Болезни Военный билет Призыв

Примеры и особенности фундаментальных научных открытий

Для того чтобы успешно создавать новые изобретения, или, по крайней мере, успевать следить за ними, просто необходимо знать, на чем стоит наша современность, то есть наука, технологии и инфраструктура. Вот те самые важнейшие изобретения и открытия, значимость которых невозможно переоценить.

Огонь

Точно не известно, когда именно люди стали использовать огонь, когда научились его хранить или добывать, но ученые предполагают, что все это произошло от 600 до 200 тысяч лет назад.

Язык

Первая устная речь с семантическими и фонетическими структурами появилась около десяти тысяч лет назад.

Торговля (бартер)

Первый случай бартерного обмена был отслежен в районе Папуа Новой Гвинеи около 19 тысяч лет назад. К третьему тысячелетию до н. э. в Азии и на Среднем Востоке появились торговые пути.

Агрикультура и фермерство

Около 17 тысяч лет назад люди впервые стали одомашнивать животных, а в десятом тысячелетии до н. э. начали выращивать растения, что привело к образованию постоянных поселений и прекращению кочевого образа жизни.

Корабль

Около четвертого тысячелетия до н. э. в древнем Египте стали использовать деревянные плоты и лодки, а в XII веке до н. э. финикийцы и греки начали строить корабли, которые позволили не только расширить мир того времени, но и развить торговлю, науку, географию и картографию.

Колесо

Колесо стало одним из простейших и важнейших изобретений в истории человечества. Пользоваться им начали около пяти тысяч лет назад.

Деньги

Новым шагом в развитии торговли стало применение денег. Впервые их стали использовать шумеры в третьем тысячелетии до н. э.

Железо

Металлургия начала свое развитие с использования меди, серебра и олова. За ними последовала бронза. В третьем тысячелетии до н. э. люди начали использовать более крепкое железо.

Письменная речь

Несмотря на то что устная речь существовала на протяжении тысячелетий, письмо появилось впервые у шумеров лишь пять тысяч лет назад.

Законодательство

В XVIII веке до н. э. Хаммурапи — шестой вавилонский царь, написал свой знаменитый кодекс, или собрание законов, по которым полагалось жить в обществе. Другими примерами древних законодательных текстов являются Книга Мертвых, Десять Заповедей и Книга Левит.

Алфавит

Первый алфавит, содержащий как гласные, так и согласные, появился у финикийцев в 1050 году до н. э.

Сталь

Стальные сплавы по праву считаются самыми крепкими. Впервые сталь начали использовать в Азии около четырех тысяч лет назад. Греки начали применять эти сплавы в VII веке до н. э., за 250 лет до Китая и Рима.

Гидроэнергия

Энергия текущей или падающей воды начала использоваться в районе Междуречья во II веке до н. э.

Бумага

Впервые бумагу начали использовать китайцы около 105 года н. э., она была тканевой. Бумага, производимая из дерева, появилась только в XVI веке.

Ручной набор с помощью подвижных литер

Несмотря на то что изобретение печатного станка принадлежит Гуттенбергу (1436 г.), технология, на которой он основан, происходит из Китая. Подвижные литеры изобрел Би Шен в 1040 году.

Микроскоп

В 1592 году оптические мастера из Голландии Захария и Ханс впервые увидели, что сквозь определенные линзы предметы можно разглядеть значительно ближе. Именно эти особенные линзы и попали в первый микроскоп.

Электричество

В 1600 году англичанин Уильям Гилберт впервые использовал термин «электричество». В 1752 году Бенджамин Франклин доказал, что молния и есть электричество.

Телескоп

В 1608 году Ханс Липперсгей создал собирающую линзу, которую вставил в подзорную трубу. Это и стало прототипом телескопа, который Галилео усовершенствовал через год.

Двигатель

Изобретение парового двигателя Томасом Ньюкоменом в 1712 году стало следующим гигантским шагом в развитии технологий. Двигатель внутреннего сгорания изобрел Этьен Ленуар в 1858 году.

Лампа накаливания

Превратить ночь в день помогла лампа накаливания, которую в 1800 году изобрел Хамфри Дэйви, а впоследствии усовершенствовал Томас Эдисон.

Телеграф

Первый простейший телеграф изобрел баварец Самуэль Земмеринг в 1809 году. Однако автором первой коммерчески успешной версии телеграфа считается Самуэль Морзе — создатель азбуки Морзе.

Электромагнит

Уильям Стерджен изобрел первый электромагнит в 1825 году. Его изобретение состояло из обычной железной подковы, вокруг которой был обмотан медный провод.

Нефть и газ

Это природное топливо было впервые обнаружено в 1859 году. Первая газовая скважина была открыта в Огайо, а первая нефтяная скважина — в Пенсильвании.

Телефон

Первый прибор, способный передавать различимые звуки, был изобретен в 1860 году немцем Филиппом Райзом. Спустя 16 лет Александр Белл запатентовал и продемонстрировал публике усовершенствованную модель.

Электронная лампа

Этот вакуумный электронный прибор основывается на том, что поток электричества не нуждается в проводе и может проходить как сквозь воздух, так и сквозь вакуум. Первый такой прибор создал Ли де Форест в 1893 году.

Полупроводники

Первые полупроводники были обнаружены в 1896 году. Сегодня основным полупроводником является кремний. В коммерческих целях его впервые стал использовать Джагадиш Чандра Бос.

Пенициллин

Все слышали о случайном открытии антибиотика пенициллина в 1928 году. Однако задолго до Флеминга эти свойства заметил французский студент-медик Эрнест Дюшен в 1896 году, однако его исследование осталось незамеченным.

Радио

Среди изобретателей радио гремят такие имена, как Генрих Герц (1888 год), Томас Эдисон (1885 год) и даже Никола Тесла, который запатентовал свое изобретение в 1897 году.

Электрон

Эту отрицательно заряженную элементарную частицу обнаружил Джозеф Томсон в 1897 году. Электрон является основным носителем электрического заряда.

Квантовая физика

Настоящим началом квантовой физики принято считать 1900 год и гипотезу Планка. На ее основе Эйнштейн построил свою теорию о частицах света, которые впоследствии окрестили фотонами.

Самолет

Знаменитое изобретение братьев Райт датируется 1903 годом. Первый удачный пилотируемый полет состоялся 17 декабря.

Телевидение

Телевидение основано на целом ряде изобретений и находок, однако первый полноценный телевизор был создан в 1926 году Джоном Лоуги Бэрдом.

Транзистор

Переключение и усиление электронного сигнала осуществляется с помощью транзистора — изобретения, которое создал Билл Шэнкли в 1947 году и которое позволило впервые задуматься о возможности создания Глобальной сети телекоммуникаций.

ДНК

Главный секрет жизни на земле открыла команда ученых из Кембриджского университета в 1953 году. Уотсон и Крик получили Нобелевскую премию за это открытие.

Интегральная схема

В 1959 году усилиями нескольких разработчиков, изобретателей и корпораций была создана первая интегральная схема — произвольное множество электронных компонентов, объединенных в один кристалл либо на одной схеме. Именно это изобретение позволило создать микрочипы и микропроцессоры.

Интернет

Прародителем интернета стал ARPANET, или проект DARPA, разработанный в 1969 году. Однако современные протоколы передачи данных и непосредственно интернет был создан в 1991 году британцем Тимом Бернерсом-Ли.

Микропроцессор

В 1971 году разработчик компании "Интел" создал инновационную интегральную схему, размер которой был в десятки раз меньше. Именно она и стала первым микропроцессором.

Мобильный телефон

В 1973 году "Моторола" выпустила на рынок первый переносной телефонный аппарат весом чуть больше килограмма. Его батарея заряжалась больше десяти часов, а время разговора не превышало 30 минут.

Смартфон

В январе 2007 года Apple впервые выпустила в продажу телефон, способный распознавать несколько точек касания. Система мультитач проложила путь для смартфонов, планшетов и гибридных компьютеров.

Квантовый компьютер

В 2011 году D-wave представила кардинально новое изобретение — квантовый компьютер — вычислительную машину, основанную на явлениях суперпозиции и запутанности, что делает ее в тысячи раз быстрее привычных механических компьютеров.

За последние несколько веков мы совершили бесчисленное множество открытий, которые помогли значительно улучшить качество нашей повседневной жизни и понять, как устроен мир вокруг нас. Оценить всю важность этих открытий очень сложно, если не сказать, что почти невозможно. Но одно ясно наверняка – некоторые из них буквально изменили нашу жизнь раз и навсегда. От пенициллина и винтового насоса до рентгена и электричества, перед вами список из 25 величайших открытий и изобретений человечества.

25. Пенициллин

Если бы в 1928 году шотландский ученый Александр Флеминг (Alexander Fleming) не открыл пенициллин, первый антибиотик, мы до сих пор бы умирали от таких болезней, как язва желудка, от абсцессов, стрептококковых инфекций, скарлатины, лептоспироза, болезни Лайма и многих других.

24. Механические часы


Фото: pixabay

Существуют противоречивые теории о том, как же на самом деле выглядели первые механические часы, но чаще всего исследователи придерживаются версии, что в 723 году нашей эры их создал китайский монах и математик Ай Ксинг (I-Hsing). Именно это основополагающее изобретение позволило нам измерять время.

23. Гелиоцентризм Коперника


Фото: WP / wikimedia

В 1543 году практически на смертном одре польский астроном Николай Коперник обнародовал свою знаменательную теорию. Согласно трудам Коперника стало известно, что Солнце – нашей планетной системы, а все ее планеты вращаются вокруг нашей звезды каждая по своей орбите. До 1543 года астрономы полагали, что именно Земля была центром Вселенной.

22. Кровообращение


Фото: Bryan Brandenburg

Одним из самых важных открытий в медицине стало открытие системы кровообращения, о чем в 1628 году объявил английский врач Вильям Харви (William Harvey). Он стал первым человеком, описавшим всю систему циркуляции и свойства крови, которую сердце качает по всему нашему телу от мозга до кончиков пальцев.

21. Винтовой насос


Фото: David Hawgood / geographic.org.uk

Один из известнейших древнегреческих ученых, Архимед, считается автором одного из первых в мире водяных насосов. Его устройство представляло собой вращающийся штопор, который проталкивал воду вверх по трубе. Это изобретение продвинуло ирригационные системы на новый уровень и до сих пор используется на многих заводах по очистке сточных вод.

20. Гравитация


Фото: wikimedia

Все знают эту историю – Исаак Ньютон, знаменитый английский математик и физик, открыл гравитацию после того, как в 1664 году ему на голову упало яблоко. Благодаря этому событию мы впервые узнали, почему предметы падают вниз, и почему планеты вращаются вокруг Солнца.

19. Пастеризация


Фото: wikimedia

Пастеризация была открыта в 1860-х годах французским ученым Луи Пастером (Louis Pasteur). Она представляет собой процесс термической обработки, во время которой в определенных продуктах питания и напитках (вино, молоко, пиво) происходит разрушение патогенных микроорганизмов. Это открытие возымело значительное влияние на общественное здравоохранение и развитие пищевой промышленности во всем мире.

18. Паровой двигатель


Фото: pixabay

Всем известно, что современная цивилизация ковалась на заводах, построенных во время промышленной революции, и что все это происходило с использованием паровых двигателей. Двигатель, приводимый в действие силой пара, был создан давно, но за последнее столетие он был существенно доработан тремя британскими изобретателями: Томасом Сэйвери, Томасом Ньюкаменом и самым знаменитым из них – Джеймсом Ваттом (Thomas Savery, Thomas Newcomen, James Watt).

17. Кондиционер


Фото: Ildar Sagdejev / wikimedia

Примитивная система климат-контроля существовала с древних времен, но она существенно изменилась, когда в 1902 году появился первый современный электрический кондиционер. Его изобрел молодой инженер по имени Виллис Карриер (Willis Carrier), выходец из Баффало, штат Нью-Йорк (Buffalo, New York).

16. Электричество


Фото: pixabay

Судьбоносное открытие электричества причисляется английскому ученому Майклу Фарадею (Michael Faraday). Среди его ключевых открытий стоит отметить принципы действия электромагнитной индукции, диамагнетизм и электролиз. Эксперименты Фарадея также привели к созданию первого генератора, ставшего предшественником огромных генераторов, которые сегодня производят привычное нам в повседневной жизни электричество.

15. ДНК


Фото: pixabay

Многие считают, что именно американский биолог Джеймс Ватсон и английский физик Фрэнсис Крик (James Watson, Francis Crick) в 1950-х годах открыли , но на самом деле впервые эта макромолекула была выявлена еще в конце 1860-х годов швейцарским химиком Фридрихом Майшером (Friedrich Miescher). Затем спустя несколько десятилетий после открытия Майшера уже другие ученые провели ряд исследований, которые наконец-то помогли нам прояснить, как организм передает свои гены следующему поколению, и как координируется работа его клеток.

14. Анестезия


Фото: Wikimedia

Простые формы анестезии, такие как опиум, мандрагора и алкоголь, использовались людьми издавна, и первые упоминания о них ссылаются аж на 70 год нашей эры. Но с 1847 года обезболивание перешло на новый уровень, когда американский хирург Генри Бигелоу (Henry Bigelow) впервые ввел в свою практику эфир и хлороформ, сделав крайне болезненные инвазивные процедуры намного более переносимыми.

13. Теория относительности

Фото: Wikimedia

Включая две взаимосвязанные теории Альберта Эйнштейна (Albert Einstein), специальную и общую теорию относительности, теория относительности, опубликованная в 1905 году, преобразовала всю теоретическую физику и астрономию 20 века и затмила 200-летнюю теорию механики, предложенную Ньютоном. Теория относительности Эйнштейна стала основой для большей части научных работ современности.

12. Рентгеновские лучи


Фото: Nevit Dilmen / wikimedia

Немецкий физик Вильгельм Конрад Рентген (Wilhelm Conrad Rontgen) нечаянно открыл рентгеновские лучи в 1895 году, когда он наблюдал за флюоресценцией, возникающей при работе катодно-лучевой трубки. За это поворотное открытие в 1901 году ученый был удостоен Нобелевской премии, ставшей первой в своем роде в области физических наук.

11. Телеграф


Фото: wikipedia

С 1753 года многие исследователи проводили свои эксперименты для установления связи на расстоянии с помощью электричества, но значительный прорыв произошел лишь спустя несколько десятилетий, когда в 1835 году Джозеф Генри и Эдвард Дэйви (Joseph Henry, Edward Davy) изобрели электрическое реле. С помощью этого устройства они и создали первый телеграф 2 года спустя.

10. Периодическая система химических элементов


Фото: sandbh / wikimedia

В 1869 году русский химик Дмитрий Менделеев заметил, что если упорядочить химические элементы по их атомной массе, они условно выстраиваются в группы с похожими свойствами. На основании этой информации он создал первую периодическую систему, одно из величайших открытий в химии, которое позже прозвали в его честь таблицей Менделеева.

9. Инфракрасные лучи


Фото: AIRS / flickr

Инфракрасное излучение было открыто британским астрономом Вильямом Хершелем (William Herschel) в 1800 году, когда он изучал нагревательный эффект света разных цветов, используя для разложения света в спектр призму, и измеряя изменения термометрами. Сегодня инфракрасное излучение используется во многих областях нашей жизни, включая метеорологию, системы подогрева, астрономию, отслеживание теплоемких объектов и многие другие сферы.

8. Ядерный магнитный резонанс


Фото: Mj-bird / wikimedia

Сегодня ядерный магнитный резонанс постоянно используют в качестве чрезвычайно точного и эффективного диагностического инструмента в области медицины. Впервые это явление было описано и вычислено американским физиком Исидором Раби (Isidor Rabi) в 1938 году во время наблюдения за молекулярными пучками. В 1944 году за это открытие американскому ученому вручили Нобелевскую премию по физике.

7. Отвальный плуг


Фото: wikimedia

Изобретенный в 18-ом столетии, отвальный плуг стал первым плугом, который не только вскапывал почву, но и размешивал ее, что позволило обрабатывать в сельскохозяйственных целях даже очень неподатливую и каменистую землю. Без этого орудия сельское хозяйство, каким мы знаем его сегодня, в северной Европе или в центральной Америке не существовало бы.

6. Камера-обскура


Фото: wikimedia

Предшественником современных фотоаппаратов и видеокамер стала камера-обскура (в переводе темная комната), которая была оптическим устройством, используемым художниками создания быстрых набросков во время выездов за пределы своих мастерских. Отверстие в одной из стенок устройства служило для создания перевернутого изображения того, что происходило снаружи камеры. Картинка отображалась на экране (на противоположной от отверстия стенке темного ящика). Эти принципы были известны веками, но в 1568 году венецианец Даниель Барбаро (Daniel Barbaro) внес изменения в устройство камеры-обскура, дополнив его собирающими линзами.

5. Бумага


Фото: pixabay

Первыми примерами современной бумаги часто считают папирус и амате, которые использовали древние средиземноморские народы и доколумбовые американцы. Но было бы не совсем верно считать их настоящей бумагой. Ссылки на первое производство писчей бумаги относятся к Китаю во времена правления империи Восточная Хань (25-220 годы нашей эры). Первая бумага упоминается в летописях, посвященных деятельности судебного сановника Цай Луна (Cai Lun).

4. Тефлон


Фото: pixabay

Материал, благодаря которому ваша сковорода не пригорает, на самом деле был изобретен абсолютно случайно американским химиком Роем Планкетт (Roy Plunkett), когда тот искал замену холодильным агентам, чтобы обезопасить домашний быт. Во время одного из своих экспериментов ученый открыл странную скользкую смолу, которая позже стала больше известной как тефлон.

3. Теория эволюции и естественного отбора

Фото: wikimedia

Вдохновленный своими наблюдениями в ходе второго исследовательского путешествия в 1831-1836 годах, Чарльз Дарвин (Charles Darwin) приступил к написанию своей знаменитой теории эволюции и естественного отбора, ставшей по мнению ученых со всего света ключевым описанием механизма развития всего живого на Земле

2. Жидкие кристаллы


Фото: William Hook / flickr

Если бы австрийский ботаник и физиолог Фридрих Райницер (Friedrich Reinitzer) не открыл жидкие кристаллы во время проверки физико-химических свойств различных производных холестерина в 1888 году, сегодня вы бы не знали, что такое телевизоры с жидкокристаллическими экранами или плоские LCD мониторы.

1. Вакцина от полиомиелита


Фото: GDC Global / flickr

26 марта 1953 года американский медицинский исследователь Йонас Солк (Jonas Salk) объявил, что ему удалось провести успешные испытания вакцины против полиомиелита, вируса, который вызывает тяжелое хроническое заболевание. В 1952 году из-за эпидемии этого недуга диагноз был поставлен 58 000 жителей США, и болезнь унесла 3 000 невинных жизней. Это подстегнуло Солка на поиски спасения, и теперь цивилизованный мир в безопасности хотя бы от этой беды.


Гелиоцентрическая система Коперника

Посмотрим на особенности процесса фундаментальных открытий, начав наш анализ с изучения истории создания гелиоцентрической системы мира.

Представление коперниковой системы мироздания как возникшей из-за несоответствия астрономических наблюдений геоцентрической модели мира Птолемея не соответствует историческим фактам.

Во-первых, система Коперника вовсе не описывала наблюдаемые данные лучше, чем птолемеевская система. Кстати, именно поэтому ее отвергали философ Ф.Бэкон и астроном Т. Браге.

Во-вторых, даже если допустить, что птолемеевская модель имела какие-то расхождения с наблюдениями, нельзя отвергнуть и ее возможности справиться с этими расхождениями.

Ведь поведение планет представлялось в этой модели с помощью тщательно разработанной системы эпициклов, которая могла описывать сколь угодно сложное механическое движение. Иными словами, никакой проблемы согласования движения планет по птолемеевской системе с эмпирическими данными просто не существовало.

Но как же тогда могла возникнуть и тем более утвердить себя система Коперника?

Чтобы понять ответ на этот вопрос, нужно осознать суть мировоззренческих новшеств, которые она несла с собой.

Во времена Н.Коперника господствовало теологизированное аристотелевское представление о мире. Суть его заключалась в следующем.

Мир создан Богом специально для человека. Для человека создана и Земля как место его обитания, помещенное в центр мироздания. Вокруг Земли движется небесный свод, на котором расположены все звезды, планеты, а также сферы, связанные с перемещением Солнца и Луны. Весь небесный мир предназначен для того, чтобы обслуживать земную жизнь людей.

В соответствии с этой установкой, весь мир делится на подлунный (земной) и надлунный (небесный)

Подлунный мир - это бренный мир, в котором живет каждый отдельный смертный человек.

Небесный мир - это мир для человечества вообще, вечный мир, в котором действуют свои законы, отличные от земных.

В земном мире справедливы законы аристотелевской физики, согласно которой все движения осуществляются в результате непосредственного воздействия каких-то сил.

В небесном мире все движения осуществляются по круговым орбитам (система эпициклов) без воздействия каких-либо сил.

Н. Коперник радикально изменил эту общепринятую картину мира.

Он не просто поменял местами Землю и Солнце в астрономической схеме, но изменил место человека в мире, поместив его на одну из планет, перепутав земной и небесный миры.

Разрушительный характер идей Н.Коперника был ясен всем. Протестантский лидер М.Лютер, который к астрономии не имел никакого отношения, высказывался в 1539 г. по поводу учения Коперника следующим образом: «Дурак хочет перевернуть вверх дном все искусство астрономии. Но, как указывает Священное писание, Иисус Навин велел остановиться Солнцу, а не Земле».

Могла ли какая-то незначительная причина вызвать столь новые радикальные идеи?

Что человек делает, когда ему в палец попадает заноза? Он, конечно, пытается вытащить занозу, подлечить палец. Вот если началась гангрена, тогда он не пожалеет и целой руки.

Проблемы точного описания наблюдаемых траекторий планет, как уже говорилось, не могли быть основанием для столь смелых и решительных действий.

С другой стороны, следует иметь в виду, что астрономия того времени содержала и немалые возможности для довольно существенных новаций. Так, Тихо Браге, решая астрономические проблемы, связанные с усовершенствованием расчетов траекторий планет, предложил в полном соответствии с традиционным мировоззрением новую систему, в которой вокруг

Земли вращалось Солнце, а вокруг Солнца - все остальные планеты.

Зачем же Н.Копернику понадобилось выдвигать свои идеи?

По-видимому, он решал какую-то свою, фундаментальную проблему.

Что это была за проблема?

И Птолемей, и Аристотель, и Коперник исходили из того, что в небесном мире все движения происходят по окружностям.

Вместе с тем еще в античности была высказана глубокая мысль, что природа в принципе проста. Эта мысль стала со временем одним из фундаментальных принципов познания действительности.

Вместе с тем наблюдательная астрономия обнаружила к тому времени следующее. Хотя птолемеевская модель мира обладала возможностями сколь угодно точного описания любой траектории, для этого было необходимо постоянно изменять количество эпициклов (сегодня - одно количество, завтра - другое). Но в таком случае получалось, что планеты вовсе и не двигаются по эпициклам. Получается, что эпициклы не отражают реальных движений планет, а являются просто математическим приемом описания этого движения.

Кроме того, по системе же Птолемея получалось, что для описания траектории одной планеты надо вводить огромное число эпициклов. Усложненная астрономия плохо выполняла свои практические функции. В частности, было очень трудно вычислить даты религиозных праздников. Эта трудность настолько четко осознавалась в то время, что даже сам папа Римский счел необходимым произвести реформы в астрономии.

Н. Коперник увидел, что два фундаментальных мировоззренческих принципа его времени - принцип движения небесных тел по кругам и принцип простоты природы явно не реализуются в астрономии. Решение этой фундаментальной проблемы и привело его к великому открытию.

Геометрия Лобачевского

Перейдем к анализу другого открытия - открытия неевклидовой геометрии. Попытаемся показать, что и здесь речь шла о фундаментальной проблеме. Рассматривая этот пример, мы выясним ряд других важных моментов истолкования фундаментальных открытий.

Создание неевклидовой геометрии обычно представляется в виде решения известной проблемы пятого постулата геометрии Евклида.

Эта проблема заключалась в следующем.

Основу всей геометрии, как это следовало из системы Евклида, представляли пять следующих постулатов:

1) через две точки можно провести прямую, и притом только одну;

2) любой отрезок может быть продолжен в любые стороны до бесконечности;

3) из любой точки как из центра можно провести окружность любого радиуса;

4) все прямые углы равны;

5) две прямые, пересеченные третьей, пересекутся с той стороны, где сумма внутренних односторонних углов меньше 2d.

Уже во времена Евклида стало ясно, что пятый постулат слишком сложен по сравнению с другими исходными положениями его геометрии. Другие положения казались очевидными. Именно из-за их очевидности они рассматривались как постулаты, т.е. как то, что принимается без доказательств.

Вместе с тем еще Фалес доказал равенство углов при основании равнобедренного треугольника, т.е. положение, значительно более простое, чем пятый постулат. Отсюда ясно то, почему к этому постулату всегда относились с подозрением и пытались представить его теоремой. И у самого Евклида геометрия строилась так, что сначала доказывались те положения, которые не опираются на пятый постулат, а потом уже этот постулат использовался для развертывания содержания геометрии.

Интересно то, что пятый постулат геометрии Евклида стремились доказать как теорему, сохраняя при этом убежденность в его истинности, буквально все крупные математики, вплоть до Н.И. Лобачевского, Ф. Гаусса и Я. Больяи, которые в конце концов и решили проблему. Их решение складывается из следующих моментов:

Пятый постулат геометрии Евклида действительно является постулатом, а не теоремой;

Можно построить новую геометрию, принимая все евклидовы постулаты, кроме пятого, который заменяется его отрицанием, т.е. например, утверждением, что через точку, лежащую вне прямой, можно провести бесконечное число прямых, параллельных данной;

В результате такой замены и была построена неевклидова геометрия.

Поставим теперь следующие вопросы.

Почему в течение двух тысячелетий ни у кого не возникало даже мысли о возможности построения неевклидовой геометрии?

Чтобы ответить на эти вопросы, обратимся к истории науки.

До Н. И. Лобачевского, Ф. Гаусса, Я. Больяи на евклидову геометрию смотрели как на идеал научного знания.

Этому идеалу поклонялись буквально все мыслители прошлого, считавшие, что геометрическое знание в изложении Евклида является совершенным. Оно представлялось образцом организации и доказательности знания.

У И.Канта, например, идея единственности геометрии была органической частью его философской системы. Он считал, что евклидово восприятие действительности является априорным. Оно есть свойство нашего сознания, и потому мы не можем воспринимать действительность иначе.

Вопрос о единственности геометрии был не просто математическим вопросом.

Он носил мировоззренческий характер, был включен в культуру.

Именно по геометрии судили о возможностях математики, об особенностях ее объектов, о стиле мышления математиков и даже о возможностях человека иметь точное, доказательное знание вообще.

Откуда же тогда возникла сама идея возможности различных геометрий?

Почему Н.И.Лобачевский и другие ученые смогли прийти к решению проблемы пятого постулата?

Обратим внимание на то обстоятельство, что время создания неевклидовых геометрий было кризисным с точки зрения решения проблемы пятого постулата Евклида. Хотя математики занимались этой проблемой в течение двух тысячелетий, у них при этом не возникало никаких стрессовых ситуаций по поводу того, что она так долго не решается. Они думали, видимо, так:

Геометрия Евклида - это великолепно построенное здание;

Правда, в ней имеется некоторая неясность, связанная с пятым постулатом, однако в конце концов, она будет устранена.

Проходили, однако, десятки, сотни, тысячи лет, а неясность не устранялась, но это никого особенно не волновало. По-видимому, логика здесь могла быть такая: в конце концов, истина одна, а ложных путей сколько угодно. Пока не удается найти правильное решение проблемы, но оно, несомненно, будет найдено. Утверждение, содержащееся в пятом постулате будет доказано и станет одной из теорем геометрии.

Но что же случилось в начале XIX в.?

Отношение к проблеме доказательства пятого постулата существенно меняется. Мы видим целый ряд прямых заявлений по поводу весьма неблагополучного положения в математике в связи с тем, что никак не удается доказать столь злополучный постулат.

Наиболее интересным и ярким свидетельством этого является письмо Ф.Больяи его сыну Я.Больяи, который стал одним из создателей неевклидовой геометрии.

«Молю тебя, - писал отец, - не делай только и ты попыток одолеть теорию параллельных линий; ты затратишь на это все время, а предложения этого вы не докажете все вместе. Не пытайся одолеть теорию параллельных линий ни тем способом, который ты сообщаешь мне, ни каким-либо другим. Я изучил все пути до конца; я не встретил ни одной идеи, которой бы я не разрабатывал. Я прошел весь беспросветный мрак этой ночи, и всякий светоч, всякую радость жизни я в ней похоронил. Ради бога, молю тебя, оставь эту материю, страшись ее не меньше, нежели чувственных увлечений, потому что и она может лишить тебя всего твоего времени, здоровья, покоя, всего счастья твоей жизни. Этот беспросветный мрак может потопить тысячи ньютоновских башен. Он никогда не прояснится на земле, и никогда несчастный род человеческий не будет владеть чем-либо совершенным даже в геометрии».

Почему такая реакция возникает только в начале XIX в.?

Прежде всего потому, что в это время проблема пятого постулата перестала быть частной, которую можно и не решать. В глазах Ф.Больяи она предстала как целый веер фундаментальных вопросов.

Как вообще должна быть построена математика?

Может ли она быть построена на действительно прочных основаниях?

Является ли она достоверным знанием?

Является ли она вообще логически прочным знанием?

Такая постановка вопроса была обусловлена не только историей развития исследований, связанных с доказательством пятого постулата. Она определялась развитием математики в целом, в том числе ее использованием в самых различных сферах культуры.

Вплоть до XVII в. математика находилась в зачаточном состоянии. Наиболее разработанной была геометрия, были известны начала алгебры и тригонометрии. Но затем, начиная с XVII в., математика стала бурно развиваться и к началу XIX в. она представляла довольно сложную и развитую систему знаний.

Прежде всего под влиянием потребностей механики были созданы дифференциальное и интегральное исчисления.

Значительное развитие получила алгебра. В математику органично вошло понятие функции (активно использовалось большое количество различных функций во многих разделах физики).

Сложилась в достаточно целостную систему теория вероятности.

Сформировалась теория рядов.

Таким образом, математическое знание выросло не только количественно, но и качественно. Вместе с тем появилось большое число понятий, которые математики не умели истолковывать.

Например, алгебра несла с собой определенное представление о числе. Положительные, отрицательные и мнимые величины были в равной мере ее объектами. Но что такое отрицательные или мнимые числа, этого никто не знал вплоть до начала XIX в.

Не было ясного ответа и на более общий вопрос - что вообще есть число?

А что такое бесконечно малые величины?

Как можно обосновать операции дифференцирования, интегрирования, суммирования рядов?

Что представляет собой вероятность?

В начале XIX в. никто не мог ответить на эти вопросы.

Короче говоря, в математике к началу XIX в. сложилась в целом сложная ситуация.

С одной стороны, эта область науки интенсивно развивалась и находила ценные приложения,

С другой - она покоилась на очень неясных основаниях.

В такой ситуации по-другому была воспринята и проблема пятого постулата геометрии Евклида.

Трудности истолкования новых понятий можно было понять так: то, что неясно сегодня, станет ясным завтра, когда соответствующая область исследований получит достаточное развитие, когда будет сосредоточено достаточно интеллектуальных усилий для решения проблемы.

Проблема пятого постулата существует, однако, уже два тысячелетия. И до сих пор у нее нет решения.

Может быть, эта проблема устанавливает некий эталон для истолкования современного состояния математики и уяснения того, что есть математика вообще?

Может быть, тогда математика - это вовсе и не точное знание?

В свете таких вопросов проблема пятого постулата перестала быть частной проблемой геометрии.

Она превратилась в фундаментальную проблему математики.

Этот анализ дает нам еще одно подтверждение той идеи, что фундаментальные открытия суть решения фундаментальных проблем.

Он показывает также, что фундаментальными проблемы становятся в рамках культуры, иначе говоря, фундаментальность исторически обусловлена.

Но в рамках культуры не только формируются фундаментальные проблемы, в них, как правило, подготавливаются и многие компоненты их решения. Отсюда становится ясным, почему такие проблемы решаются именно в данный момент, а не в какое-либо иное время.

Рассмотрим опять же в этой связи процесс создания неевклидовой геометрии. Обратим внимание на следующие интересные фрагменты истории исследований в этой области.

Доказательства пятого постулата Евклида проводились на протяжении двух тысячелетий, но при этом они считались задачей второго рода, т.е. постулат представлялся теоремой евклидовой геометрии. Это была задача с четко фиксируемым фундаментом для ее разрешения.

Однако во второй половине XVIII в. появляются исследования, в которых высказывается мысль о неразрешимости данной проблемы. В 1762 г. Клюгель, публикуя обзор исследований этой проблемы, приходит к выводу, что Евклид был, по-видимому, прав, считая пятый постулат именно постулатом.

Независимо от того, как относился к своему выводу Клюгель, его вывод был очень серьезным, так как провоцировал следующий вопрос: если пятый постулат геометрии Евклида действительно является постулатом, а не теоремой, то что же такое постулат? Ведь постулатом считалось положение очевидное, а потому не требующее доказательства.

Но подобный вопрос уже не являлся вопросом второго рода.

Он представлял уже метавопрос, т.е. выводил мысль на философско-методологический уровень.

Итак, проблема пятого постулата геометрии Евклида начинала порождать совсем особый род размышлений.

Перевод этой проблемы на метауровень придал ей мировоззренческое звучание.

Она перестала быть проблемой второго рода.

Другой исторический момент. Весьма любопытными представляются исследования, проводившиеся во второй половине XVIII в. И.Ламбертом и Дж.Саккери. Об этих исследованиях знал И.Кант, который не случайно говорил о гипотетическом статусе геометрических положений. Если вещи-в-себе характеризуются геометрически, то почему бы им, ставил вопрос И.Кант, не подчиняться какой-либо иной геометрии, отличной от евклидовой?

Ход рассуждений И.Канта был навеян идеями абстрактной возможности неевклидовых геометрий, которые высказывались И.Ламбертом и Дж.Саккери.

Дж.Саккери, пытаясь доказать пятый постулат геометрии Евклида в качестве теоремы, т.е. смотря на него как на проблему ординарную, использовал способ доказательства, называемый «доказательством от противного».

Ход рассуждений Дж.Саккери был, вероятно, следующим. Если мы примем вместо пятого постулата утверждение ему противоположное, соединим его со всеми другими утверждениями евклидовой геометрии и, выводя следствия из такой системы исходных положений, придем к противоречию, то тем самым мы докажем истинность именно пятого постулата.

Схема этого рассуждения очень проста. Может быть либо А, либо не-А, и, если все остальные постулаты истинны и мы допускаем не-А, а получаем ложь, значит, истинно именно А.

Используя этот стандартный прием доказательства, Дж.Саккери стал развертывать систему следствий из своих предположений, стремясь обнаружить их противоречивость. Таким образом он вывел около 40 теорем неевклидовой геометрии, но противоречий не обнаружил.

Как же он оценил складывающуюся ситуацию? Считая пятый постулат геометрии Евклида теоремой (т.е.задачей второго рода), он просто заключил, что в его случае метод «доказательства от противного» не работает. Итак, смотря на эту проблему как на проблему второго рода, он, имея в руках новую геометрию, не смог правильно истолковать ситуацию.

Отсюда следуют два вывода.

Во-первых, в определенном смысле новая геометрия появилась в культуре уже до того, как была открыта неевклидова геометрия.

Во-вторых, именно верная оценка проблемы пятого постулата, т.е. трактовка ее как проблемы первого, а не второго рода, позволила Н.И.Лобачевскому, Ф.Гауссу и Я.Больяи прийти к решению проблемы и создать неевклидову геометрию. Надо было понять саму возможность создания таких геометрий.

Дж.Саккери допускал такую возможность лишь как логическую, сделав конструктивный шаг в решении проблемы евклидовского постулата в традиционном стиле. Но он вовсе не рассматривал ее всерьез считая, что неевклидовы геометрии невозможны, хотя и логически допустимы.

Таким образом, история не только подготавливает проблему, но и во многом определяет направление и возможность ее решения.

Рассмотрим в таком ракурсе коперниканскую революцию.

Как хорошо известно, вовсе не Н.Коперник открыл гелиоцентрическую систему. Ее создал Аристарх еще в античности. Может быть, Н.Коперник не знал об этом? Да ничего подобного! Он знал и ссылался на Аристарха.

Но тогда почему же говорят о коперниканской?

Дело в том, что Н.Коперник перенес уже известную модель в совершенно новую культурную среду, поняв, что с ее помощью можно решить целый ряд проблем. В этом как раз и заключалась суть его революции, а вовсе не в создании гелиоцентрической системы.

Открытие Г. Менделя

Рассмотрим теперь вопрос о культурной подготовке открытий на примере открытия Г. Менделя.

В этом открытии присутствуют не только так называемые законы Менделя, представляющие эмпирические закономерности, о которых обычно говорят, но и система очень важных теоретических положений, которая, по сути дела, и определяет значимость открытия Г.Менделя.

Более того, эмпирические закономерности, установление которых приписывается Г.Менделю, вовсе и не были им установлены. Они были известны еще до него и изучались О.Сажрэ, Т.Найтом, Ш.Ноденом. Г.Мендель, собственно, только уточнил их.

Существенно и то, что его открытие имело методологическое значение. Для биологии оно давало не только новую теоретическую модель, но и систему новых методологических принципов, с помощью которых можно было изучать очень сложные явления жизни.

Г. Мендель предположил наличие некоторых элементарных носителей наследственности, которые могут свободно комбинироваться при слиянии клеток в процессе оплодотворения. Именно это комбинирование зачатков наследственности, которое осуществляется на клеточном уровне, дает различные типы наследственных структур.

Такая теоретическая модель включает в себя ряд очень важных идей.

Во-первых - это выделение элементарных носителей на уровне клетки.

Обосновывая такое выделение, Г.Мендель опирался, очевидно, на теорию клеточного строения живого вещества. Она была очень важной для него. Г.Мендель познакомился с основными ее положениями в курсе лекций Ф.Унгера в Венском университете. Унгер был одним из новаторов использования физико-химических методов в исследовании живого. При этом он считал, что эти исследования должны доходить до уровня клетки. - Во-вторых, Г.Мендель считал, что законы, управляющие носителями наследственности, столь же определенны, как и законы, которым подчиняются физические явления.

Очевидно, здесь Г.Мендель исходил из общей мировоззренческой установки, которая глубоко укоренилась в культуре того времени, т.е. установки о закономерности природы, которая распространялась и на явления наследственности.

В-третьих, Г.Мендель реализовывал в своих исследованиях общий идеал физического познания мира, согласно которому следует выявить элементарный объект, найти законы управляющие его поведением и потом, опираясь на эти знания конструировать более сложные процессы, описывая и объясняя их особенности.

В-четвертых, Г.Мендель предположил, что законы, управляющие его элементарными носителями, суть вероятностные законы. Для 1865 г., в котором он опубликовал свое открытие, это была очень новая идея. Ведь именно в то время вероятностные представления начали вводиться в физику. Чуть раньше - в 30-х годах - вероятностное описание явлений действительности вошло в культуру, благодаря работам Г.Кетле по социальной статистике. Г.Мендель заимствовал идеи вероятностного описания именно из социальной статистики.

Кроме того, Г.Мендель предполагал, что его теория позволит объяснить наследственность лишь в том случае, если она будет подтверждена опытом. Это было очень важно, тем более что в науке того времени явления жизни, как и многие другие явления, объяснялись спекулятивным образом.

Но как могло быть произведено сопоставление этой теории с опытом в биологии?

Для Г. Менделя здесь возникла новая проблема. Оно должно было осуществляться на базе статистической обработки элементарных данных. Именно неумение обрабатывать статистический материал, по мнению Г.Менделя, не позволило, например, Ш.Нодену установить правильные количественные соотношения в расщеплении признаков.

Наконец, надо отметить, что менделевский экспериментальный подход в биологии был спланирован на очень длинное время. Сам Г.Мендель проводил эксперименты около десяти лет, реализуя заранее намеченную программу исследований.

Успех его экспериментов был связан прежде всего с выбором материала. Менделевские законы наследственности очень просты, но проявляются фактически на небольшом количестве биологических объектов. Одним из таких объектов является горох, для которого к тому же надо было выбрать чистые линии. Этим отбором Г.Мендель занимался два года. Он четко представлял себе, следуя физическому идеалу, что объект, который он выбирает, должен быть простым, полностью контролируемым во всех своих изменениях. Только тогда и можно установить точные законы. Конечно, Г.Мендель не представлял наверняка всех деталей, которые он получит в будущем.

Но несомненно то, что все его исследования были четко спланированы и опирались на систему теоретических взглядов о закономерностях наследования.

Он принципиально не мог сделать и одного шага по этому пути, если бы у него не было заранее достаточно разработанных теоретических идей.

Таким образом, открытие Г.Менделя включает в себя не просто обнаружение совокупности эмпирических закономерностей, которые были им не столько открыты, сколько уточнены.

Главное в том, что Г.Мендель впервые построил теоретическую модель явлений наследственности, которая опиралась на выделение ее элементарных носителей, подчиняющихся вероятностным законам.

Особого внимания заслуживает сама система идей методологического характера, связанных с оценкой роли в науке статистики, вероятности и планирования эмпирических исследований.

Открытие Г.Менделя не было случайным.

Оно, как и другие фундаментальные открытия, обусловлено особенностями культуры его времени, как европейской, так и национальной.

Но почему это выдающееся открытие было сделано именно Г.Менделем - монахом и почему именно в Моравии, по существу периферии Австрийской империи?

Попробуем ответить на эти вопросы.

Г. Мендель был монахом августинского монастыря в Брно, который сосредоточил в своих стенах множество мыслящих и образованных людей. Так, настоятель монастыря Ф.Ц.Напп считается выдающимся деятелем моравской культуры. Он активно содействовал развитию образования в своем крае, интересовался естествознанием и занимался, в частности, проблемами селекции.

Среди монахов этого монастыря был Т.Братранек, ставший впоследствии ректором Краковского университета. Т.Братранека привлекали натурфилософские представления Ф.Гете, и он писал работы, в которых сопоставлял эволюционные идеи Ч.Дарвина и великого немецкого поэта.

Еще один монах этого монастыря - М.Клацель - страстно увлекался учением Г. Гегеля о развитии. Он интересовался закономерностями образования растительных гибридов, проводил опыты с горохом. Именно от него Г.Мендель унаследовал участок для своих опытов. За свои либеральные взгляды М.Клацель был изгнан из монастыря и уехал в Америку.

В монастыре проживал и П.Кржижковский, реформатор церковной музыки, впоследствии ставший учителем известного чешского композитора Л.Яначека.

Г. Мендель с детства проявлял большие способности в изучении наук. Стремление получить хорошее образование и избавиться от тяжелых материальных забот привело его в 1843 г. в монастырь. Здесь, изучая богословие, он вместе с тем проявил интерес к земледелию, садоводству, виноградарству. Стремясь получить систематические знания в этой области, он слушал лекции по этим предметам в философском училище в городе Брно. Еще совсем молодым человеком Г. Мендель преподавал латинский, греческий и немецкий языки, а также курс математики и геометрии в гимназии города Зноймо. С 1851 по 1853 г. Г.Мендель изучал естественные науки в Венском университете, а с 1854 г., в течение 14 лет, преподавал в училище физику и природоведение.

В своих письмах он часто называл себя физиком, проявляя большую привязанность к этой науке. До конца своей жизни он сохранял интерес к различным физическим явлениям. Но в особенности его занимали проблемы метеорологии. Когда его избрали аббатом монастыря, у него уже не было времени проводить свои биологические опыты, к тому же у него ухудшилось зрение. Но он до самой смерти занимался метеорологическими исследованиями и при этом особенно увлекался их статистической обработкой.

Уже эти факты из жизни Г.Менделя дают нам представление о том, почему Г.Мендель - монах смог сделать научное открытие. Но почему это открытие произошло именно в Моравии, а не, скажем, в Англии или Франции, которые являлись в то время несомненными лидерами в развитии науки?

Во время жизни Г. Менделя Моравия была частью Австрийской империи. Ее коренное население подвергалось сильным притеснениям, а габсбургские монархи не были заинтересованы в развитии моравской культуры. Но Моравия была чрезвычайно благоприятной страной для развития сельского хозяйства. Поэтому в 70-е годы XVIII в. габсбургская правительница Мария Терезия, проводя экономические реформы, повелела организовать в Моравии сельскохозяйственные общества. Чтобы больше собирать продукции с земли, всем, кто ведет хозяйство, предписывалось даже сдавать экзамены по основам сельскохозяйственных наук.

В результате в Моравии стали создаваться сельскохозяйственные школы, началось развитие сельскохозяйственных наук. В Моравии сложилась весьма значительная концентрация обществ сельскохозяйственного профиля. Их было, пожалуй, больше, чем в Англии. Именно в Моравии впервые заговорили о селекционной науке, которая внедрялась и в практику. Уже в 20-е годы XIX в. в Моравии местные селекционеры активно используют метод гибридизации для выведения новых пород животных и особенно новых сортов растений. Проблемы селекционной науки колоссально обострились как раз на рубеже XVIII и XIX вв., поскольку бурный рост промышленности и городского населения требовал интенсификации сельскохозяйственного производства.

В этой обстановке раскрытие законов наследственности имело большое практическое значение. Проблема эта остро стояла и в теоретической биологии. Ученые XIX в. довольно много знали и о морфологии, и о физиологии живого. Благодаря теории естественного отбора Ч. Дарвина удалось понять сущность процесса эволюции жизни на Земле. Однако законы наследственности оставались непознанными.

Иными словами, создалась явно выраженная проблемная ситуация, фундаментального характера.

Замечательные и даже во многом удивительные результаты, полученные Г.Менделем также коренились в культуре того времени.

В этом смысле особенно показательна идея вероятностного характера законов наследственности. Она была заимствована Г.Менделем из социальной статистики, которая, благодаря прежде всего работам А.Кетле, привлекала в то время к себе всеобщее внимание. Расширяющаяся в то время практика статистической обработки эмпирического материала как в социальной статистике, так и в физике, несомненно, способствовала ее распространению на область явлений жизни.

Вместе с тем стремление выделить элементарные единицы наследования и на основании их взаимодействия объяснить особенности процесса наследования в целом представляло явное следование физической методологии познания.

Этот идеал был четко сформулирован уже в начале XIX в. И он активно проникал во все науки. Кстати говоря, именно следуя ему, в биологии стали все шире применять физико-химические методы. В психологии И.Гербарт проводил исследования, прямо руководствуясь этим идеалом. На него ориентировался О.Конт обосновывая необходимость создания социологии. По этому же пути следовал Г.Мендель в изучении явлений наследственности.

Идея построить научную теорию наследования на уровне клетки могла возникнуть только в середине XIX в.

Наконец, если говорить о таких деталях, как выбор самого объекта исследования - гороха - то свойства расщепления, доминантности этого объекта обнаружили в конце XVIII - начале XIX вв. Имеется целый ряд работ, в которых описывались эти свойства, которые и привлекли внимание Менделя.

Одним словом, здесь, как и в других примерах, мы видим, что фундаментальные открытия являются решением фундаментальной проблемы.

Они всегда исторически подготовлены.

Подготовленной оказывается не только сама проблема, но и компоненты ее решения.

Но это не должно создавать иллюзию, что для такого рода открытий вовсе и не нужны гении. Осознание фундаментальной проблемы, нахождение реальных путей ее решения требует огромного интеллекта, широкой образованности, целеустремленности, которые и позволяют ученому лучше других чувствовать дыхание времени.



1. Составьте план прочитанного текста.

1- й вариант — простой, короткий план;

2- й вариант — развернутый план, в котором к каждому главному пункту да­ны еще несколько подпунктов.

Остановимся на кратком плане, кото­рый при необходимости всегда можно раз­вернуть.

1. Древние и современные способы изу­чения Земли.
2. Знания о Земле ученых Древнего мира.
3. Расширение знаний о Земле в Сред­ние века и в эпоху Великих географиче­ских открытий.
4. Вклад русских землепроходцев и уче­ных в изучение Земли.
5. Современные исследования Земли: новые открытия и гипотезы.

2. Назовите основные эпохи накопления геогра­фических знаний о Земле.

За основу для выделения эпох накопле­ния географических знаний мы можем взять исторические периоды развития об­щества:

1) Древний мир (до первой половины V в. н. э.);

2) Средние века (вторая половина V- XV в.);

3) Новое время (XVI-XIX вв.);

4) Новейшее время (XX-XXI вв.).

3. Назовите важнейшие путешествия и экспеди­ции, которые привели к наиболее важным откры­тиям.

Чтобы выполнить это задание, проана­лизируйте рисунок 5 в учебнике и соот­ветствующую карту в атласе, познакомь­тесь с портретами великих путешествен­ников и прочитайте их биографии в энциклопедии. Главное, что нужно пони­мать, — все экспедиции и важные откры­тия стали возможными благодаря целе­устремленности и отчаянной смелости конкретных людей, их стремлению уз­нать больше о Земле.

4. Приведите примеры открытий, о которых вы узнали самостоятельно из книг и других источников знаний.

Вы сможете самостоятельно выполнить задание, прочитав рекомендуемые книги со с. 17 учебника.

5. На какие вопросы отвечает современная гео­графия?

Самый важный вопрос, на который мо­жет ответить география, — это вопрос о том, как сохранить жизнь людей на пла­нете Земля.

География совместно с другими нау­ками уже отметила недопустимость новой мировой войны между странами, обла­дающими огромными запасами ядерного оружия. Было доказано, что вместе с распространением болезней, связанных с радиоактивным заражением, может воз­никнуть «ядерная зима», при которой солнечные лучи не смогут освещать Зем­лю из-за загрязнения атмосферы. Отсутст­вие солнечного тепла и света приведет к гибели растений, животных и людей, оставшихся в живых после ядерных взры- вов. Также огромной проблемой является наступающее глобальное потепление. Гео­графия помогает объяснить все связи, су­ществующие в природе, взаимосвязи при­роды и общества; способствует решению многих серьезных проблем современного человечества.

ВОПРОСЫ И ЗАДАНИЯ

1. Составьте развёрнутый план текста § 2.

География древности. Завоевания – двигатель древней географии. Земледелие и скотоводство расширили знания о Земле.

Древняя Греция – родина географии. Геродот как основатель географической науки. Аристотель высказал идею о шарообразности Земли.

География средних веков. Развитие географии продолжили арабы. Развитие судостроения. Открытие компаса европейцами. Путешествия Марко Поло.

Эпоха Великих географических открытий. Открытие новых континентов и морских путей.

Эпоха первых научных экспедиций. Ещё большее развитие географии, открытие новых земель, законов физической географии, новых видов растений и животных, изучение новых народов.

Современная эпоха. Запуски космических аппаратов, обобщение знаний и создание теорий. Международные объединения географов.

2. Назовите основные эпохи развития географических знаний. Какая из эпох обогатила географию знанием об устройстве поверхности Земли?

География древности. Античная География. География средних веков. Эпоха Великих географических открытий. Эпоха первых научных экспедиций. Современная эпоха.

Обогатила эпоха Великих географических открытий.

3*. Какие из путешествий и экспедиций привели к наиболее важным открытиям?

Открытие Колумбом Америки. Экспедиция Васко да Гамы в Индию.

Китайские Экспедиции Чжэн Хе. Экспедиции Вавилова. Экспедиция Магеллана.

4. Приведите примеры открытий, о которых вы узнали самостоятельно из книг и других источников.

В книге «Дети капитана Гранта» можно узнать о новых странах и островах. «Чудесное путешествие Нильса с дикими гусями» рассказывает о географии Швеции

5*. На какие вопросы отвечает современная география?

Как и какие природные процессы создают горы и равнины, как изменяется рельеф Земли, какие общие закономерности влияют на таяние ледников, рост деревьев, расположение городов. Современная география старается не только исследовать и описать всю поверхность Земли, но и объяснить, почему она устроена именно так, а не иначе.География прогнозирует все изменения, которые происходят в природе, особенно те, которые могут произойти в результате деятельности людей. Роль географической науки в наши дни значительно возрастает, так как на географической карте мира остаётся все меньше территорий, которых ещё нам следует открыть.

6. Какие новые знания о Земле и ближайшем космосе учёные получают с помощью новейших методов исследования?

1. Методы полевой геологической съемки изучение геологических обнажений, извлеченного при бурении скважин кернового материала, слоев горных пород в шахтах, изверженных вулканических продуктов, непосредственное полевое изучение протекающих на поверхности геологических процессов.

2. Геофизические методы используются для изучения глубинного строения Земли и литосферы. Сейсмические методы, основанные на изучении скорости распространения продольных и поперечных волн, позволили выделить внутренние оболочки Земли. Гравиметрические методы, изучающие вариации силы тяжести на поверхности Земли, позволяют обнаружить положительные и отрицательные гравитационные аномалии и, следовательно, предполагать наличие определенных видов полезных ископаемых. Палеомагнитный метод изучает ориентировку намагниченных кристаллов в слоях горных пород. Осаждающиеся кристаллы ферромагнитных минералов ориентируются своей длинной осью в соответствии с направлениями силовых линий магнитного поля и знаками намагниченности полюсов Земли. Метод основан на непостоянстве (инверсии) знака полярности магнитных полюсов. Современные знаки намагниченности полюсов (эпоха Брюнес) Земля приобрела 700 000 лет назад. Предыдущая эпоха обратной намагниченности Матуяма.

3. Астрономические и космические методы основаны на изучении метеоритов, приливно-отливных движений литосферы, а также на исследовании других планет и Земли (из космоса). Позволяют глубже понять суть происходящих на Земле и в космосе процессов.

4. Методы моделирования позволяют в лабораторных условиях воспроизводить (и изучать) геологические процессы.

5. Метод актуализма протекающие ныне в определенных условиях геологические процессы ведут к образованию определенных комплексов горных пород. Следовательно, наличие в древних слоях таких же пород свидетельствует об определенных, идентичных современным процессах, происходивших в прошлом.

6. Минералогические и петрографические методы изучают минералы и горные породы (поиск полезных ископаемых, восстановление истории развития Земли)