевых сплавов от горения и окисления при плавке и литье. Одновременно улучшается качество отливок, значительно упрощается технология.

Выяснилось, что с помощью бериллия можно увеличивать прочность, жесткость и жаростойкость других металлов, не только вводя его в те или иные сплавы. Чтобы предотвратить быстрый износ стальных деталей, их иногда бериллизуют – насыщают их поверхность бериллием путем диффузии. Делается это так: стальную деталь опускают в бериллиевый порошок и выдерживают в нем при 900...1100°C в течение 10...15 часов. Поверхность детали покрывается твердым химическим соединением бериллия с железом и углеродом. Этот прочный панцирь толщиной всего 0,15...0,4мм придает деталям жаростойкость и устойчивость к морской воде и азотной кислоте.

Интересными свойствами отличаются и бериллиды – интерметаллические соединения бериллия с танталом, ниобием, цирконием и другими тугоплавкими металлами. Бериллиды обладают исключительной твердостью и стойкостью против окисления. Лучшей технической характеристикой бериллидов служит тот факт, что они могут проработать более 10 часов при температуре 1650°C.

Бериллий с точки зрения физика

В истории многих элементов есть особые вехи – открытия, после которых значение этих элементов неизмеримо возрастает. В истории бериллия таким событием стало открытие нейтрона.

В начале 30-х годов немецкие физики В. Боте и Г. Беккер, бомбардируя бериллий альфа частицами, заметили так называемое бериллиевое излучение – очень слабое, но чрезвычайно проникающее. Оно, как было доказано позже, оказалось потоком нейтронов. А еще позже это свойство бериллия легло в основу «нейтронных пушек» – источников нейтронов, применяемых в разных областях науки и техники.

Так было положено начало изучению атомной структуры бериллия. Выяснилось, что его отличают малое сечение захвата нейтронов и большое сечение их рассеяния. Иными словами, бериллий (а также его окись) рассеивает нейтроны, изменяет направление их движения и замедляет их скорость до таких величин, при которых цепная реакция может протекать более эффективно. Из всех твердых материалов бериллий считается лучшим замедлителем нейтронов.

Кроме того, бериллий может выполнять роль отражателя нейтронов: менять их направление, возвращать нейтроны в активную зону реактора, противодействовать их утечка. Бериллию свойственна также значительная радиационная стойкость, сохраняющаяся и при очень высокой температуре.

На всех этих свойствах основано применение бериллия в атомной технике – он один из самых необходимых ей элементов.

Замедлители и отражатели из бериллия и его окиси позволяют намного уменьшить размеры активной зоны реакторов, увеличить рабочую температуру и эффективнее использовать ядерное топливо. Поэтому, несмотря на высокую стоимость бериллия, его использование считают экономически оправданным, особенно в небольших энергетических реакторах для самолетов и морских судов.

Окись бериллия стала важным материалом для изготовления оболочек тепловыделяющих элементов (твэлов) атомных реакторов. В твэлах особенно велика плотность нейтронного потока; в них – самая высокая температура, самые большие напряжения и все условия для коррозии. Поскольку уран коррозионно неустойчив и недостаточно прочен, его приходится защищать специальными оболочками, как правило, из BeO.

Большая теплопроводность (в 4 раза выше, чем у стали), большая теплоемкость и жаропрочность позволяют использовать бериллий и его соединения в теплозащитных конструкциях космических кораблей. Из бериллия была сделана внешняя тепловая защита капсулы космического корабля «Фрэндшип-7», на котором Джон Гленн первым из американских космонавтов совершил (после Юрия Гагарина и Германа Титова) орбитальный полет.

В еще большей мере космическую технику привлекают в бериллии легкость, прочность, жесткость, и особенно – необыкновенно высокое отношение прочности к весу. Поэтому бериллий и его сплавы все шире используются в космической, ракетной и авиационной технике.

В частности, благодаря способности сохранять высокую точность и стабильность размеров бериллиевые детали используют в гироскопах – приборах, входящих в систему ориентации и стабилизации ракет, космических кораблей и искусственных спутников Земли.

Элемент №4 применяется и в других областях современной техники, в том числе в радиоэлектронике. В частности, керамика на основе окиси бериллия стала материалом корпусов так называемых ламп бегущей волны – очень эффективных радиоламп, не утративших своего значения под натиском полупроводников.

Рентгенотехнике металлический бериллий дал прекрасные окна для рентгеновских трубок: благодаря малому атомному весу он пропускает в 17 раз больше мягких рентгеновских лучей, чем алюминий такой же толщины.

Бериллий с точки зрения химика

Типично амфотерен, т.е. обладает свойствами и металла, и неметалла. Однако металлические свойства все же преобладают.

С водородом бериллий не реагирует даже при нагревании до 1000°C, зато он легко соединяется с галогенами, серой и углеродом. Из галогенидов бериллия наибольшее значение имеют его фторид и хлорид, используемые в процессе переработки бериллиевых руд.

Бериллий хорошо растворяется во всех минеральных кислотах, кроме, как это ни странно, азотной. От нее как и от кислорода, бериллий защищен окисной пленкой.

Окись бериллия (ВеО) обладает ценными свойствами и в некоторых случаях конкурирует с самим бериллием.

Высокая тугоплавкость (температура плавления 2570°C), значительная химическая стойкость и большая теплопроводность позволяют применять окись бериллия во многих отраслях техники, в частности для футеровки бессердечниковых индукционных печей и тиглей для плавки различных металлов и сплавов. Интересно, что окись бериллия совершенно инертна по отношению к металлическому бериллию. Это единственный материал, из которого изготовляют тигли для плавки бериллия в вакууме.

Сравнительно давно используют окись бериллия в производстве стекла. Добавки ее увеличивают плотность, твердость, показатель преломления и химическую стойкость стекол. С помощью окиси бериллия создают специальные стекла, обладающие большой прозрачностью для ультрафиолетовых и инфракрасных лучей.

Стекловолокно, в состав которого входит окись бериллия, может найти применение в конструкциях ракет и подводных лодок.

При горении бериллия выделяется много тепла – 15 тыс. ккал/кг. Поэтому бериллий может быть компонентом высокоэнергетического ракетного горючего.

Некоторые соединения бериллия служат катализаторами химических процессов. Со щелочами бериллий реагирует, образуя соли-бериллаты, подобные алюминатам. Многие из них имеют сладковатый вкус, но пробовать на язык их нельзя – почти все бериллаты ядовиты.

Многие ученые считают, что изотопы бериллия 10 Ве и 7 Be образуются не в недрах земли, а в атмосфере – в результате воздействия космических лучей на ядра азота и кислорода. Незначительные примеси этих изотопов обнаружены в дожде, снеге, воздухе, в метеоритах и морских отложениях.

Однако если собрать воедино весь 10 Ве, находящийся в атмосфере, водных бассейнах, почве и на дне океана, то получится довольно внушительная цифра – около 800 т.

Изотоп 10 Be (период полураспада 2,5·10 6 лет) представляет исключительный интерес для геохимии и ядерной метеорологии. Рождаясь в атмосфере, на высоте примерно 25 км, атомы 10 Ве вместе с осадками попадают в океан и оседают на дне. Зная концентрацию 10 Ве во взятой со дна пробе и период полураспада этого изотопа, можно вычислить возраст любого слоя на дне океана.

Бериллий-10 аккумулируется также в морских илах и ископаемых костях (кости сорбируют бериллий из природных вод). В связи с этим возникло предположение о возможности определения возраста органических остатков по 10 Be. Дело в том, что довольно широко освоенный радиоуглеродный метод непригоден для определения возраста образцов в интервале 10 5 ...10 8 лет (из-за большой разницы между периодами полураспада 14 С и долгоживущих изотопов 40 K, 82 Rb, 232 Th, 235 U и 238 U). Изотоп 10 Be как раз «заполняет» этот разрыв.

Жизнь другого радиоизотопа – бериллия-7 – значительно короче: период его полураспада равен всего 53 дням. Поэтому не удивительно, что количество его на Земле измеряется граммами. Изотоп 7 Be может быть получен и в циклотроне, но это дорого обойдется. Поэтому широкого применения этот изотоп не получил. Его используют иногда для прогнозирования погоды. Он выполняет роль своеобразной «метки» воздушных слоев: наблюдая изменение концентрации 7 Ве, можно определить промежуток времени от начала движения воздушных масс. Еще реже применяют 7 Be в других исследованиях: химики – в качестве радиоактивного индикатора, биологи – для изучения возможностей борьбы с токсичностью самого бериллия.

Бериллий с точки зрения биолога и медика

Бериллий обнаружен в растениях, произрастающих на бериллийсодержащих почвах, а также в тканях и костях животных. Но если для растения бериллий безвреден, то у животных он вызывает так называемый бериллиевый рахит. Повышенное содержание солей бериллия в пище способствует образованию в организме растворимого фосфата бериллия. Постоянно «похищая» фосфаты, бериллий тем самым способствует ослаблению костной ткани – это и есть причина болезни.

Многие соединения бериллия ядовиты. Они могут стать причиной воспалительных процессов на коже и бериллиоза – специфического заболевания, вызываемого вдыханием бериллия и его соединений. При кратковременном вдыхании больших концентраций растворимых соединений бериллия возникает острый бериллиоз, представляющий собой раздражение дыхательных путей, иногда сопровождающееся отеком легких и удушьем. Есть и хроническая разновидность бериллиоза. Для нее характерны менее резкие симптомы, но большие нарушения в функциях всего организма.

Допустимые пределы содержания бериллия в воздухе очень малы – всего 0,001 мг/м 3 . Это значительно меньше допустимых норм для большинства металлов, даже таких токсичных, как свинец.

Для лечения бериллиоза применяют чаще всего химические соединения, связывающие ионы бериллия и способствующие их выведению из организма.

Три «но» бериллия

Эта глава не означает, что все предыдущее – только «теория». Но, к сожалению, факторы, ограничивающие применение бериллия, вполне реальны, и не учитывать их нельзя.

Это прежде всего хрупкость металла. Она намного усложняет процесс его механической обработки, затрудняет получение больших листов бериллия и сложных профилей, необходимых в тех или иных конструкциях. Предпринимаются упорные попытки устранить этот недостаток. Но, несмотря на некоторые успехи (изготовление металла высокой чистоты, различные технологические усовершенствования), получение пластичного бериллия продолжает оставаться трудной проблемой.

Второе – токсичность бериллия.

Тщательный контроль за чистотой воздуха, особые системы вентиляции, возможно большая автоматизация производства – все это позволяет успешно бороться с токсичностью элемента №4 и его соединений.

И наконец, третье и очень важное «но» бериллия – его высокая стоимость. Цена 1 кг бериллия в США сейчас около 150 долларов, т.е. бериллий в несколько раз дороже титана.

Однако рост потребления всегда приводит к технологическим усовершенствованиям, которые в свою очередь способствуют уменьшению издержек производства и цены. В будущем спрос на бериллий возрастет еще больше: ведь этот металл человечество начало применять чуть больше 40 лет назад. И, конечно, достоинства элемента №4 возьмут верх над его недостатками.

Из документов прошлого

Восьмидесятые годы прошлого века – время оживленных научных споров об атомном весе бериллия.

Д.И. Менделеев писал по этому поводу:

«Недоразумение длилось несколько лет. Не раз мне приходилось слышать о том, что вопрос об атомном весе бериллия грозит поколебать общность периодического закона, может потребовать глубоких в нем преобразований. В научном разноречии, касающемся бериллия, приняли участие многие силы, конечно, потому именно, что дело шло о предмете более многозначительном, чем атомность сравнительно редкого элемента; периодический закон разъяснялся в этих разноречиях, и взаимная связь элементов разных групп стала более очевидной, чем было когда-либо» .

Долгое время главными противниками двух валентности бериллия были шведские химики профессора Л.Ф. Нильсон и О. Петерсон. В 1878 г. они опубликовали статью «О получении и валентности бериллия», в конце которой были такие слова: «...наше мнение об истинном атомном весе и химической природе этого металла противоречит так называемому периодическому закону, который Менделеев предначертал для всех элементов, а именно не только потому, что при Be = 13,8 металл этот едва ли может быть помещен в менделеевскую систему, но и потому, что тогда элемент с атомным весом 9,2, как это требует периодический закон, в системе отсутствовал бы и, по-видимому, еще должен быть открыт».

В защиту периодического закона выступил чешский химик Богуслав Браунер, считавший, что известный закон Дюлонга и Пти, которым пользовались шведские химики, имеет некоторые отступления в области малых атомных весов, к которой собственно и относится бериллий. Кроме того, Браунер советовал Нильсону и Петерсону определить плотность паров хлористого бериллия, считая, что количественное определение этой характеристики поможет точно установить принадлежность элемента к той или иной группе периодической системы. Когда шведские химики повторили свои опыты и проделали то, что советовал им Браунер, они убедились в правоте Менделеева. В статье, отражавшей результаты этой работы, Нильсон и Петерсон написали: «...мы должны отказаться от ранее защищавшегося нами мнения о том, что бериллий трехвалентный элемент... Одновременно мы признаем правильность периодического закона и в этом важном случае».

В 1884 г. Нильсон писал Менделееву: «...не могу не выразить Вам моего сердечного поздравления по поводу того, что и в этом случае, как и во многих других, система оправдала себя».

Позднее в одном из изданий «Основ химии» Д.И. Менделеев отметил, что «Нильсон и Петерсон – одни из главных защитников трехатомности бериллия... доставили опытные доказательства в пользу двухатомности бериллия и, громко высказав это, показали, что в науке истина, даже при разноречиях, одинаково дорога всем, хотя бы сперва и отрицалась теми, кто ее утвердил».

Драгоценные бериллы

Основной минерал бериллия – берилл относится, как известно, к полудрагоценным камням. Но когда говорят о четырех его разновидностях – изумруде, аквамарине, воробьевите и гелиодоре, то приставку «полу» отбрасывают. Изумруды, особенно весом больше 5 каратов, ценятся не меньше бриллиантов.

Чем отличаются эти камни от обычного берилла? Ведь формула их та же – Al 2 Be 3 (Si 6 O 18). Но эта формула не учитывает примесей, которые, собственно, и превращают полудрагоценные камни в драгоценные. Аквамарин окрашен ионами двухвалентного железа, в изумруде (он же смарагд) кроме Fe 2+ есть незначительная примесь окиси хрома. Розовый цвет воробьевита объясняется примесью соединений цезия, рубидия и двухвалентного марганца, а золотисто-желтый гелиодор окрашен ионами трехвалентного железа.

Драгоценный металл из полудрагоценного камня

Высокая стоимость бериллия объясняется не только ограниченностью сырьевых ресурсов, но и сложностями технологии получения чистого металла. Основной метод производства бериллия – восстановление его фторида металлическим магнием. Фторид получают из гидроокиси, а гидроокись из бериллового концентрата. Уже первый прогон этой технологической лестницы состоит из нескольких ступеней: концентрат подвергают термообработке, измельчению, затем на него последовательно действуют серной кислотой, водой, растворами аммиака и едкого натра, специальными комплексообразователями.

Получившийся бериллат натрия гидролизуют и на центрифуге отделяют гидроокись.

Гидроокись превращается во фторид тоже лишь после нескольких операций, каждая из которых достаточно сложна и трудоемка. Восстановление магнием идет при температуре 900°C, ход процесса тщательно контролируется. Важная деталь: тепло, выделяющееся в реакции, поглощается с той же скоростью, что и выделяется. Полученный жидкий металл выливают в графитовые изложницы, но он загрязнен шлаком, и поэтому его еще раз переплавляют в вакууме.

Бериллий в быту

Сферы применения бериллия не ограничиваются «высокой» техникой. С изделиями из никель-бериллиевых сплавов (содержание Be не превышает 1,5%) можно встретиться и в повседневной жизни. Из этих сплавов изготавливают хирургические инструменты, иглы для подкожных инъекций, литые металлические зубы. Из сплава «элинвар» (никель, бериллий, вольфрам) в Швейцарии делают пружины для часов. Медно-бериллиевый сплав в США используют для изготовления втулок пишущего механизма шариковых ручек.

Искусственные изумруды

Получить изумруды искусственным путем гораздо труднее, чем большинство других драгоценных камней. Главная причина в том, что берилл – сложное комплексное соединение. Однако ученые смогли имитировать природные условия, в которых происходило образование минерала: изумруды «рождаются» при очень высоком давлении (150 тыс. атм.) и высокой температуре (1550°C). Искусственные изумруды могут использоваться в электронике.

Бериллий и сверхпроводимость

Сейчас известно более тысячи материалов, приобретающих при температуре, близкой к абсолютному нулю, свойство сверхпроводимости. В их числе – металлический бериллий. Будучи сконденсирован в виде тонкой пленки на холодную подложку, бериллий становится сверхпроводником при температуре около 8 К.

Бериллий в целебном средстве

В 1964 г. группа советских химиков во главе с вице-президентом Академии наук Таджикской ССР, доктором химических наук К.Т. Порошиным провела химический анализ древнего целебного средства «мумие». Оказалось, что это вещество сложного состава, причем в числе многих элементов, содержащихся в мумие, есть и бериллий.

География месторождений бериллия

Бериллиевое сырье имеется во многих странах мира. Наиболее крупные месторождения его находятся в Бразилии и Аргентине. На их долю приходится примерно 40% добычи берилла в капиталистических странах. Значительные запасы бериллиевых руд имеются также в странах Африки и в Индии.

Вплоть до последнего времени крупнозернистый берилл добывали вручную. В Бразилии таким кустарным способом и сейчас ежегодно добывается до 3000 т концентрата.

Лишь недавно были предложены новые методы флотации, позволяющие использовать нерентабельные ранее месторождения мелкозернистого берилла.

Бериллий и «атомная игла»

Теплоизоляционные свойства окиси бериллия могут пригодиться и при исследовании земных глубин. Так, существует проект взятия проб из мантии Земли с глубин до 32 км с помощью так называемой атомной иглы. Это миниатюрный атомный реактор диаметром всего 60 см. Реактор должен быть заключен в теплоизолирующий футляр из окиси бериллия с тяжелым вольфрамовым наконечником.

Принцип действия атомной иглы заключается в следующем: высокие температуры, создаваемые в реакторе (свыше 1100°C), вызовут плавление скальных пород и продвижение реактора к центру Земли. На глубине примерно 32 км тяжелое вольфрамовое острие должно отделиться, а реактор, став более легким, чем окружающие его породы, возьмет пробы с недостижимых пока глубин и «всплывет» на поверхность.

История

Происхождение названия

Название бериллия произошло от названия минерала берилла (др.-греч. βήρυλλος ) (силикат бериллия и алюминия, Be 3 Al 2 Si 6 O 18), которое восходит к названию города Белур (Веллуру) в Южной Индии , недалеко от Мадраса ; с древних времён в Индии были известны месторождения изумрудов - разновидности берилла. Из-за сладкого вкуса растворимых в воде соединений бериллия элемент вначале называли «глиций» (др.-греч. γλυκύς - сладкий).

Нахождение в природе

Среднее содержание бериллия в земной коре 3,8 г/т и увеличивается от ультраосновных (0,2 г/т) к кислым (5 г/т) и щелочным (70 г/т) породам. Основная масса бериллия в магматических породах связана с плагиоклазами , где бериллий замещает кремний . Однако наибольшие его концентрации характерны для некоторых тёмноцветных минералов и мусковита (десятки, реже сотни г/т). Если в щелочных породах бериллий почти полностью рассеивается, то при формировании кислых горных пород он может накапливаться в постмагматических продуктах постколлизионных и анорогенных гранитоидов - пегматитах и пневматолито-гидротермальных телах. В кислых пегматитах образование значительных скоплений бериллия связано с процессами альбитизации и мусковитизации. В пегматитах бериллий образует собственные минералы, но часть его (ок. 10 %) находится в изоморфной форме в породообразующих и второстепенных минералах (микроклине, альбите, кварце, слюдах, и др.). В щелочных пегматитах бериллий устанавливается в небольших количествах в составе редких минералов: эвдидимита, чкаловита, анальцима и лейкофана, где он входит в анионную группу. Постмагматические растворы выносят бериллий из магмы в виде фторсодержащих эманаций и комплексных соединений в ассоциации с вольфрамом , оловом , молибденом и литием .

Известно более 30 собственно бериллиевых минералов, но только 6 из них считаются более-менее распространёнными: берилл , хризоберилл , бертрандит , фенакит , гельвин , даналит . Промышленное значение имеет в основном берилл, в России (Республика Бурятия) разрабатывается фенакит-бертрандитовое Ермаковское месторождение .

Разновидности берилла считаются драгоценными камнями: аквамарин - голубой, зеленовато-голубой, голубовато-зелёный; изумруд - густо-зелёный, ярко-зелёный; гелиодор - жёлтый; известны ряд других разновидностей берилла, различающихся окраской (темно-синие, розовые, красные, бледно-голубые, бесцветные и др.). Цвет бериллу придают примеси различных элементов.

Месторождения

Месторождения минералов бериллия присутствуют на территории Бразилии , Аргентины , Африки , Индии , Казахстана , России (Ермаковское месторождение в Бурятии , Малышевское месторождение в Свердловской области) и др .

Физические свойства

Бериллий - относительно твёрдый (5,5 баллов по Моосу), но хрупкий металл серебристо-белого цвета. Один из самых твёрдых металлов в чистом виде (уступает только иридию , осмию , вольфраму и урану). Имеет высокий модуль упругости - 300 ГПа (у сталей - 200-210 ГПа). На воздухе активно покрывается стойкой оксидной плёнкой BeO . Скорость звука в бериллии очень высока - 12 600 м/с , что в 2-3 раза больше, чем в других металлах.

Химические свойства

Для бериллия характерны две степени окисления +1 и +2. Гидроксид бериллия (II) амфотерен, причём как основные (с образованием Be 2+), так и кислотные (с образованием 2−) свойства выражены слабо. Степень окисления +1 у бериллия была получена при исследование процессов испарения бериллия в вакууме в тиглях из оксида бериллия ВеО с образованием летучего оксида Ве 2 O в результате сопропорционирования ВеО + Be = Ве 2 O .

По многим химическим свойствам бериллий больше похож на алюминий, чем на находящийся непосредственно под ним в таблице Менделеева магний (проявление «диагонального сходства »).

Металлический бериллий относительно мало реакционноспособен при комнатной температуре. В компактном виде он не реагирует с водой и водяным паром даже при температуре красного каления и не окисляется воздухом до 600 °C. Порошок бериллия при поджигании горит ярким пламенем, при этом образуются оксид и нитрид. Галогены реагируют с бериллием при температуре выше 600 °C, а халькогены требуют ещё более высокой температуры. Аммиак взаимодействует с бериллием при температуре выше 1200 °C с образованием нитрида Be 3 N 2 , а углерод даёт карбид Ве 2 С при 1700 °C. С водородом бериллий непосредственно не реагирует.

Бериллий легко растворяется в разбавленных водных растворах кислот (соляной , серной , азотной), однако холодная концентрированная азотная кислота пассивирует металл. Реакция бериллия с водными растворами щелочей сопровождается выделением водорода и образованием гидроксобериллатов:

B e + 2 N a O H + 2 H 2 O → N a 2 [ B e (O H) 4 ] + H 2 {\displaystyle {\mathsf {Be+2NaOH+2H_{2}O\rightarrow Na_{2}+H_{2}\uparrow }}}

При проведении реакции с расплавом щелочи при 400-500 °C образуются бериллаты:

B e + 2 N a O H → N a 2 B e O 2 + H 2 {\displaystyle {\mathsf {Be+2NaOH\rightarrow Na_{2}BeO_{2}+H_{2}\uparrow }}}

Изотопы бериллия

Природный бериллий состоит из единственного изотопа 9 Be. Все остальные изотопы бериллия (их известно 11, исключая стабильный 9 Be) нестабильны. Наиболее долгоживущих из них два: 10 Be с периодом полураспада около 1,4 млн лет и 7 Be с периодом полураспада 53 дня .

Происхождение бериллия

Получение

В виде простого вещества в XIX веке бериллий получали действием калия на безводный хлорид бериллия :

B e C l 2 + 2 K ⟶ B e + 2 K C l {\displaystyle {\mathsf {BeCl_{2}+2K\longrightarrow Be+2KCl}}}

В настоящее время бериллий получают, восстанавливая фторид бериллия магнием :

B e F 2 + M g ⟶ B e + M g F 2 {\displaystyle {\mathsf {BeF_{2}+Mg\longrightarrow Be+MgF_{2}}}} ,

Производство и применение

По состоянию на 2000 год основными производителями бериллия являлись: США (с большим отрывом), а также Китай, Казахстан. В 2014 году произвела первый образец бериллия и Россия . В России планируется строительство нового комбината по производству бериллия к 2019 году На долю остальных стран приходилось менее 1 % мировой добычи . Всего в мире производится 300 тонн бериллия в год (2016 год) .

Легирование сплавов

Бериллий в основном используют как легирующую добавку к различным сплавам. Добавка бериллия значительно повышает твёрдость и прочность сплавов, коррозионную устойчивость поверхностей, изготовленных из этих сплавов изделий. В технике довольно широко распространены бериллиевые бронзы типа BeB (пружинные контакты). Добавка 0,5 % бериллия в сталь позволяет изготовить пружины, которые остаются упругими до температуры красного каления. Эти пружины способны выдерживать миллиарды циклов значительной по величине нагрузки. Кроме того, бериллиевая бронза не искрится при ударе о камень или металл. Один из сплавов носит собственное название рандоль . Благодаря его сходству с золотом рандоль называют «цыганским золотом» .

Рентгенотехника

Фторид бериллия используется в атомной технике для варки стекла, применяемого для регулирования небольших потоков нейтронов. Самый технологичный и качественный состав такого стекла − (BeF 2 - 60 %, PuF 4 - 4 %,AlF 3 - 10 %, MgF 2 - 10 %, CaF 2 - 16 %). Этот состав наглядно показывает один из примеров применения соединений плутония в качестве конструкционного материала (частичное).

Лазерные материалы

В лазерной технике находит применение алюминат бериллия для изготовления твердотельных излучателей (стержней, пластин).

Аэрокосмическая техника

В производстве тепловых экранов и систем наведения с бериллием не может конкурировать практически ни один конструкционный материал. Конструкционные материалы на основе бериллия обладают одновременно и лёгкостью, и прочностью, и стойкостью к высоким температурам. Будучи в 1,5 раза легче алюминия, эти сплавы в то же время прочнее многих специальных сталей. Налажено производство бериллидов , применяемых как конструкционные материалы для двигателей и обшивки ракет и самолётов, а также в атомной технике.

Ракетное топливо

Стоит отметить высокую токсичность и высокую стоимость металлического бериллия, и в связи с этим приложены значительные усилия для выявления бериллийсодержащих топлив, имеющих значительно меньшую общую токсичность и стоимость. Одним из таких соединений бериллия является гидрид бериллия .

Огнеупорные материалы

Большой Адронный Коллайдер

В точках столкновения пучков на Большом Адронном Коллайдере (БАК) вакуумная труба сделана из бериллия. Он одновременно практически не взаимодействует с частицами, произведенными в столкновениях (которые регистрируют детекторы), но при этом достаточно прочен.