Болезни Военный билет Призыв

Математическое моделирование биологических. Математическая биология. Специфика моделей живых систем

Несмотря на разнообразие живых систем, все они обладают следующими специфическими чертами, которые необходимо учитывать при построении моделей.

  • 1. Сложные системы. Все биологические системы являются сложными многокомпонентными, пространственно-структурированными, их элементы обладают индивидуальностью. При моделировании таких систем возможны два подхода. Первый - агрегированный, феноменологический. В соответствии с этим подходом выделяются определяющие характеристики системы (например, общая численность видов) и рассматриваются качественные свойства поведения этих величин во времени (устойчивость стационарного состояния, наличие колебаний, существование пространственной неоднородности). Такой подход является исторически наиболее древним и свойственен динамической теории популяций. Другой подход - подробное рассмотрение элементов системы и их взаимодействий, построение имитационной модели, параметры которой имеют ясный физический и биологический смысл. Такая модель не допускает аналитического исследования, но при хорошей экспериментальной изученности фрагментов системы может дать количественный прогноз се поведения при различных внешних воздействиях.
  • 2. Размножающиеся системы (способные к авторепродукции). Это важнейшее свойство живых систем определяет их способность перерабатывать неорганическое и органическое вещество для биосинтеза биологических макромолекул, клеток, организмов. В феноменологических моделях это свойство выражается в наличии в уравнениях автокаталитических членов, определяющих возможность роста (в нелимитированных условиях - экспоненциального), возможность неустойчивости стационарного состояния в локальных системах (необходимое условие возникновения колебательных и квазистохастических режимов) и неустойчивости гомогенного стационарного состояния в пространственно распределенных системах (условие неоднородных в пространстве распределений и автоволновых режимов). Важную роль в развитии сложных пространственно-временных режимов играют процессы взаимодействия компонентов (биохимические реакции) и процессы переноса, как хаотического (диффузия), так и связанного с направлением внешних сил (гравитация, электромагнитные поля) или с адаптивными функциями живых организмов (например, движение цитоплазмы в клетках под действием микрофиламептов).
  • 3. Открытые системы, постоянно пропускающие через себя потоки вещества и энергии. Биологические системы далеки от термодинамического равновесия и потому описываются нелинейными уравнениями. Линейные соотношения Онзагера, связывающие силы и потоки, справедливы только вблизи термодинамического равновесия.
  • 4. Биологические объекты имеют сложную многоуровневую систему регуляции. В биохимической кинетике это выражается в наличии в схемах петель обратной связи, как положительной, так и отрицательной. В уравнениях локальных взаимодействий обратные связи описываются нелинейными функциями, характер которых определяет возможность возникновения и свойства сложных кинетических режимов, в том числе колебательных и квазистохастических. Такого типа нелинейности при учете пространственного распределения и процессов переноса обусловливают паттерны стационарных структур (пятна различной формы, периодические диссипативные структуры) и типы автоволнового поведения (движущиеся фронты, бегущие волны, ведущие центры, спиральные волны и др.).
  • 5. Живые системы имеют сложную пространственную структуру. Живая клетка и содержащиеся в ней органеллы имеют мембраны, любой живой организм содержит огромное количество мембран, общая площадь которых составляет десятки гектаров. Естественно, что среду внутри живых систем нельзя рассматривать как гомогенную. Само возникновение такой пространственной структуры и законы ее формирования представляют одну из задач теоретической биологии. Один из подходов решения такой задачи - математическая теория морфогенеза.

Мембраны не только выделяют различные реакционные объемы живых клеток, отделяют живое от неживого (среды). Они играют ключевую роль в метаболизме, селективно пропуская потоки неорганических ионов и органических молекул. В мембранах хлоропластов осуществляются первичные процессы фотосинтеза - запасание энергии света в виде энергии высокоэнергетических химических соединений, используемых в дальнейшем для синтеза органического вещества и других внутриклеточных процессов. В мембранах митохондрий сосредоточены ключевые стадии процесса дыхания, мембраны нервных клеток определяют их способность к нервной проводимости. Математические модели процессов в биологических мембранах составляют существенную часть математической биофизики.

Существующие модели в основном представляют собой системы дифференциальных уравнений. Однако очевидно, что непрерывные модели не способны описать в деталях процессы, происходящие в столь индивидуальных и структурированных сложных системах, каковыми являются живые системы. В связи с развитием вычислительных, графических и интеллектуальных возможностей компьютеров все большую роль в математической биофизике играют имитационные модели, построенные па основе дискретной математики, в том числе модели клеточных автоматов.

6. Имитационные модели конкретных сложных живых систем, как правило, максимально учитывают имеющуюся информацию об объекте. Имитационные модели применяются для описания объектов различного уровня организации живой материи - от биомакромолскул до моделей биогеоценозов. В последнем случае модели должны включать блоки, описывающие как живые, так и «косные» компоненты. Классическим примером имитационных моделей являются модели молекулярной динамики, в которых задаются координаты и импульсы всех атомов, составляющих биомакромолекулу, и законы их взаимодействия. Вычисляемая на компьютере картина «жизни» системы позволяет проследить, как физические законы проявляются в функционировании простейших биологических объектов - биомакромолекул и их окружения. Сходные модели, в которых элементами (кирпичиками) уже являются не атомы, а группы атомов, используются в современной технике компьютерного конструирования биотехнологических катализаторов и лекарственных препаратов, действующих на определенные активные группы мембран микроорганизмов, вирусов или выполняющих другие направленные действия.

Имитационные модели созданы для описания физиологических процессов, происходящих в жизненно важных органах: нервном волокне, сердце, мозге, желудочно-кишечном тракте, кровеносном русле . Па них проигрываются «сценарии» процессов, протекающих в норме и при различных патологиях, исследуется влияние на процессы различных внешних воздействий, в том числе лекарственных препаратов. Имитационные модели широко используются для описания продукционного процесса растений и применяются для разработки оптимального режима выращивания растений с целью получения максимального урожая или получения наиболее равномерно распределенного во времени созревания плодов. Особенно важны такие разработки для дорогостоящего и энергоемкого тепличного хозяйства.

ЛЕКЦИЯ 1
ВВЕДЕНИЕ. МАТЕМАТИЧЕСКИЕ МОДЕЛИ В БИОЛОГИИ

Понятие модели. Объекты, цели и методы моделирования. Модели в разных науках. Компьютерные и математические модели. История первых моделей в биологии. Современная классификация моделей биологических процессов. Регрессионные, имитационные, качественные модели. Принципы имитацуионного моделирования и примеры моделей. Специфика моделирования живых систем.

Компьютеры в современном мире стали привычными для человеческой деятельности: в финансовой сфере, в бизнесе, промышленности, образовании, сфере досуга. Благодаря компьютерам западной цивилизации удалось существенно продвинуться в следующих направлениях.

  • Автоматизация трудовой деятельности во всех сферах
  • Информационная революция. Возможность хранить и структурировать огромные и самые разнообразные массивы информации и производить быстрый и эффективный поиск необходимой информации.
  • Прогнозирование. Компьютер позволяет строить имитационные модели сложных систем, проигрывать сценарии и делать прогнозы.
  • Оптимизация. Любая человеческая деятельность, в том числе обыденная жизнь требует постоянной оптимизации действий. В процессе эволюции сформировались биологические системы, которые оказываются оптимальными в том или ином смысле, например, в смысле наиболее экономичного использования энергии. Для того чтобы формализовать целевую функцию, то есть ответить на вопрос, что же является для системы оптимальным, необходимо сформулировать модель оптимизируемого процесса и критерии оптимизации. Компьютер позволяет проектировать и реализовать различные алгоритмы оптимизации.

Компьютер работает не с самой системой, а с моделью. Что же такое МОДЕЛЬ?

Наиболее простой и общий ответ на этот вопрос: модель — это копия объекта, в некотором смысле «более удобная», допускающая манипуляции в пространстве и во времени.

При моделировании, выборе и формулировке модели, определяющими обстоятельствами являются объект, цель и метод (средства) моделирования.
В нашем курсе объектами моделирования будут биологические процессы разного уровня организации.

Методами моделирования служат методы динамической теории систем. Средства — дифференциальные и разностные уравнения, методы качественной теории дифференциальных уравнений, компьютерная симуляция.

Цели моделирования:

  1. Выяснение механизмов взаимодействия элементов системы
  2. Идентификация и верификация параметров модели по экспериментальным данным.
  3. Оценка устойчивости системы (модели). Само понятие устойчивости требует формализации.
  4. Прогноз поведения системы при различных внешних воздействиях, различных способах управления и проч.
  5. Оптимальное управление системой в соответствии с выбранным критерием оптимальности.

Примеры моделей.
1. Портрет дамы.

Пусть некто заказывает художнику написать портрет любимой женщины. Рассмотрим объект, метод (средства) и цель моделирования.
Объектом моделирования является женщина.

Метод (средства) — краски, кисти, холст. Эмаль, если портрет будет сделан на медальоне, как это было принято в прошлые века. Фотоаппарат и пленка. Рекламный щит, если некто хочет, чтобы его даму видели все, кто проезжает по оживленной магистрали. Обложка журнала, или экран телевизора. Наконец, сам художник, фотограф или рекламное агентство в лице своих дизайнеров.

Цель. При моделировании целью, как правило, является манипуляция с пространством и временем. Сохранить облик дамы во времени. Повесить портрет в гостиной, или медальон с изображением любимой — на шею, как это делали в старину. Чтобы потомки восхищались красотой дамы и своим пращуром, которому удалось запечатлеть такую красоту.
Другая цель — воспроизведение изображения (модели) объекта с целью сделать модель доступной некоторому кругу людей. Или многократно тиражировать, если некто хочет, чтобы образ дамы увидели миллионы.

2. Самолет в аэродинамической трубе. Помещая самолет в аэродинамическую трубу и испытывая его в различных воздушных потоках, мы решаем задачу взаимодействия системы с внешней средой. Это еще одна очень важная цель моделирования. При этом в корпусе самолета не обязательно должны находиться кресла, и тем более, стюардессы. Какие из свойств объекта необходимо учесть, а какие можно опустить, степень подробности воспроизведения моделью объекта, определяется теми вопросами, на которые хотят ответить с помощью модели.

3. Аквариум является примером физического моделирования. В аквариуме можно моделировать водную экосистему — речную, озерную, морскую, заселить ее некоторыми видами фито- и зоопланктона, рыбами, поддерживать определенный состав воды, температуру, даже течения. И строго контролировать условия эксперимента. Какие компоненты естественной системы будут воспроизведены, и с какой точностью, зависит от цели моделирования.

4. Выделенные из листьев хлоропласты. На выделенных системах часто изучают процессы, происходящие в живой системе, в этом смысле фрагмент является моделью целой живой системы. Выделение более простой системы позволяет исследовать механизмы процессов на молекулярном уровне. При этом исключается регуляция со стороны более высоких уровней организации, в данном случае, со стороны растительной клетки, листа, наконец, целого растения. В большинстве случаев наблюдать процессы на молекулярном уровне в нативной (ненарушенной) системе не представляется возможным. Говорят, что изученные на выделенном хлоропласте первичные процессы фотосинтеза являются моделью первичных процессов фотосинтеза в живом листе. К сожалению, этот метод фрагментирования приводит к тому, что «…живой ковер жизни распускается по ниточкам, каждая ниточка досконально изучается, но волшебный рисунок жизни оказывается утрачен» (лауреат Нобелевской премии по биохимии Л. Поллинг).

5. Бислойная липидная мембрана. Еще «более модельным» примером является изучение процессов ионного трансмембранного переноса на искусственной бислойной липидной мембране. Понятно, что в реальных биологических объектах мембраны чаще всего не бислойные, а многослойные, содержат встроенные белки и другие компоненты, поверхность их не является плоской и обладает множеством других индивидуальных особенностей. Однако, чтобы изучить законы образования поры, через которую ион проходит сквозь мембрану внутрь клетки или органеллы, необходимо создать «чистую», «модельную» систему, которую можно изучать экспериментально, и для которой можно использовать хорошо разработанное наукой физическое описание.

6. Популяция дрозофилы , является классическим объектом моделирования микроэволюционного процесса и примером исключительно удачно найденной модели. Еще более удобной моделью являются вирусы, которые можно размножать в пробирке. Хотя не вполне ясно, справедливы ли эволюционные закономерности, установленные на вирусах, для законов эволюции высших животных. В лекции 11 мы увидим, что хорошей моделью микроэволюционных процессов являются также микробные популяции в проточном культиваторе.
Из приведенных примеров видно, что любая физическая модель обладает конкретными свойствами физического объекта. В этом ее преимущества, но в этом и ее ограничения.

Компьютерные модели содержат «знания» об объекте в виде математических формул, таблиц, графиков, баз данных и знаний. Они позволяют изучать поведение системы при изменении внутренних характеристик и внешних условий, проигрывать сценарии, решать задачу оптимизации. Однако каждая компьютерная реализация соответствует конкретным, заданным параметрам системы. Наиболее общими и абстрактными являются математические модели.

Математические модели описывают целый класс процессов или явлений, которые обладают сходными свойствами, или являются изоморфными. Наука конца 20 века — синергетика, показала, что сходными уравнениями описываются процессы самоорганизации самой разной природы: от образования скоплений галактик до образования пятен планктона в океане.

Если удается сформулировать «хорошую» математическую модель, для ее исследования можно применить весь арсенал науки, накопленный за тысячелетия. Недаром многие классики независимо высказывали одну и ту же мудрую мысль:

«Область знания становится наукой, когда она выражает свои законы в виде математических соотношений»

С этой точки зрения самая «научная» наука? физика. Она использует математику в качестве своего естественного языка. Все физические законы выражаются в виде математических формул или уравнений.

В химию математика пришла в тридцатые годы 20 века вместе с химической кинетикой и физической химией. Сейчас книги по химии, в особенности по химической кинетике, физической химии, квантовой химии полны математическими символами и уравнениями.

Чем более сложными являются объекты и процессы, которыми занимается наука, тем труднее найти математические абстракции, подходящие для описания этих объектов и процессов. В биологию, геологию и другие «описательные науки» математика пришла по настоящему только во второй половине 20 века.

Первые попытки математически описать биологические процессы относятся к моделям популяционной динамики. Эта область математической биологии и в дальнейшем служила математическим полигоном, на котором «отрабатывались» математические модели в разных областях биологии. В том числе модели эволюции, микробиологии, иммунологии и других областей, связанных с клеточными популяциями.

Самая первая известная модель, сформулированная в биологической постановке, ? знаменитый ряд Фибоначчи, который приводит в своем труде Леонардо из Пизы в 13 веке. Это ряд чисел, описывающий количество пар кроликов, которые рождаются каждый месяц, если кролики начинают размножаться со второго месяца и каждый месяц дают потомство в виде пары кроликов. Ряд представляет последовательность чисел:

5, 8, 13, 21, 34, 55, 89,….,

Риc1.1. Ряд Фибоначчи

Следующая известная истории модель — модель Мальтуса (1798), описывающая размножение популяции со скоростью, пропорциональной ее численности. В дискретном виде этот закон представляет собой геометрическую прогрессию:

Здесь r — коэффициент, аналогичный коэффициенту q в дискретной модели — константа собственной скорости роста популяции, отражающая ее генетический потенциал.

На этих простейших моделях видно, насколько примитивны математические модели по сравнению с биологическими объектами, каждый из которых, к примеру, популяция, ? это совокупность сложно организованных индивидуальных особей? организмов. В свою очередь каждый организм состоит из органов, тканей и клеток, осуществляет процессы метаболизма, двигается, рождается, растет, размножается, стареет и умирает. И каждая живая клетка? сложная гетерогенная система, объем которой разграничен мембранами и содержит субклеточные органеллы, и так далее, вплоть до биомакромолекул, аминокислот и полипептидов. На всех уровнях живой материи мы встречаем сложную пространственно-временную организацию, гетерогенность, индивидуальность, подвижность, потоки массы, энергии и информации.

Ясно, что для таких систем любая математика дает лишь грубое упрощенное описание. Дело существенно продвинулось с использованием компьютеров, которые позволяют имитировать достаточно сложные системы, однако и здесь, как правило, речь идет именно о моделях, т.е. о некоторых идеальных копиях живых систем, отражающих лишь некоторые их свойства, причем схематически.

Сейчас биологические журналы полны математическими формулами и результатами компьютерных симуляций. Имеются специальные журналы, посвященные работам в области математических моделей: Theoretical Biology; Biosystems; Mathematical Ecology, Mathematical biology, Biological systems etc. Работы по математическому моделированию печатаются практически во всех российских биологических журналах: Общая биология, Биофизика, Экология, Молекулярная биология, Физиология растений и других.

В основном, модели являются инструментом изучения конкретных систем, и работы по моделированию печатают в журналах, посвященных той области биологии, к которой относится объект моделирования. Это означает, что модель должна быть интересна, полезна и понятна специалистам-биологам. В то же время она должна быть, естественно, профессионально сделана с точки зрения математики.

Наиболее успешные модели сделаны в содружестве специалистов математиков, или физиков, и биологов, хорошо знающих объект моделирования. При этом наиболее трудная часть совместной работы? это формализация знаний об объекте (как правило, в виде схемы) на языке, который может затем быть переформулирован в математическую или компьютерную модель.

Условно все математические модели биологических систем можно разделить на регрессионные, качественные и имитационные.
Регрессионные зависимости? это формулы, описывающие связь различных характеристик системы, не претендуя на физический или биологический смысл этих зависимостей. Для построения регрессионной модели достаточно статистически достоверных наблюденных корреляций между переменными или параметрами системы.

ПРИМЕРЫ
1. Зависимость между количеством производителей хамсы S и количеством молоди от каждого нерестившегося производителя в Азовском море
(используется в большой имитационной модели динамики рыбного стада Азовского моря, Горстко, 1985):

Y поглощение кислорода, измеренное в мкл(0,25 г)-1ч-1.
D — число дней, в течение которых выдерживались образцы,
B — процентное содержание влаги в образцах,
Т — температура, измеренная в град.С.

Эта формула дает несмещенные оценки для скорости поглощения кислорода во всем диапазоне дней, температур и влажностей, которые наблюдались в эксперименте, со средним квадратичным отклонением в поглощении кислорода, равном s =0.319±0.321.

Коэффициенты в регрессионных моделях обычно определяются с помощью процедур идентификации параметров моделей по экспериментальным данным. При этом чаще всего минимизируется сумма квадратов отклонений теоретической кривой от экспериментальной для всех точек измерений. Т.е. коэффициенты модели подбираются таким образом, чтобы минимизировать функционал:

Здесь i ? номер точки измерения,
xe ? ‘экспериментальные значения переменных,
хt ? теоретические значения переменных,
a1, a2… ? параметры, подлежащие оценке,
wi ? «вес» i-го измерения,
N ? число точек измерения.

Имитационные модели (simulation)
По меткому выражению Р. Шеннона (1978) имитационное моделирование? это нечто промежуточное между искусством и наукой, направление, появление которого целиком обязано бурному росту возможностей вычислительной техники.

Суть имитационного моделирования заключается в исследовании сложной математической модели с помощью вычислительных экспериментов и обработки результатов этих экспериментов. При этом, как правило, создатели имитационной модели пытаются максимально использовать всю имеющуюся информацию об объекте моделирования, как количественную, так и качественную.

Грубо говоря, процесс построения имитационной модели можно представить следующим образом. Мы записываем в любом доступном для компьютера формализованном виде (в виде уравнений, графиков, логических соотношений, вероятностных законов) все, что знаем о системе, а потом проигрываем на компьютере варианты того, что может дать совокупность этих знаний при тех или иных значениях внешних и внутренних параметров системы.
Если вопросы, задаваемые нами модели, относятся не к выяснению фундаментальных законов и причин, определяющих динамику реальной системы, а к бихевиористскому (поведенческому) анализу системы, как правило, выполняемому в практических целях, имитационная модель оказывается исключительно полезной.

Особенно привлекательным оказалось применение имитационных моделей для описания экологических систем — необычайно сложных образований, включающих множество биологических, геологических, метеорологических и прочих факторов. Благодаря возможности проигрывать различные «сценарии» поведения и управления имитационная модель может быть успешно использована для выбора оптимальной стратегии эксплуатации природной экосистемы или оптимального способа создания искусственной экосистемы.

При создании имитационной модели можно позволить себе высокую степень подробности при выборе переменных и параметров модели. При этом модель может получиться разной у различных авторов, поскольку точные формальные правила ее построения отсутствуют. Результаты машинных экспериментов зависят не только от заложенных в модели соотношений, но и от организации комплекса реализующих в модель программ, и от механизма проведения машинных экспериментов. Поэтому воплощением идеи имитационного моделирования следует считать систему человек — машина, обеспечивающую проведение имитационных экспериментов в режиме диалога между лицом, проводящим эксперимент, и «машиной», т.е. комплексом программ.
Основные этапы построения имитационной модели следующие.

Формулируются основные вопросы о поведении сложной системы, ответы на которые мы хотели бы получить. В соответствии с задачами моделирования задается вектор состояния системы. Вводится системное время, моделирующее ход времени в реальной системе. Временной шаг модели также определяется целями моделирования.

Производится декомпозиция системы на отдельные блоки, связанные друг с другом, но обладающие относительной независимостью. Для каждого блока определяют, какие компоненты вектора состояния должны преобразовываться в процессе его функционирования.

Формулируют законы и гипотезы, определяющие поведение отдельных блоков и связь этих блоков друг с другом. Для каждого блока множество законов функционирования дополняется множеством логических операторов, формализующих опыт наблюдения за динамикой процессов в. системе. При необходимости вводится «внутреннее системное время» данного блока модели, позволяющее моделировать более быстрые или более медленные процессы. Если в блоке используются случайные параметры, задаются правила отыскания на каждом шаге некоторых их реализаций. Разрабатываются программы, соответствующие отдельным блокам.
Каждый блок верифицируется по фактическим данным, и при этом его информационные связи с другими блоками «замораживаются». Обычно последовательность действий при верификации блоков такова: часть имеющейся информации используется для оценки параметров модели, а затем по оставшейся части информации сравнением расчетных данных с фактическими проверяется адекватность модели.\

Производится объединение разработанных блоков имитационной модели на базе стандартного или специально созданного математического обеспечения. Апробируются и отрабатываются различные схемы взаимодействия блоков. На этом этапе всю «большую модель» удобно рассматривать как комплекс автоматов с памятью или без нее, детерминированных или стохастических. Работа с моделью тогда представляет собой изучение коллективного поведения автоматов в случайной или детерминированной среде.

Производятся верификация имитационной модели в целом и проверка ее адекватности. Этот процесс еще менее может быть формализован, чем верификация отдельных блоков. Здесь решающими оказываются знания экспертов — специалистов, хорошо знающих реальную систему.

Планируются эксперименты с моделью. При анализе их результатов используются статистическая обработка информации, графические формы выдачи данных и пр. Результаты экспериментов пополняют информационный фонд (банк данных) и используются при дальнейшей работе с моделью.

На каждом из этапов могут возникнуть трудности, для преодоления которых необходимо перестраивать модель, расширять список фазовых переменных, уточнять вид их взаимодействий. По существу, создание имитационной модели включает путь последовательных приближений, в процессе которых получается новая информация об объекте моделирования, усовершенствуется система наблюдений, проверяются гипотезы о механизмах тех или иных процессов в рамках общей имитационной системы.

Таким образом, основные задачи имитационного моделирования:

  1. проверка гипотез о взаимодействии отдельных элементов и подсистем;
  2. прогноз поведения при изменении внутренних характеристик и внешних условий;
  3. оптимизация управления.

Ясно, что разработка имитационной модели сложной системы и работа с этой моделью требуют усилий целого коллектива специалистов, как в области машинной математики, так и в предметной области.

К настоящему времени в литературе имеются тысячи имитационных моделей биологических систем самого разного уровня, многие модели представлены в ИНТЕРНЕТ.

ПРИМЕРЫ
Молекулярная динамика.

Основные принципы построения моделей и результаты молекулярной динамики представлены на сайте www.biophys.ru/ Информационная система Российская биофизика. Биофизическое образование.

На протяжении всей истории западной науки стоял вопрос о том, можно ли, зная координаты всех атомов и законы их взаимодействия, описать все процессы, происходящие во Вселенной. Вопрос не нашел своего однозначного ответа. Квантовая механика утвердила понятие неопределенности на микроуровне. В лекциях 10-12 мы увидим, что существование квазистохастических типов поведения в детерминированных системах делает практически невозможным предсказание поведения некоторых детерминированных систем и на макроуровне.

Следствием первого вопроса является второй: вопрос «сводимости». Можно ли, зная законы физики, т.е. законы движения всех атомов, входящих в состав биологических систем, и законы их взаимодействия, описать поведение живых систем. В принципе, на этот вопрос можно ответить с помощью имитационной модели, в которую заложены координаты и скорости движения всех атомов какой-либо живой системы и законы их взаимодействия. Для любой живой системы такая модель должна содержать огромное количество переменных и параметров и практически неосуществима, но попытки моделировать с помощью такого подхода функционирование элементов живых систем? биомакромолекул делаются, начиная с 70-х годов.

«Молекулярная динамика» — весьма быстро и активно развивающееся направление науки. Функциональные свойства белков, в том числе их ферментативная активность, определяются их способностью к конформационным перестройкам. Внутренние движения атомов и атомных групп глобулярных белков происходят с характерными временами порядка 10-13 ? 10-15с амплитудой порядка 0,02 нм. Существенные изменения конформации, например, открытие «кармана» реакционного центра для образования фермент-субстратного комплекса, требует коллективных согласованных движений, характерные времена которых на много порядков больше, а амплитуды составляют десятки ангстрем. Проследить, каким образом физические взаимодействия отдельных атомов реализуются в виде макроскопических конформационных движений стало возможным благодаря методам молекулярной динамики.

Начальные координаты и скорости частиц задаются с учетом данных рентгеновской спектроскопии и ядерного магнитного резонанса. Значения параметров атом?атомных взаимодействий определяются эмпирически из условия максимального соответствия рассчитанных по потенциалу и экспериментально измеренных спектральных, термодинамических, и структурных характеристик низкомолекулярных компонент биологических макромолекул.
На экране компьютера можно наблюдать траектории отдельных атомов и внутреннюю подвижность макромолекулы.

Первые вычислительные эксперименты для белковой молекулы? ингибитора трипсина панкреатической железы? были проведены по методу молекулярной динамики в 1977 г. Дж.А.Мак-Кэмоном с сотрудниками. Молекула состоит из 58 аминокислотных остатков и содержит 454 тяжелых атома, в структуру также включали четыре внутренних молекулы воды, локализованные согласно кристаллографическим данным. Удалось воспроизвести основной элемент вторичной структуры белка? антипараллельную скрученную b?структуру, а также короткий a?спиральный сегмент.

В последние годы выполнены расчеты молекулярной динамики сотен белков, среди них миоглобина, лизоцима, ретиналь связывающего белка, моделировали также перенос электрона в белковых комплексах. В расчетах наблюдалась значительная подвижность области белок?белкового контакта, в том числе перемещение ароматической группы белка в область контакта за времена 100 пс. Результаты молекулярной динамики подтверждают роль флуктуаций в электронно-конформационных взаимодействиях, сопровождающих процессы транспорта электронов, миграции и трансформации энергии, ферментативного катализа.

2. Модели систем организма.

В настоящее время имеются имитационные модели многих систем организма — сердца, желудочно-кишечного тракта, почек, печени, мозга, и других.

3. Модели продукционного процесса растений.

Имитационные модели продукционного процесса растений (агробиоценозов) для разных культур являются одними из первых имитационных моделей. Практическая задача моделирования? выбор оптимальной стратегии проведения сельскохозяйственных мероприятий: орошения, полива, внесения удобрений с целью получения максимального урожая. Существует большое число моделей разных культур, как упрощенных, предназначенных для решения конкретных вопросов управления, так и очень подробных, используемых в основном для исследовательских целей. Подробные модели имеют иерархическую блочную структуру. Среди биотических процессов выделяют блок фотосинтеза, блок корневого питания, блок роста и развития, блок почвенной микрофлоры, блок развития болезней сельскохозяйственной культуры и другие. Рассматриваются также геофизические процессы: формирование теплового и водного режима, концентрации и передвижения биогенных и токсических солей, концентрации СО2 в посеве и других. Методику работы с такими сложными моделями мы рассмотрели выше. Более подробное описание моделей продукционного процесса растений можно найти в книгах:

  1. .Бондаренко Н.Ф. «Моделирование продуктивности агроэкосистем». Л., 1982;
  2. Заславский Б.Г., Полуэктов Р.А. Управление экологическими системами. М..1988
  3. Торнли Дж. Математические модели в физиологии растений. Киев, 1982
  4. Франс Дж., Торнли Дж. «Математические модели в сельском хозяйстве», М., 1987;
  5. Vries de P. Simulation of plant growth and crop production/ Wageningen, 1982.
  6. Wit C.T. Simulation of assimilation, respiration, and transpiration of crops, Wageningen, 1978

Kниги 3-6 имели несколько более поздних переизданий на Западе.

4. Модели водных экосистем.

Водная среда гораздо более однородна, чем сухопутные биогеоценозы, и имитационные модели водных систем успешно создаются начиная с 70-х годов 20 века. Описание обменных процессов в водной среде включает описание усвоения азота, фосфора и других биогенных элементов, рост фито- и зоопланктона и детрита. При этом важно учитывать гидробиологические процессы в рассматриваемых водоемах, которые, как правило, являются неоднородными и при моделировании разбиваются на ряд компартментов.

С помощью имитационного моделирования решались вопросы выработки стратегии борьбы с эфтрификацией закрытых водоемов, в частности, одного из Великих Американских озер — Озера Эри. Много имитационных моделей посвящено разработке оптимальной стратегии вылова рыбы.
Пионерскими в этой области были книги:

Меншуткин В.В. Математическое моделирование популяций и сообществ водных животных, Л., 1971
Jorgensen S.E. Lake management. Oxford, 1980
Экологические системы. Адаптивная оценка и управление. (под ред Э.Холлинга), М., 1981
Горстко А.Б., Домбровский Ю.А., Сурков Ф.А. Методы управления эколого-эконоическими. М., 1985
Основные идеи и результаты по моделированию водных систем, так же как и по моделированию продукционного процесса растений изложены в учебном пособии Г.Ю.Ризниченко, А.Б.Рубин «Математические модели биологических продукционных процессов». М., 1993. Готовится к печати дополненное и переработанное издание

Модели глобальной динамики сыграли особую роль в становлении имитационного моделирования. Именно для этих моделей был разработан формализм представления системы в виде узлов и потоков между ними, который затем в разных видах использовался практически во всех моделях сложных систем. Первая глобальная модель была создана Д. Форрестером и Д. Медоузом с соавторами по заказу Римского клуба в 60 годы 20 века.

Полученные с ее помощью результаты были опубликованы в знаменитой переведенной на 35 языков книге «Пределы роста», и впервые послужили предостережением человечеству в том, что Земля — ограниченная система, безудержный прогресс ведет к истощению ее ресурсов, и человечество ждет глобальный экологический кризис. . Современное состояние проблемы описано в книге Д.Х.Медоуз, Д.Л.Медоуз, Й.Рандерс «За пределами роста» М., Прогресс. 1994. (Donella H.Meadows et.al Beyond the Limits, (Confronting global collapse. Envisioning a sustainable future.1992)

Вторая знаменитая глобальная модель — модель ядерной зимы, была создана под руководством Н.Н. Моисеева в России. Ее результаты наглядно показали, что глобальная ядерная война приведет к уничтожению как побежденных, так и победителей, так как после нее небо над всей Землей закроется тучами и настанет ядерная зима на период в несколько десятков лет. Поэтому победа в такой войне будет быссмысленной.

В настоящее время активно разрабатываются глобальные модели, позволяющие рассчитать «парниковый эффект» и другие процессы, протекающие в глобальном масштабе.

Ясно, что разработка имитационной модели сложной системы и работа с этой моделью требуют усилий целого коллектива специалистов как в области машинной математики, так и в предметной области. Подробное изучение методологии имитационного моделирования не входит в задачу нашего курса, мы будем заниматься более общими вопросами.

Всякая сложная система при своем функционировании подчиняется физическим, химическим и биологическим законам. Однако нам известны не все законы. Одна из целей математического моделирования и заключается в установлении этих законов путем проверки альтернативных гипотез физических (или биологических) механизмов того или иного явления.

Другой, более практической, является уже упоминаемая нами цель оптимального управления продукционным процессом.

Таким образом, приступая к построению математической модели системы, необходимо взглянуть на эту систему под определенным углом зрения, который в значительной мере определяет вид модели. Необходимо сформулировать основные вопросы о поведении системы, ответы на которые мы хотим получить с помощью модели. Это позволяет из множества законов, управляющих поведением системы, отобрать те, влияние которых существенно при поиске ответов на поставленные вопросы. В дополнение к этим законам, если необходимо, для системы в целом или ее частей формулируются определенные гипотезы о функционировании. Гипотезы, как и законы, формулируются в виде определенных математических соотношений.

Дальнейшая работа состоит в исследовании полученных соотношений с применением аналитических или вычислительных методов, приводящих к ответу на поставленные перед моделью вопросы. Если модель хороша, полученные на модели ответы могут быть отнесены к самой моделируемой системе. Более того, с помощью такой модели можно расширить круг представлений о системе, например, выбрав одну из альтернативных гипотез о механизмах ее функционирования и отбросив остальные, неправдоподобные. Если же модель плохая, т.е. недостаточно адекватно описывает систему с точки зрения поставленных перед ней вопросов, ее следует усовершенствовать. Критерием адекватности служит практика, эксперимент, и критерий этот не может быть полностью формализован.

Специфика моделей живых систем

Несмотря на разнообразие живых систем, все они обладают следующими специфическими чертами, которые необходимо учитывать при построении моделей.

1. Сложные системы. Все биологические системы являются сложными многокомпонентными, пространственно структурированными, элементы которых обладают индивидуальностью. При моделировании таких систем возможно два подхода. Первый — агрегированный, феноменологический. В соответствии с этим подходом выделяются определяющие характеристики системы (например, общая численность видов) и рассматриваются качественные свойства поведения этих величин во времени (устойчивость стационарного состояния, наличие колебаний, существование пространственной неоднородности). Такой подход является исторически наиболее древним и свойственен динамической теории популяций.

Другой подход? подробное рассмотрение элементов системы и их взаимодействий, рассмотренное выше имитационное моделирование,. Имитационная модель не допускает аналитического исследования, но ее параметры имеют ясный физический и биологический смысл, при хорошей экспериментальной изученности фрагментов системы она может дать количественный прогноз ее поведения при различных внешних воздействиях.

2. Размножающиеся системы (способные к авторепродукции). Это важнейшее свойство живых систем определяет их способность перерабатывать неорганическое и органическое вещество для биосинтеза биологических макромолекул, клеток, организмов. В феноменологических моделях это свойство выражается в наличии в уравнениях автокаталитических членов, определяющих возможность роста (в нелимитированных условиях? экспоненциального), возможность неустойчивости стационарного состояния в локальных системах (необходимое условие возникновения колебательных и квазистохастических режимов) и неустойчивости гомогенного стационарного состояния в пространственно распределенных системах (условие неоднородных в пространстве распределений и автоволновых режимов).

Важную роль в развитии сложных пространственно-временных режимов играют процессы взаимодействия компонентов (биохимические реакции) и процессы переноса, как хаотического (диффузия), так и связанного с направлением внешних сил (гравитация, электромагнитные поля) или с адаптивными функциями живых организмов (например, движение цитоплазмы в клетках под действием микрофиламентов).

3. Открытые системы, постоянно пропускающие через себя потоки вещества и энергии. Биологические системы далеки от термодинамического равновесия, и потому описываются нелинейными уравнениями. Линейные соотношения Онзагера, связывающие силы и потоки, справедливы только вблизи термодинамического равновесия.

4. Биологические объекты имеют сложную многоуровневую систему регуляции. В биохимической кинетике это выражается в наличии в схемах петель обратной связи, как положительной, так и отрицательной. В уравнениях локальных взаимодействий обратные связи описываются нелинейными функциями, характер которых определяет возможность возникновения и свойства сложных кинетических режимов, в том числе колебательных и квазистохастических.

Такие нелинейности при учете пространственного распределения и процессов переноса обусловливают паттерны стационарных структур (пятна различной формы, периодические диссипативные структуры) и различные типы автоволнового поведения (движущиеся фронты, бегущие волны, ведущие центры, спиральные волны и др.)

На уровне органа, организма, популяции живая система также является гетерогенной, и это ее основополагающее свойство необходимо учитывать при создании математической модели. Само возникновение пространственной структуры и законы ее формирования представляет одну из задач теоретической биологии. Один из подходов решения такой задачи? математическая теория морфогенеза.

В заключение этой вводной лекции отметим, что компьютерные грамматики позволяют получить изображения, очень напоминающие те, которые мы видим в природе и на картинах великих мастеров. Вероятно, компьютерная логика, человеческий мозг и вся природа следуют единым законам.

Литература

Бондаренко Н.Ф. «Моделирование продуктивности агроэкосистем». Л., 1982;
Горстко А.Б., Домбровский Ю.А., Сурков Ф.А. Модели управления эколого-экономическими системами. М., 1984.
Джефферс Д.»Введение в системный анализ: применение в экологии», М., 1981
Заславский Б.Г., Полуэктов Р.А. Управление экологическими системами. М..1988
Медоуз Д.Х,.Медоуз Д.Л, Рандерс Й. «За пределами роста» М., Прогресс. 1994.
Ризниченко Г.Ю., Рубин А.Б. Математические модели биологических продукционных процессов. М., Изд. МГУ, 1988
Рубин А.Б. Биофизика. Часть 1., М., 1999
Торнли Дж. Математические модели в физиологии растений. Киев, 1982
Франс Дж., Торнли Дж. «Математические модели в сельском хозяйстве», М., 1987;
Meadows Donella H. et.al. The Limits of the Growth. N.-Y. Universe Books. 1972, перевод на русский язык 1991 г
.Meadows Donella H et.al Beyond the Limits, (Confronting global collapse. Envisioning a sustainable future.1992)
Vries de P. Simulation of plant growth and crop production/ Wageningen, 1982.
Wit C.T. Simulation of assimilation, respiration, and transpiration of crops, Wageningen, 1978

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«УДМУРТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Биолого-химический факультет

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС

ПО ДИСЦИПЛИНЕ

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

БИОЛОГИЧЕСКИХ ПРОЦЕССОВ

Направление подготовки

Направление подготовки 020400 Биология

Наименование магистерской программы

"Биология" (Ботаника) 020421 м

"Биология" (Иммунобиотехнология) 020422 м

"Биология" (Биология клетки) 020423 м

Место дисциплины в структуре ООП магистратуры. Компетенции обучающегося, формируемые в результате освоения дисциплины. Цель освоения дисциплины. Структура дисциплины по видам учебной работы, соотношение тем и формируемых компетенций. Содержание дисциплины.

5.1 Темы лекционных занятий и их аннотации

5.2. Планы практических занятий.

5.3. Планы лабораторного практикума.

5.4. Программа самостоятельной работы студентов.

Образовательные технологии. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации . Учебно-методическое и информационное обеспечение дисциплины. Материально-техническое обеспечение дисциплины.

ПОРЯДОК УТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ

Разработчик рабочей программы дисциплины

Экспертиза рабочей программы

Утверждение рабочей программы дисциплины

Иные документы об оценке качества рабочей программы дисциплины

(при их наличии - ФЭПО, отзывы работодателей, магистрантов и пр.)

Документ об оценке качества (наименование)

Дата документа

1 . МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП МАГИСТРАТУРЫ

Дисциплина входит в цикл базовую часть математического и естественно-научного цикла ООП магистратуры.

Дисциплина адресована 020400 Биология (квалификация (степень) "магистр"), первый год обучения.

Изучению курса предшествуют следующие дисциплины: информатика, дисциплины естественнонаучного цикла.

Для успешного освоения дисциплины должны быть сформированы компетенции:

способен к адаптации и повышению своего научного и культурного уровня (ОК-3);

Успешное освоение курса позволяет перейти к изучению дисциплин: теоретическая биология, синергетика, с овременные проблемы биологии, других дисциплин математического и естественно-научного цикла ООП магистратуры, выполнению магистерской работы .

Программа курса построена по блочно-модульному принципу, в ней выделены разделы:

    Понятие о дифференциальном и интегральном исчислении. Цели моделирования. Базовые понятия. Модели, описываемые автономным дифференциальным уравнением Дискретные модели Модели, описываемые системами двух автономных дифференциальных уравнений Устойчивость стационарных состояний нелинейных систем. Триггерные системы. Колебательные системы.

2 . КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ

В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

· самостоятельно анализирует имеющуюся информацию, выявляет фундаментальные проблемы, ставит задачу и выполняет полевые, лабораторные биологические исследования при решении конкретных задач по специализации с использованием современной аппаратуры и вычислительных средств, демонстрирует ответственность за качество работ и научную достоверность результатов (ПК-3);

· творчески применяет современные компьютерные технологии при сборе, хранении, обработке, анализе и передаче биологической информации (ПК-6);

· самостоятельно использует современные компьютерные технологии для решения научно-исследовательских и производственно-технологических задач профессиональной деятельности , для сбора и анализа биологической информации (ПК-13);

В результате освоения дисциплины обучающийся должен:

знать:

· о методах моделирования биологических систем с последующим их анализом с использованием дифференциального и интегрального исчисления.

уметь:

· уметь применять полученные знания в практической работе ;

· грамотно представлять результаты, выполненных модельных расчетов.

Владеть:

· навыками интегрального и дифференциального исчисления;

· навыками работы с персональным компьютером при использовании доступных программных продуктов по численному моделированию биологических систем.

3 . ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ БИОЛОГИЧЕСКИХ ПРОЦЕССОВ

является:

дать некоторые базовые знания и представления о возможностях практики численных методов математического анализа, математического моделирования, классификации математических моделей и области их применимости, показать, на какие принципиальные качественные вопросы может ответить математическая модель, в виде которой формализованы знания о биологическом объекте. Это достигается путем включения в курс базовых вопросов интегрального и дифференциального исчисления, основ математического аппарата качественной теории дифференциальных уравнений. На базе этих знаний рассматриваются основные типы временного и пространственного динамического поведения, присущие биологическим системам разного уровня. Возможности математического моделирования иллюстрируются примерами конкретных моделей, которые можно считать классическими.

Задачи освоения дисциплины:

сформировать представления о применимости численных методов математического анализа применительно к математическому моделированию биологических систем;

познакомить с конкретными математическими моделями, которые биолог-исследователь может применять (адаптировать) к своим исследованиям;

расширить знания по использованию программных средств при моделировании биологических процессов.

4. СТРУКТУРА ДИСЦИПЛИНЫ ПО ВИДАМ УЧЕБНОЙ РАБОТЫ,

СООТНОШЕНИЕ ТЕМ И ФОРМИРУЕМЫХ КОМПЕТЕНЦИЙ

Тема 1.2.

проверочная работа по материалу предыдущего занятия, теоретическое введение по теме занятий, выполнение практических заданий.

Тема 1.3. (2 часа) Теоретическая часть.

Перечень заданий, задач, выносимых на лабораторную работу:

Тема 1.4. (2 часа) Теоретическая часть.

Перечень заданий, задач, выносимых на лабораторную работу: проверочная работа по материалу предыдущего занятия, теоретическое введение по теме занятий, выполнение практических заданий.

Тема 1.5. (3 часа) Теоретическая часть.

Перечень заданий, задач, выносимых на лабораторную работу: проверочная работа по материалу предыдущего занятия, теоретическое введение по теме занятий, выполнение практических заданий.

Тема 1часа) Теоретическая часть.

Перечень заданий, задач, выносимых на лабораторную работу: проверочная работа по материалу предыдущего занятия, теоретическое введение по теме занятий, выполнение практических заданий.

Тема 1.7. (2 часа) Теоретическая часть.

Перечень заданий, задач, выносимых на лабораторную работу: проверочная работа по материалу предыдущего занятия, теоретическое введение по теме занятий, выполнение практических заданий.

Тема 1.8. (2 часа) Теоретическая часть.

Перечень заданий, задач, выносимых на лабораторную работу: проверочная работа по материалу предыдущего занятия, теоретическое введение по теме занятий, выполнение практических заданий.

Тема 1.9. (2 часа) Теоретическая часть.

Перечень заданий, задач, выносимых на лабораторную работу: проверочная работа по материалу предыдущего занятия, теоретическое введение по теме занятий, выполнение практических заданий.

Тема 1.10. (2 часа) Теоретическая часть. Исследование устойчивости стационарных состоя ний нелинейных систем второго порядка. Классическая система В. Вольтерра. Аналитическое исследование (определение стационарных состояний и их устойчивости) и построение фазовых и кинетических портретов. Использование пакета аналитических вычислений Maxima.

Перечень заданий, задач, выносимых на лабораторную работу: проверочная работа по материалу предыдущего занятия, теоретическое введение по теме занятий, выполнение практических заданий.

Перечень заданий, задач, выносимых на лабораторную работу: проверочная работа по материалу предыдущего занятия, теоретическое введение по теме занятий, выполнение практических заданий.

Тема 1.часа) Теоретическая часть.

Перечень заданий, задач, выносимых на лабораторную работу: проверочная работа по материалу предыдущего занятия, теоретическое введение по теме занятий, выполнение практических заданий.

5.4. Программа самостоятельной работы магистрантов

Структура СРС

Код формируемой компетенции

Тема

Форма

Объем

учебной работы

(часов)

Учебно-методические материалы

ПК-3, ПК-6, ПК-13

Тема 1.1.

Понятие модели. Объекты, цели и методы моделирования. Модели в разных науках. Компьютерные и математические модели. История первых моделей в биологии. Современная классификация моделей биологических процессов. Регрессионные, имитационные, качественные модели. Принципы имитационного моделирования и примеры моделей. Специфика моделирования живых систем.

решение задач

СРС без участия преподавателя

ПК-3, ПК-6, ПК-13

Тема 1.2.

Понятие о производной и способах ее нахождения (правила дифференцирования). Интеграл и методы нахождения интегралов. Решение задач по данной теме.

решение задач

СРС без участия преподавателя

Смотри список учебно-методической литературы

ПК-3, ПК-6, ПК-13

Тема 1.3.

Составление (вывод) дифференциального уравнения. Некоторые приёмы решения однородных и неоднородных дифференциальных уравнений. Решение методом разделяющихся переменных. Решение линейного дифференциального уравнения общего вида методом Лагранжа. Решение задач по данной теме.

решение задач

СРС без участия преподавателя

Смотри список учебно-методической литературы

ПК-3, ПК-6, ПК-13

Тема 1.4.

Составление (вывод) дифференциального уравнения. Понятие решения дифференциального уравнения. Решение методом разделяющихся переменных. Решение линейного дифференциального уравнения общего вида. Стационарное состояние. Устойчивость стационарных состояний (случай одного уравнения): определения, аналитический метод определения типа устойчивости. Формула Тейлора. Решение задач по данной теме.

решение задач

СРС без участия преподавателя

Смотри список учебно-методической литературы

ПК-3, ПК-6, ПК-13

Тема 1.5.

Анализ некоторых моделей роста популяций. Модель Мальтуса. Логистическая модель Ферхюльста. Модель проточного культиватора. Решение задач по данной теме.

решение задач

СРС без участия преподавателя

Смотри список учебно-методической литературы

ПК-3, ПК-6, ПК-13

Тема 1.6.

Разностные модели роста популяций. Анализ разностной модели Мальтуса (нахождение стационарных состояний и их анализ на устойчивость). Дискретное логистическое уравнение Ферхюльста и его ограниченность для биологических систем. Анализ дискретного логистического уравнения Риккера (нахождение стационарных состояний и их анализ на устойчивость). Качественный анализ разностных моделей роста популяций с использованием диаграммы (лестницы) Ламерея. Решение задач по данной теме.

решение задач

СРС без участия преподавателя

Смотри список учебно-методической литературы

ПК-3, ПК-6, ПК-13

Тема 1.7.

Система двух автономных обыкновенных линейных дифференциальных уравнений (ОДУ). Решение системы двух линейных автономных ОДУ. Типы особых точек. Решение задач по данной теме. Использование пакета аналитических вычислений Maxima.

решение задач

СРС без участия преподавателя

ПК-3, ПК-6, ПК-13

Тема 1.8.

Система двух автономных обыкновенных линейных дифференциальных уравнений. Фазовая плоскость. Изоклины. Построение фазовых портретов. Кинетические кривые. Решение задач по данной теме.

решение задач

СРС без участия преподавателя

Смотри список учебно-методической литературы.

ПК-3, ПК-6, ПК-13

Тема 1.9.

Анализ некоторых моделей, описываемых системой двух автономных обыкновенных линейных дифференциальных уравнений. Анализ кинетической модели системы линейных дифференциальных уравнений, описывающих химические реакции. Решение задач по данной теме. Использование пакета аналитических вычислений Maxima.

решение задач

СРС без участия преподавателя

Смотри список учебно-методической литературы.

ПК-3, ПК-6, ПК-13

Тема 1.10.

Исследование устойчивости стационарных состояний нелинейных систем второго порядка. Классическая система В. Вольтерра. Аналитическое исследование (определение стационарных состояний и их устойчивости) и построение фазовых и кинетических портретов. Использование пакета аналитических вычислений Maxima.

решение задач

СРС без участия преподавателя

Смотри список учебно-методической литературы

ПК-3, ПК-6, ПК-13

Тема 1.11.

Триггерные системы. Конкуренция. Аналитическое исследование (определение стационарных состояний и их устойчивости) и построение фазовых и кинетических портретов. Решение задач по данной теме.

решение задач

СРС без участия преподавателя

Смотри список учебно-методической литературы.

ПК-3, ПК-6, ПК-13

Тема 1.12.

Колебательные системы. Локальная модель брюсселятора. Решение задач по данной теме. Использование пакета аналитических вычислений Maxima.

решение задач

СРС без участия преподавателя

Смотри список учебно-методической литературы.

Подготовка к лабораторным работам – 12 работ - 48 часов

Результаты всех видов СРС оцениваются в баллах и являются основой БРС.

При выполнении СРС используются учебно-методические материалы, указанные в соответствующем разделе (см. таблицу Структура СРС )

График контроля СРС

Условные обозначения: кр – контрольная работа , к – коллоквиум , р – реферат, д – доклад, ди – деловая игра , рз – решение задач, кур – курсовая работа , лр – лабораторная работа, дз – домашнее задание

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При проведении занятий и организации самостоятельной работы магистрантов используются традиционные технологии сообщающего обучения, предполагающие передачу информации в готовом виде, формирование учебных умений по образцу: теоретическая часть лабораторной работы строится как: лекция-изложение, лекция-объяснение .

Использование традиционных технологий обеспечивает формирование когнитивного (знаниевого) компонента профессиональных компетенций биолога-исследователя.

В процессе изучения теоретических разделов дисциплины, выполнения практических заданий, используются новые образовательные технологии обучения: лекция-визуализация .

При проведении лабораторных занятий используются:

Понятие модели. Объекты, цели и методы моделирования. Модели в разных науках. Физические и математические модели. История первых моделей в биологии. Современная классификация моделей биологических процессов: регрессионные , имитационные, качественные модели. Примеры различных моделей, применямых в Вашей области научных интересов. Принципы имитационного моделирования и примеры моделей. Специфика моделирования живых систем.

Понятие о производной и способах ее нахождения (правила дифференцирования). Интеграл и методы нахождения интегралов. Решение задач по данной теме.

Составление (вывод) дифференциального уравнения. Некоторые приёмы решения однородных и неоднородных дифференциальных уравнений. Решение методом разделяющихся переменных. Решение линейного дифференциального уравнения общего вида методом Лагранжа. Решение задач по данной теме.

Методы исследования динамических систем. Стационарное состояние. Формула Тейлора. Устойчивость стационарных состояний (случай одного уравнения): понятие об устойчивости, аналитический метод определения типа устойчивости (метод Ляпунова), графический метод определения типа устойчивости. Решение задач по данной теме.

Анализ некоторых моделей роста популяций. Модели Мальтуса. Логистическая модель Ферхюльста. Модель проточного культиватора. Решение задач по данной теме.

Разностные модели роста популяций. Анализ разностной модели Мальтуса (нахождение стационарных состояний и их анализ на устойчивость). Дискретное логистическое уравнение Ферхюльста и его ограниченность для биологических систем. Анализ дискретного логистического уравнения Риккера (нахождение стационарных состояний и их анализ на устойчивость). Качественный анализ разностных моделей роста популяций с использованием диаграммы (лестницы) Ламерея. Решение задач по данной теме.

Анализ моделей, описываемых системой двух автономных обыкновенных линейных дифференциальных уравнений. Решение системы двух линейных автономных ОДУ. Анализ устойчивости поведения данных моделей вблизи особых точек. Типы особых точек. Решение задач по данной теме.

Качественный метод анализа моделей, описываемых системой двух автономных обыкновенных линейных дифференциальных уравнений. Фазовая плоскость. Изоклины. Построение фазовых портретов. Кинетические кривые. Решение задач по данной теме.

Анализ некоторых моделей, описываемых системой двух автономных обыкновенных линейных дифференциальных уравнений. Анализ кинетической модели системы линейных химических реакций.

Исследование устойчивости стационарных состояний нелинейных систем второго порядка. Метод Ляпунова линеаризации систем в окрестности стационарного состояния. Примеры исследования устойчивости стационарных состояний моделей биологических систем. Анализ кинетического уравнения Лотки (химическая реакция). Классическая система В. Вольтерра. Аналитическое исследование (определение стационарных состояний и их устойчивости) и построение фазовых и кинетических портретов.

Триггерные системы. Конкуренция. Аналитическое исследование (определение стационарных состояний и их устойчивости) и построение фазовых и кинетических портретов.

Колебательные системы. Локальная модель брюсселятора.

Основной технологией оценки уровня сформированности компетенции(й) является: балльно-рейтинговая система оценки успеваемости студентов (Приказ /01-04 "О введении "Порядка реализации балльно-рейтинговой системы оценки учебной работы обучающихся в ФГБОУ ВПО "УдГУ").

Общее количество баллов = 100 баллов.

Посещение занятий и работа магистранта на самом занятии оценивается до 15 баллов.

Проверочная контрольная работа в начале занятия оценивается до 30 б.

Домашнее задание оценивается до 15 б.

Число баллов, выделяемое на зачет до 40 баллов

Дисциплина считается освоенной, если на этапе промежуточной аттестации обучающийся набрал более 14 баллов и итоговый рейтинг обучающегося по дисциплине за семестр составляет не менее 61 балла.

Схема перевода баллов в традиционную оценку

Экзамен (зачет)

Сумма баллов двух рубежных контролей с учетом дополнительных баллов

Таблица перевода итоговых баллов БРС в традиционную систему оценок

Примеры проверочных заданий, выдаваемых в начале занятия на 10-12 мин.

Проверочное задание 1

Вариант 1

1) Найти производную исходя из определения понятия производной: y = (1+3x)2

2) Численность популяции описывается уравнением: https://pandia.ru/text/78/041/images/image004_19.gif" width="88" height="41">

Вариант 3

1) Найти производную исходя из определения понятия производной: y = (1+x)2

2) Численность популяции описывается уравнением: https://pandia.ru/text/78/041/images/image006_13.gif" width="90" height="45">

Вариант 2

Вариант 3

Решить следующее дифференциальное уравнение.

Найти решение задачи Коши, если x(0)=1

Проверочное задание 3

Опрос 3. Вариант 2

Решить следующее дифференциальное уравнение.

Опрос 3. Вариант 3

Решить следующее дифференциальное уравнение.

Опрос 3. Вариант 4

Решить следующее дифференциальное уравнение.

Примерные тестовые задания для домашнего выполнения (конкретные тексты задания выдаются магистрантам через систему ИИАС и на бумажном носителе):

Домашнее задание 1

Рекомендации.

1) Подготовить выступление и приложить рукописный текст с докладом о примере физической модели

2) Подготовить выступление и приложить рукописный текст с докладом о примере регрессионной модели в вашей специальности (могу спросить любого) – 3-4 минуты – одно на группу. Не должно совпадать с примером другой группы.

3) Подготовить выступление и приложить рукописный текст с докладом о примере имитационной модели в вашей специальности (могу спросить любого) – 3-4 минуты – одно на группу. Не должно совпадать с примером другой группы.

4) Используя определение производной найти производную для выражения:

y= 1+ x + x 2

5) Найти производные:

https://pandia.ru/text/78/041/images/image014_10.gif" width="84" height="41 src=">

https://pandia.ru/text/78/041/images/image017_9.gif" width="108" height="27 src=">.gif" width="105" height="41 src=">, где u и а постоянные..gif" width="153" height="28 src=">

8) Популяция бактерий растет от начального размера в 1000 особей до размера p (t ) в момент t (в днях) согласно уравнению https://pandia.ru/text/78/041/images/image023_6.gif" width="106" height="41 src=">. Найдите p (t ) для всех моментов t >0, если p (0)=0. За сколько лет доля переболевших достигнет 90 % ?

3) Найти общее решение для следующих уравнений первого порядка и решить задачу Коши для указанных условий:

Если x(0)=2

, если x(0)=1

Домашнее задание 3

Рекомендации. Отчет по заданию предоставляется только в рукописном виде с указанием всех промежуточных расчетов (электронный вариант не нужен). Все расчеты должны быть прозрачны (написать, что вычисляете, указать исходную расчетную формулу, потом формулу с подставленными числами, затем ответ).

1) Рост популяции описывается уравнением Ферхюльста. Емкость экологической ниши для нее равна 1000. Постройте график динамики численности популяции, если известно, что начальная численность равна: а) 10; б) 700; в) 1200. Скорость роста r равна 0.5. Укажите координаты точки перегиба.

2) Разложите функцию f (x ) в ряд Тейлора в окрестности точки 0 x до 4 порядка:

f (x ) = x 3 +1, x 0 = 1;

https://pandia.ru/text/78/041/images/image028_5.gif" width="114" height="46 src=">

https://pandia.ru/text/78/041/images/image030_5.gif" width="71" height="41 src=">. Найти стационарные состояния уравнения и определить их тип устойчивости аналитически (метод Ляпунова) и с помощью графика функции f (x ) :

f (x ) = x 3 + 8 x – 6 x 2

f (x ) = x 4 + 2 x 3 − 15 x 2

Домашнее задание 4

Рекомендации. Отчет по заданию предоставляется только в рукописном виде с указанием всех промежуточных расчетов (электронный вариант не нужен). Все расчеты должны быть прозрачны (написать, что вычисляете, указать исходную расчетную формулу, потом формулу с подставленными числами, затем ответ).

1) (1,0 балла) С помощью диаграммы Ламерея построить график динамики численности популяции, если зависимость Nt +1 = f (N t ) имеет вид и сделать вывод об устойчивости развитии популяции.

2) (2,5 балла) Построить фазовый портрет для каждой из систем в окрестности стационарного состояния по плану:

2,1) Найти координаты особой (стационарной) точки

2,3) Методом изоклин (изоклины: 0o, +45o, –45o, 90o, углы пересечение с осями X и Y) построить фазовый портрет системы

2,4) по изоклинам и на основании пункта 2,2 нарисовать эскиз фазового портрета

2,5) Определить направление движения пробной (фигуративной) точки вдоль полученных в 2,4 интегральных кривых.

2,6) Выбрать произвольную точку на одной из полученных в пункте 2,4 интегральных кривых и построить кинетический портрет системы.

Магистрант

Вариант

Магистрант

Вариант

3) (1,5 балла) В процессе изучения некой популяции была выявлена следующая зависимость численность популяции от времени (см. данные ниже).

1) Развитие данной популяции подчиняется уравнению Мальтуса или уравнению Ферхюльста? Докажите это.

2) Если развитие популяции подчиняется уравнению Мальтуса, определите:

r

2,2) период удвоения T .

2) Если развитие популяции подчиняется логистическому уравнению, определите:

2,1) значение мальтузианского параметра r (удельной скорости размножения);

2,2) значение ресурсного параметра К

2,3) используя значения r и К оцените время через которое рост численности популяции начнет замедляться.

Данная контрольно-оценочная технология обеспечивает оценку уровня освоения профессиональных компетенций.

8 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

ДИСЦИПЛИНЫ

Основная литература

1. Ризниченко, по математическим моделям в биологии. Ч.1 . Описание процессов в живых системах во времени. - М.;Ижевск: РХД, 2002

Лекции. Методика чтения лекций

Лекции являются одним из основных методов обучения по дисциплине, которые должны решать следующие задачи:

· изложить важнейший материал программы курса, освещающий основные моменты;

· развить у магистрантов потребность к самостоятельной работе над учебной и научной литературой .

Главной задачей каждой лекции является раскрытие сущности темы и анализ ее главных положений. Рекомендуется на первой лекции довести до внимания магистрантов структуру курса и его разделы, а в дальнейшем указывать начало каждого раздела, суть и его задачи, а, закончив изложение, подводить итог по этому разделу, чтобы связать его со следующим.

Методика проведения лабораторных занятий

Целями проведения лабораторных работ являются:

· установление связей теории с практикой в форме экспериментального подтверждения положений теории;

· обучение магистрантов умению анализировать полученные результаты;

· контроль самостоятельной работы магистрантов по освоению курса;

· обучение навыкам профессиональной деятельности

Цели лабораторного практикума достигаются наилучшим образом в том случае, если выполнению эксперимента предшествует определенная подготовительная внеаудиторная работа. Поэтому преподаватель обязан довести до всех магистрантов график выполнения лабораторных работ с тем, чтобы они могли заниматься целенаправленной домашней подготовкой.

Перед началом очередного занятия преподаватель должен удостовериться в готовности магистрантов к выполнению лабораторной работы путем короткого собеседования и проверки наличия у магистрантов заготовленных протоколов проведения работы.

Успешное освоение дисциплины предполагает активное, творческое участие магистранта путем планомерной, повседневной работы.

Изучение дисциплины следует начинать с проработки рабочей программы, особое внимание, уделяя целям и задачам, структуре и содержанию курса.

Просмотрите конспект сразу после занятий, отметьте материал конспекта лекций, который вызывает затруднения для понимания. Попытайтесь найти ответы на затруднительные вопросы, используя рекомендуемую литературу. Если самостоятельно не удалось разобраться в материале, сформулируйте вопросы и обратитесь за помощью к преподавателю на консультации или ближайшей лекции.

Регулярно отводите время для повторения пройденного материала, проверяя свои знания, умения и навыки по контрольным вопросам.

Выполнение лабораторных работ

На занятии получите у преподавателя график выполнения лабораторных работ. Обзаведитесь всем необходимым методическим обеспечением.

Перед посещением лаборатории изучите теорию вопроса, предполагаемого к исследованию, ознакомьтесь с руководством по соответствующей работе и подготовьте протокол проведения работы, в который занесите:

· название работы;

· заготовки таблиц для заполнения экспериментальными данными наблюдений;

· уравнения химических реакций превращений, которые будут осуществлены при выполнении эксперимента;

· расчетные формулы.

Оформление отчетов должно проводиться после окончания работы в лаборатории или в другом отведенном под занятия месте.

Для подготовки к защите отчета следует проанализировать экспериментальные результаты, сопоставить их с известными теоретическими положениями или справочными данными, обобщить результаты исследований в виде выводов по работе, подготовить ответы на вопросы, приводимые в методических указаниях к выполнению лабораторных работ.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для проведения компьютерного практикума необходим компьютерный класс, позволяющий предоставить отдельное рабочее место для каждого слушателя. Компьютеры должны иметь параметры, достаточные для функционирования изучаемых программ. В случае использования недостаточно мощных компьютеров, можно порекомендовать использовать более старые версии программ или заменить некоторые изучаемые программы на менее ресурсоемкие. Компьютеры должны иметь выход в сеть Интернет. На компьютерах должна быть установлена Windows XP (или старше), а также комплект изучаемых программ (см. соотвествующий раздел пункта 8 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ).

В компьютерном классе должна быть большая доска, мел, тряпка.

Книга представляет собой лекции по математическому моделированию биологических процессов и написана на основании материала курсов, читаемых на биологическом факультете Московского государственного университета им. М. В. Ломоносова.
В 24 лекциях изложены классификация и особенности моделирования живых систем, основы математического аппарата, применяемого для построения динамических моделей в биологии, базовые модели роста популяций и взаимодействия видов, модели мультистационарных, колебательных и квазистохастических процессов в биологии. Рассматриваются методы изучения пространственно-временного поведения биологических систем, модели автоволновых биохимических реакций, распространения нервного импульса, модели раскраски шкур животных и другие. Особое внимание уделено важному для моделирования в биологии понятию иерархии времен, современным представлениям о фракталах и динамическом хаосе. Последние лекции посвящены современным методам математического и компьютерного моделирования процессов фотосинтеза. Лекции предназначены для студентов, аспирантов и специалистов, желающих ознакомиться с современными основами математического моделирования в биологии.

Молекулярная динамика.
На протяжении всей истории западной науки стоял вопрос о том, можно ли, зная координаты всех атомов и законы их взаимодействия, описать все процессы, происходящие во Вселенной. Вопрос не нашел своего однозначного ответа. Квантовая механика утвердила понятие неопределенности на микроуровне. В лекциях 10-12 мы увидим, что существование квазистохастических типов поведения в детерминированных системах делает практически невозможным предсказание поведения некоторых детерминированных систем и на макроуровне.

Следствием первого вопроса является второй: вопрос «сводимости». Можно ли, зная законы физики, т. е. законы движения всех атомов, входящих в состав биологических систем, и законы их взаимодействия, описать поведение живых систем. В принципе, на этот вопрос можно ответить с помощью имитационной модели, в которую заложены координаты и скорости движения всех атомов какой-либо живой системы и законы их взаимодействия. Для любой живой системы такая модель должна содержать огромное количество переменных и параметров. Попытки моделировать с помощью такого подхода функционирование элементов живых систем - биомакромолекул - делаются, начиная с 70-х годов.

Содержание
Предисловие ко второму изданию
Предисловие к первому изданию
Лекция 1. Введение. Математические модели в биологии
Лекция 2. Модели биологических систем, описываемые одним дифференциальным уравнением первого порядка
Лекция 3. Модели роста популяций
Лекция 4. Модели, описываемые системами двух автономных дифференциальных уравнений
Лекция 5. Исследование устойчивости стационарных состояний нелинейных систем второго порядка
Лекция 6. Проблема быстрых и медленных переменных. Теорема Тихонова. Типы бифуркаций. Катастрофы
Лекция 7. Мультистационарные системы
Лекция 8. Колебания в биологических системах
Лекция 9. Модели взаимодействия двух видов
Лекция 10. Динамический хаос. Модели биологических сообществ
Примеры фрактальных множеств
Лекция 11. Моделирование микробных популяций
Лекция 12. Модель воздействия слабого электрического поля на нелинейную систему трансмембранного переноса ионов
Лекция 13. Распределенные биологические системы. Уравнение реакция-диффузия
Лекция 14. Решение уравнения диффузии. Устойчивость гомогенных стационарных состояний
Лекция 15. Распространение концентрационной волны в системах с диффузией
Лекция 16. Устойчивость однородных стационарных решений системы двух уравнений типа реакция-диффузия. Диссипативные структуры
Лекция 17. Реакция Белоусова-Жаботинского
Лекция 18. Модели распространения нервного импульса. Автоволновые процессы и сердечные аритмии
Лекция 19. Распределенные триггеры и морфогенез. Модели раскраски шкур животных
Лекция 20. Пространственно-временные модели взаимодействия видов
Лекция 21. Колебания и периодические пространственные распределения величины РН и электрического потенциала вдоль клеточной мембраны гигантских водорослей Chara corallina
Лекция 22. Модели фотосинтетического электронного транспорта. Перенос электрона в мультиферментном комплексе
Лекция 23. Кинетические модели процессов фотосинтетического электронного транспорта
Лекция 24. Прямые компьютерные модели процессов в фотосинтетической мембране
Нелинейное естественно-научное мышление и экологическое сознание
Стадии эволюции сложных систем.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Лекции по математическим моделям в биологии, Ризниченко Г.Ю., 2011 - fileskachat.com, быстрое и бесплатное скачивание.

Едва ли кто из биологов отрицает необходимость использования математических методов в биологических исследованиях, в частности для по пул яцио иного анализа. Однако в понимании того, какое место занимает математический анализ в биологии, существуют разные, иногда противоположные точки зрения. Одни считают, что важнейшая задача - это "познание поведения популяции как статистического агрегата" (Beverton a. Holt, 1957; Graham, 1956). Согласно этой точке зрения, задача биолога сводится к статистическому анализу и ограничивается установлением различных коррелятивных связей. Теоретической основой такой точки зрения служит высказывание Бертрана Рассела, что "биологические законы... подобно законам квантовой теории являются законами дискретными и статистическими" (Рассел, 1957, с. 69).

Другие исходят из того, что математический анализ в биологии, включая и популяционные исследования, необходим, но только как промежуточный, а не конечный этап исследования. Эта вторая точка зрения базируется на представлении о специфичности форм движения материи. В популяционном анализе это направление конечную задачу исследования видит в выявлении приспособительной сущности, познании причин биологического явления. С этих позиций мы и подходим к использованию математических моделей при изучении закономерностей динамики популяций.

Математическое моделирование - это метод, при помощи которого возможно выявить механизм процесса и понять его структурные особенности - установить параметры анализируемой совокупности. Математическое моделирование при наличии большого цифрового материала позволяет использовать счетно-решающие и моделирующие устройства для более быстрой и надежной обработки материала и для более разностороннего и объективного анализа собранных данных.

Очень важная задача, которая позволяет широко применять математические модели, - это разработка методики и составление прогнозов колебаний численности и возможных уловов промысловых рыб, а также расчет оптимальных режимов эксплуатации промысловых рыб, таких режимов, которые обеспечивали бы регулярное из года в год получение наибольшего количества рыбной продукции наиболее высокого качества. В настоящее время на выполнение этих задач, особенно на составление прогнозов возможных уловов отдельных промысловых рыб, расходуется огромное количество сил и времени, а результаты далеко не всегда оказываются достаточно точными. Поэтому крайне важно максимально упростить и механизировать процессы составления прогнозов и расчет режима эксплуатации стад промысловых рыб, обеспечив при этом высокую точность этих расчетов.

Использование в исследовательских целях быстродействующих электронных вычислительных машин позволяет значительно расширить объем исследований и подойти к разработке таких вопросов популяционной экологии, решение которых до появления ЭВМ было невозможным.

Метод математического моделирования

Широкое использование ЭВМ во всех областях исследований, включая ихтиологические, позволяет сильно их ускорить и достигнуть высокой точности получаемых результатов.

Однако, чтобы в популяционном анализе можно было использовать ЭВМ, необходимо составить программы, правильно отражающие ход интересующего нас процесса. Это в первую очередь совокупность правил и указаний для преобразования интересующих нас величин (алгоритм процесса), которая может включать зависимости как в виде уравнений, так и непосредственно в виде таблиц и графиков. Однако для получения "работающей" математической модели процесса необходимо, чтобы она была основана на тех причинных связях, на тех внутренних противоречиях, которые отражают действительную сущность развития биологического явления, а не на внешних случайных связях, подчиняющихся только статистическим закономерностям и не отражающих сущности явления. И естественно, что как у нас, так и за рубежом (Regier, 1970) при популяционном анализе все шире применяются модели, в основу которых положено представление о популяции как саморегулирующейся открытой системе, построенной по принципу обратных связей - плюс-минус взаимодействия.

Наличие в замкнутом контуре связей разного знака при определенных условиях обеспечивает относительную устойчивость системы (Меншуткин, 1971).

Под математической моделью я понимаю математическое выражение количественной стороны хода того или иного процесса или явления, в том числе динамики численности и биомассы популяций животных. Практически почти в каждом биологическом исследовании мы прямо или косвенно используем математические модели. Например, численное выражение среднего и амплитуды числа лучей в плавнике рыбы уже представляет собой простейшую математическую модель плавника. Применительно к математическим моделям динамики популяций, мне кажется, надо понимать уравнения или системы уравнений, которые отражают количественную сторону процесса динамики популяции и позволяют предвидеть дальнейший ход явления. Естественно, возникает вопрос, какое место в исследовании динамики популяций должно занимать математическое моделирование и как при помощи использования математических моделей способствовать успеху биологического исследования.

Процессы, .протекающие в органическом мире - те внутренние противоречия, которые движут развитие, носят в основном детерминированный характер и принадлежат как к группе процессов непрерывного действия с меняющейся интенсивностью (т. е. величиной и скоростью), так и к группе дискретных процессов. Это - процессы, определяющие ход явления. Но любое природное явление - это сложное переплетение внутренних и внешних противоречий; последние как бы создают ту обстановку, в которой протекает явление. Если процессы, отражающие внутреннее противоречие живого, относятся к категории детерминированных процессов дискретнего или непрерывного действия, то внешние воздействия носят, как правило, дискретный характер и не связаны с популяцией четкой обратной связью. Приступая к построению математической модели популяции, необходимо все это учитывать.

Как известно (Никольский, 1959), пользуясь математическим методом, можно выявить механизм протекания явления, но не вскрыть его приспособительную сущность. Однако знание механизма биологического явления для познания его сущности совершенно необходимо, и если метод математического моделирования может способствовать выяснению механизма хода явления - в нашем случае механизма динамики популяции, - то он должен быть максимально использован.

Варли (Varley, 1962), выступая в дискуссии по применимости математических моделей при популяционных исследованиях, изобразил место математической модели в популяционном исследовании следующим образом:

Однако теоретическая модель может быть использована в практических целях только после того, как она будет проверена на определении ее параметров в природе и превратится из теоретической модели в рабочую. Собственно теоретическая модель в понимании Варли - это скорее не математическая модель, отражающая ход явления, а рабочая гипотеза, основанная на предварительных биологических наблюдениях, которая дает возможность организовать исследование для определения исходных параметров. Последние позволяют создать уже рабочую модель пригодную для предсказания количественной стороны хода явления, т. е. "теоретическая модель" Варли - это те биологические принципы, которые должны быть положены в основу рабочей модели.

Ближе к процессу использования ЭВМ и математических моделей в разработке проблемы динамики популяций подходит схема, предложенная Д. И. Блохинцевым (1964) для работы современного физика: 1) измерение (набор фактов); 2) обработка полученной информации (на ЭВМ); 3) выводы (построение рабочих гипотез); 4) проверка их на счетных машинах; 5) построение теорий (предсказание на будущее).

Мне думается, что измерению (подбору фактов) также должна предшествовать гипотеза, основанная на общей методологии.

В этом отношении более правильно, как предлагает Д. Н. Хорафас (1967), начинать исследование с применением моделей и ЭВМ с постановки задачи. Этот автор предлагает следующую очередность операций: 1) определение задачи; 2) нахождение основных переменных величин; 3) определение соотношений между этими переменными и параметрами системы; 4) формулировка гипотезы относительно характера изучаемых условий; 5) построение математической или какой-либо иной модели; 6) проведение или планирование экспериментов; 7) проверка гипотезы; 8) оценка гипотезы в зависимости от исхода экспериментов; 9) принятие или отклонение гипотезы и формулировка выводов; 10) прогнозирование дальнейшего развития систем с учетом их взаимодействия; 11) выработка образа действия; 12) переход к этапу уточнения модели, выполнение необходимых корректив.

Схема Д. Н. Хорафаса, как мне представляется, близка к схеме, предлагаемой Д. И. Блохинцевым, но она вносит ряд уточнений, которые могут оказаться полезными и при популяционном анализе.

Таким образом, при исследованиях в области динамики популяций математическое моделирование должно обеспечивать более четкое представление о ходе процесса, главным образом о его количественной стороне. Математическое моделирование должно упростить процесс долгосрочного прогнозирования динамики популяций и, наконец, гарантировать надежный расчет режима эксплуатации популяций - режима, обеспечивающего наибольшую продуктивность популяции. Практическая задача, поставленная перед биологами и математиками в области построения математических моделей, - это создание такой модели, которая позволила бы автоматизировать службу долгосрочных прогнозов и использовать при расчетах оптимальных режимов эксплуатации промысловых животных вычислительную технику.

Мне представляется следующим ход биологического исследования динамики популяции и место в нем математического моделирования. На основе осмысливания имеющегося фактического материала создается рабочая гипотеза явления; на базе этой рабочей гипотезы строится программа исследования, обеспечивающая получение материалов, вскрывающих как причины, так и механизм хода явления. Эти материалы должны обеспечивать и возможность построения математической модели хода явления. Таким образом, в создании математической модели есть два этапа. Первый (теоретическая модель в схеме Варли) - рабочая гипотеза на основе собранных фактов оформляется в виде уравнения той или иной сложности; к этого рода моделям принадлежит подавляющее большинство математических моделей. Второй этап - на основе проверки рабочей гипотезы создается рабочая модель, пригодная для практических расчетов в прогностических и эксплуатационных целях. В основе как теоретической, так и рабочей моделей всегда лежит тот или иной комплекс теоретических представлений, и чем ближе эти теоретические представления к закономерностям, действующим в природе, тем правильнее и эффективнее будет созданная математическая модель.