Болезни Военный билет Призыв

Термодинамическое равновесие двух газов. Термодинамическое равновесие. Критерии обратимости в качестве критериев равновесия

1. Экстремальные свойства термодинамических потенциалов.

2. Условия равновесия и устойчивости пространственно однородной системы.

3. Общие условия равновесия фаз в термодинамических системах.

4. Фазовые переходы I-го рода.

5. Фазовые переходы II-го рода.

6. Обобщение полуфеноменологической теории.

Вопросы устойчивости термодинамических систем рассматривались в предыдущей теме применительно к задаче химического равновесия. Поставим задачу теоретического обоснования сформулированных ранее условий (3.53) на основе II начала термодинамики, используя свойства термодинамических потенциалов.

Рассмотрим макроскопическое бесконечно малое изменение состояния системы: 1 -2, при котором все ее параметры относятся на бесконечно малую величину:

Соответственно:

Тогда в случае квазистатического перехода из обобщенной формулировки I и II начала термодинамики (2.16) следует:

В случае, если 1-2 является неквазистатическим, то выполняются следующие неравенства:

В выражении (4.3) величины со штрихом соответствуют неквазистатическому процессу, а величины без штриха - квазистатическому. Первое неравенство системы (4.3) характеризует полученный на основе обобщения многочисленных опытных данных принцип максимального поглощения тепла, а второе - принцип максимальной работы.

Записывая работу для неквазистатического процесса в виде и вводя аналогичным образом параметры и, получим:

Выражение (4.4) абсолютно эквивалентно неравенству Клаузиуса.

Рассмотрим основные следствия (4.4) для различных способов описания термодинамических систем:

1. Адиабатически изолированная система: (). Соответственно. Тогда:

Это означает, что если зафиксировать переменные состояния системы, то вследствие (4.5) ее энтропия будет возникать до тех пор, пока в системе, согласно нулевого начала термодинамики, не наступит состояния равновесия. То есть равновесия состояния соответствует максимуму энтропии:

Вариации в (4.6) производятся по тем параметрам, которые при указанных фиксированных параметрах системы могут принимать неравновесные значения. Это могут быть концентрация п , давление р , температура ит.д.

2. Система в термостате (). Соответственно что позволяет переписать (4.4) в виде:

Учитывая вид выражения для свободной энергии: и равенство, получаем:

Таким образом течение неравновесных процессов для системы, помещенной в термостат, сопровождается уменьшением ее свободной энергии. А равновесное значенте соответствует ее минимуму:

3. Система под поршнем (), т.е. .В этом случае соотношение (4.4) принимает вид:

Таким образом равновесие в системе под поршнем наступает при достижении минимального значения потенциала Гиббса:

4. Система с воображаемыми стенками (). Тогда. Тогда

что позволяет записать

Соответственно в системе с воображаемыми стенками неравновесные процессы направлены в сторону уменьшения потенциала, а равновесие достигается при условии:

Условие определяет само состояние равновесия системы и широко используется при исследовании многокомпонентных или многофазных систем. Условия минимума или максимума определяют критерии устойчивости этих равновесных состояний по отношению к самопроизвольным или искусственно создаваемым возмущениям системы.

Кроме того, наличие экстремальных свойств у термодинамических потенциалов позволяет использовать для их исследования вариационных методов по аналогии с вариационными принципами механики. Однако, в этих целях требуется использование статистического подхода.

Рассмотрим условия равновесия и устойчивости термодинамических систем на примере газа, помещенного в цилиндр над поршнем. Кроме того, для упрощения анализа пренебрежем внешними полями, полагая. Тогда переменными состояния являются ().

Ранее отмечалось, что на термодинамическую систему можно оказывать воздействия либо совершая работу над ней, либо сообщая ей некоторое количество тепла. Поэтому следует проанализировать равновесие и устойчивость по отношению к каждому из отмеченных воздействий.

Механическое воздействие связано со смещением незакрепленного поршня. В этом случае работа на систему равно

В качестве внутреннего параметра, который может изменяться и по которому следует осуществлять варьирование, выберем объем.

Представляя потенциал Гиббса через свободную энергию

и производя варьирование, запишем:

Из последнего равенства следует:

Выражение (4.13) следует рассматривать как уравнение относительно равновесного значения объема при заданных параметрах системы ().

Условия устойчивости равновесного состояния имеет вид:

Учитывая (4.13), последнее условие можно переписать в виде:

Условие (4.14) накладывает определенные требования на уравнение состояния. Так, изотермы идеального газа

всюду удовлетворяют условию устойчивости. В то же время, уравнение Ван-дер-Ваальса

или уравнения Дитериги

имеют участки на которых условия устойчивости не выполняются, и которые не соответствуют реальным равновесным состояниям, т.е. экспериментально реализуется.

Если же в некоторой точке изотермы, то для проверки устойчивости используют специальные методы математического анализа, т.е. проверяют выполнение условий:

Аналогичным образом требования устойчивости, предъявляемые к уравнению состояния, могут быть сформулированы и для других параметров системы. Рассмотрим в качестве примера зависимость химического потенциала. Введем плотность числа частиц. Тогда химический потенциал можно представить в виде.

Вычислим дифференциал в зависимости от переменных состояния:

При записи последнего выражения учтено, что и использовано термодинамическое тождество (3.8). Тогда

То есть условие устойчивости для химического потенциала принимает вид

В критической точке при наличии прогиба имеем:

Перейдем к анализу устойчивости системы к тепловому воздействию, связанного с передачей некоторого количества тепла. Тогда в качестве вариационного параметра рассмотрим энтропию системы S . Для учета именно теплового воздействия зафиксируем механические параметры. Тогда в качестве переменных термодинамического состояния удобно выбрать набор, а в качестве термодинамического потенциала свободную энергию.

Выполняя варьирование, находим:

Из условия равновесия получаем

Уравнения (4.21) следует рассматривать как уравнение для равновесного значения энтропии. Из положительности второй вариации свободной энергии:

Поскольку температура всегда принимает положительные значения из (4.22) следует:

Выражение (4.23) является искомым условием устойчивости термодинамической системы по отношению к нагреванию. Некоторые авторы рассматривают положительность теплоемкости как одно из проявлений принципа Ле-Шателье - Брауна. При сообщении термодинамической системе количества тепла:

Ее температура возникает, что, в соответствии со вторым началом термодинамики в формулировке Клаузиуса (1850г.), приводит к уменьшению количества теплоты, поступающего в систему. Иначе говоря, в ответ на внешние воздействия - сообщение количества теплоты - термодинамические параметры системы (температура) меняются таким образом, что внешние воздействия ослабляются.

Рассмотрим вначале однокомпонентную систему, находящуюся в двухфазном состоянии. Здесь и далее под фазой будем понимать однородное вещество в химическом и физическом отношении.

Таким образом, каждую фазу будем рассматривать как однородную и термодинамически устойчивую подсистему, характеризуемую общим значением давления (в соответствии с требованием отсутствия тепловых потоков). Исследуем условие равновесия двуфазной системы по отношению к изменению числа частиц и, находящихся в каждой из фаз.

С учетом сделанных допущений наиболее удобным является использование описания системы под поршнем с фиксацией параметров (). Здесь - общее число частиц в обеих фазах. Также для простоты “выключим” внешние поля (а =0).

В соответствии с выбранным способом описания условием равновесия является условие (4.10) минимума потенциала Гиббса:

которое дополняется условием постоянства числа частиц N :

Выполняя варьирование в (4.24а) с учетом (4.24б) находим:

Таким образом, общим критерием равновесия двуфазной системы является равенство их химических потенциалов.

Еси известны выражения химических потенциалов и, то решением уравнения (4.25) будет некоторая кривая

называемая кривой фазового равновесия или дискретной фазового равновесия.

Зная выражения для химических потенциалов, из равенства (2.юю):

мы можем найти удельные объемы для каждой из фаз:

То есть, (4.26) можно переписать в виде уравнений состояния для каждой из фаз:

Обобщим полученные результаты на случай n фаз и k химически нереагирующих компонент. Для произвольной i -й компоненты уравнение (4.25) примет вид:

Легко видеть, что выражение (4.28) представляет систему (n- 1) независимых уравнений. Соответственно из условий равновесия для k компонент получаем k (n -1) независимых уравнений (k (n -1) связей).

Состояние термодинамической системы в этом случае задается температурой, давлением p и k -1 значениями относительных концентраций компонент в каждой фазе. Таким образом состояние системы в целом задается параметром.

Учитывая наложенных связей, найдем число независимых параметров системы (степенной свободы).

Равенство (4.29) называют правилом фаз Гиббса.

Для однокомпонентной системы () в случае двух фаз () имеется одна степень свободы, т.е. мы произвольно можем изменять только один параметр. В случае же трех фаз () не имеется степеней свободы (), то есть сосуществование трех фаз в однокомпонентной системе возможно только в одной точке, называемой тройной точкой. Для воды тройная точка соответствует следующим значениям: .

Если система не однокомпонентна, возможны боле сложные случаи. Так, двуфазная () двукомпонентная система () обладает двумя степенями свободы. В этом случае вместо кривой фазового равновесия получим область в виде полосы, границы которой соответствуют фазовым диаграммам для каждой из чистых компонент, а внутренние области соответствуют различным значениям относительной концентрации компонент. Одна степень свободы в данном случае соответствует кривой сосуществования трех фаз, а соответствует четвертой точке сосуществования четырех фаз.

Как было рассмотрено выше, химический потенциал можно представить в виде:

Соответственно первые производные от химического потенциала равны удельным значениям энтропии, взятой с обратным знаком, и объеме:

Если в точках, удовлетворяющих фазовому равновесию:

первые производные химического потенциала для разных фаз испытывают разрыв:

говорят, что термодинамическая система испытывает фазовый переход I-го рода.

Для фазовых переходов первого рода характерно наличие срытой теплоты фазового перехода, отличной от нуля, и скачок удельных объемов системы. Скрытая удельная теплота фазового перехода определяется из соотношения:

а скачок удельного объема равен:

Примерами фазовых переходов первого рода являются процессы кипения и испарения жидкостей. Плавления твердых тел, преобразования кристаллической структуры и т.д.

Рассмотрим две близлежащие точки на кривой фазового равновесия () и (), параметры которых различаются на бесконечно малые величины. Тогда уравнение (4.25) справедливо и для дифференциалов химических потенциалов:

отсюда следует:

Выполняя преобразования в (4.34), получим:

Выражение (4.35) получило название уравнения Клапейрона - Клаузиуса. Это уравнение позволяет получить вид кривой фазового равновесия по известным из эксперимента значениям теплоты фазового перехода и объемов фаз и без привлечения понятия химического потенциала, которое достаточно сложно определить как теоретически, так и экспериментально.

Большой практический интерес представляют так называемые метастабильные состояния. В этих состояниях одна фаза продолжает существовать в области устойчивости другой фазы:

Примерами достаточно устойчивых метастабильных состояний являются алмазы, аморфное стекло (наряду с кристаллическим горным хрусталем) и т.д. В природе и промышленных установках широко известны метастабильные состояния воды: перегретая жидкость и переохлажденный пар, а также переохлажденная жидкость.

Важным обстоятельством является то, что условием экспериментального осуществления этих состояний является отсутствие в системе новой фазы, примесей, загрязнений и т.д., т.е. отсутствие центра конденсации, парообразования и кристаллизации. Во всех этих случаях новая фаза возникает первоначально в малых количествах (капли, пузыри или кристаллы). Поэтому существенными становятся поверхностные эффекты, соизмеримые с объемными.

Для простоты ограничимся рассмотрением простейшего случая сосуществования двух пространственно неупорядоченных фазовых состояний - жидкости и пара. Рассмотрим жидкость, в которой находится небольшой пузырек насыщенного пара. При этом вдоль поверхности раздела действует сила поверхностного натяжения. Для ее учета введем параметры:

Здесь - площадь поверхности пленки,

Коэффициент поверхностного натяжения. Знак “-” во втором равенстве (4.36) соответствует тому, что пленка стягивается и работа внешней силы направлена на увеличение поверхности:

Тогда с учетом поверхностного натяжения потенциал Гиббса изменится на величину:

Вводя модель системы под поршнем и, учитывая равенство, запишем выражение для потенциала Гиббса в виде

Здесь и - удельные значения свободной энергии, и - удельные объемы каждой из фаз. При фиксированных значениях () величина (4.39) достигает минимума. При этом потенциал Гиббса можно проварьировать по. Эти величины связаны с помощью соотношения:

где R можно выразить через: . Выберем в качестве независимых параметров величины, тогда потенциал Гиббса (4.39) можно переписать в виде:

(здесь учтено)

Выполняя варьирование (4.40), запишем:

Учитывая независимость величин, сведем (4.41) к системе



Проанализируем полученное равенство. Из (4.42а) следует:

Его смысл в том, что давление в фазе 1 равно внешнему давлению.

Вводя выражения для химических потенциалов каждой из фаз и учитывая

запишем (4.42б) в виде:

Здесь - давление во II фазе. Отличие уравнения (4.44) от условия равновесия фаз (4.25) в том, что давление в (4.44) в каждой из фаз может быть различным.

Из равенства (4.42в) следует:

Сравнивая полученное равенство с (4.44) и выражением для химического потенциала, получим формулу для давления газа внутри сферического пузырька:

Уравнение (4.45) представляет собой известную из курса общей физики формулу Лапласа. Обобщая (4.44) и (4.45) запишем условия равновесия между жидкостью и пузырьком пара в виде:

В случае исследования задачи фазового перехода жидкость - твердое тело ситуация существенно осложняется в связи с необходимостью учета геометрических особенностей кристаллов, анизотропии направления преимущественного роста кристалла.

Фазовые переходы наблюдаются и в более сложных случаях, при которых разрыв терпят только вторые производные химического потенциала по температуре и давлению. В этом случае кривая фазового равновесия определяется не одним, а тремя условиями:

Фазовые переходы, удовлетворяющие уравнениям (4.47), получили название фазовых переходов II рода. Очевидно, скрытая теплота фазового перехода и изменение удельного объема в этом случае равно нулю:

Для получения дифференциального уравнения кривой фазового равновесия использовать уравнение Клапейрона - Клаузиуса (4.35) нельзя, т.к. при непосредственной подстановке в выражение (4.35) значений (4.48), получается неопределенность. Учтем, что при движении вдоль кривой фазового равновесия сохраняется условие и. Тогда:

Вычислим производные в (4.49)

Подставляя полученные выражения в (4.49), находим:

Система линейных уравнений (4.51), записанная относительно и является однородной. Поэтому ее нетривиальное решение существует только в том случае, если определитель, составленный из коэффициентов равен нулю. Поэтому запишем

Учитывая полученное условие и выбирая из системы (4.51) любое уравнение, получаем:

Уравнения (4.52) для кривой фазового равновесия в случае фазового перехода II рода получили название уравнений Эренфеста. В этом случае кривая фазового равновесия может быть определено по известным характеристикам скачков теплоемкости, коэффициента теплового расширения, коэффициента упругости.

Фазовые переходы второго рода встречаются значительно ранее фазовых переходов I рода. Это очевидно даже из условия (4.47), которое значительно жестче уравнения кривой фазового равновесия (4.юю) с условиями (4.31). Примерами таких фазовых переходов может служить переход проводника из сверхпроводящего состояния в нормальное при отсутствии магнитного поля.

Кроме того, встречаются фазовые переходы с равной нулю скрытой теплотой, для которых при переходе наблюдается наличие сингулярности в калорическом уравнении (теплоемкость терпит разрыв второго рода). Такой тип фазовых переходов носит название фазового перехода типа. Примерами таких переходов являются переход жидкого гелия из сверхтекучего состояния в нормальное, переход в точке Кюри для ферромагнетиков, переходы из неупругого состояния в упругое для сплавов и т.д.

Макроскопические системы зачастую обладают «памятью», они как бы помнят свою историю. Например, если с помощью ложки организовать движение воды в чашке, то это движение будет некоторое время продолжаться но инерции. Сталь приобретает особые свойства после механической обработки. Однако со временем память угасает. Движение воды в чашке прекращается, внутренние напряжения в стали ослабевают вследствие пластической деформации, концентрационные неоднородности уменьшаются вследствие диффузии. Можно утверждать, что системы стремятся достичь относительно простых состояний, которые не зависят от предшествующей истории системы. В некоторых случаях достижение такого состояния происходит быстро, в некоторых - медленно. Однако все системы стремятся к состояниям, в которых их свойства определяются внутренними факторами, а не предшествующими возмущениями. Такие простые, предельные состояния являются по определению не зависящими от времени. Эти состояния называются равновесными. Возможны ситуации, когда состояние системы неизменно, но в ней имеют место потоки массы или энергии. В этом случае речь идет не о равновесном, а о стационарном состоянии.

Состояние термодинамической системы, характеризующееся при постоянных внешних условиях неизменностью параметров во времени и отсутствием в системе потоков, называется равновесным.

Равновесное состояние - предельное состояние, к которому стремится термодинамическая система, изолированная от внешних воздействий. Условие изолированности следует понимать в том смысле, что скорость процессов установления равновесия в системе гораздо выше скорости изменения условий на границах системы. В качестве примера можно привести процесс горения топлива в камере сгорания ракетного двигателя. Время пребывания элемента топлива в камере очень невелико (10 _3 - 1(Н с), однако при этом время установления равновесия составляет примерно 10~ 5 с. Другой пример - геохимические процессы в земной коре протекают очень медленно, однако время существования термодинамических систем такого рода исчисляется миллионами лет, поэтому и в данном случае модель термодинамического равновесия оказывается применимой.

Используя введенное понятие, можно сформулировать такой постулат: существуют особенные состояния простых систем - такие, которые полностью характеризуются макроскопическими значениями внутренней энергии U , объема V и числами молей п и п 2 > я, химических компонентов. Если рассматриваемая система имеет более сложные механические и электрические свойства, то число параметров, необходимое для того чтобы охарактеризовать равновесное состояние, растет (необходимо учесть наличие сил поверхностного натяжения, гравитационного и электромагнитного нолей и т.д.).

С практической точки зрения экспериментатор всегда должен установить, является ли исследуемая система равновесной. Для этого недостаточно отсутствия видимых изменений в системе! Например, два бруска стали могут иметь одинаковый химический состав, но совершенно разные свойства, обусловленные механической обработкой (ковка, прессование), термообработкой и т.д. одного из них. Если свойства исследуемой системы не удается описать с использованием математического аппарата термодинамики, это может означать, что система неравновесна.

В действительности лишь очень немногие системы достигают абсолютно равновесного состояния. В частности, в этом состоянии все радиоактивные материалы должны находиться в стабильной форме.

Можно утверждать, что система находится в равновесии, если ее свойства адекватно описываются с использованием аппарата термодинамики.

Полезно вспомнить, что в механике равновесие механической системы - состояние механической системы, находящейся иод действием сил, при котором все ее точки покоятся по отношению к рассматриваемой системе отсчета.

Рассмотрим два примера, поясняющие понятие равновесия в термодинамике. Если установить контакт между термодинамической системой и окружающей средой, то в общем случае начнется процесс, который будет сопровождаться изменением некоторых параметров системы. При этом часть параметров меняться не будет. Пусть система состоит из цилиндра, в котором находится поршень (рис. 1.9). В начальный момент времени поршень закреплен. Справа и слева от него находится газ. Давление слева от поршня равно р А, справа - р в, причем р А > р в Если удалить крепление, поршень освободится и начнет двигаться вправо, при этом объем подсистемы А начнет возрастать, а правой - убывать (-Д V B = Д V A). Подсистема А теряет энергию, подсистема В приобретает ее, давление р А падает, давление р в возрастает до тех пор, пока давления слева и справа от поршня не станут равными. При этом массы газа подсистем слева и справа от поршня не изменяются. Таким образом, в рассмотренном процессе происходит передача энергии из одной подсистемы в другую за счет изменения давления и объема. Независимыми переменными в рассмотренном процессе являются давление и объем. Эти параметры состояния через некоторое время после освобождения поршня примут постоянные значения и будут оставаться неизменными, пока на систему не оказывается влияния извне. Достигнутое состояние является равновесным.

Состояние равновесия - это конечное состояние процесса взаимодействия одной или нескольких систем с их окружением.

Как ясно из приведенного примера, параметры системы в состоянии равновесия зависят от исходного состояния системы (ее подсистем) и окружения. Следует отметить, что указанная взаимосвязь начального и конечного состояний является односторонней и не позволяет восстановить исходное неравновесное состояние на основании информации о параметрах равновесного состояния.

Рис. 1.9.

Термодинамическая система находится в равновесии, если се параметры состояния не изменяются после того, как система изолирована от других систем и окружающей среды.

Движущей силой рассмотренного процесса установления равновесия была разница давлений слева и справа от поршня, т.е. разница интенсивных параметров. В начальный момент Ар = р л -р в *0, в конечный момент Ар = 0, р" А =Рв-

В качестве другого примера рассмотрим систему, изображенную на рис. 1.10.

Рис. 1.10.

Оболочки систем А и В - недеформируемые и теплонепроницаемые (адиабатические). В начальный момент времени газ в системе В находится при комнатной температуре, вода в системе А нагрета. Давление в системе В измеряется манометром. В некоторый момент времени теплоизолирующий слой между А и В убирают (при этом стенка остается недеформи- руемой, но становится теплопроницаемой (диатермической)). Давление в системе В начинает расти, очевидно, что энергия передается из А в В, при этом никаких видимых изменений в системах не наблюдается, никаких механических перемещений нет. Забегая вперед, скажем, что данный механизм передачи энергии можно обосновать с помощью второго закона термодинамики. В предыдущем примере в процессе установления равновесия менялись две координаты - давление и объем. Можно предположить, что и во втором примере также должны изменяться две координаты, одной из которых является давление; изменение второй мы не могли наблюдать.

Опыт показывает, что по прошествии некоторого промежутка времени состояния систем Aw В перестанут меняться, установится состояние равновесия.

Термодинамика имеет дело с равновесными состояниями. Термин «равновесный» предполагает, что действие всех сил на систему и внутри системы сбалансировано. При этом движущие силы равны нулю, а потоки отсутствуют. Состояние равновесной системы не меняется, если система изолирована от окружающей среды.

Можно рассматривать отдельные виды равновесия: термическое (тепловое), механическое, фазовое и химическое.

В системе, находящейся в состоянии термического равновесия, температура одинакова в любой точке и не меняется со временем. В системе, находящейся в состоянии механического равновесия, давление постоянно, хотя величина давления может изменяться от точки к точке (столб воды, воздуха). Фазовое равновесие - равновесие между двумя или несколькими фазами вещества (пар - жидкость; лед - вода). Если в системе достигнуто состояние химического равновесия, в ней нельзя обнаружить изменения концентраций химических веществ.

Если термодинамическая система находится в равновесии, предполагается, что в ней достигнуто равновесие всех видов (термическое, механическое, фазовое и химическое). В противном случае система неравновесна.

Характерные признаки равновесного состояния:

  • 1) не зависит от времени (стационарность);
  • 2) характеризуется отсутствием потоков (в частности, тепла и массы);
  • 3) не зависит от «истории» развития системы (система «не помнит», как она попала в данное состояние);
  • 4) устойчиво по отношению к флуктуациям;
  • 5) в отсутствие полей не зависит от положения в системе в пределах фазы.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство образования Республики Беларусь

Учреждение образования

«Гомельский государственный университет

имени Франциска Скорины»

Биологический факультет

Кафедра Химии

У РС

Теория термодинамического равновесия

Выполнил

студент группы Би-31 А.Н. Коцур

Проверила С.М. Пантелеева

Гомель 2016

  • 1. Различные виды равновесия
    • 1.1 Неполное (Метастабильное) равновесие
    • 1.2 Фазовое равновесие
    • 1.3 Локальное термодинамическое равновесие
  • 2. Критерии обратимости в качестве критериев равновесия
  • 3. Некоторые условия устойчивости равновесия
  • Список использованных источников

1 . Р азличные виды равновесия

1. 1 Неполное (Метастабильное) равновесие

В формулировке принципа необратимости говорится, что предельное (равновесное) состояние наступает с течением времени, рано или поздно, само собой, и что его признаком является прекращение всяких (не флуктуационных) изменений в системе. Легко, однако, привести примеры, когда это “с течением времени” растягивается до бесконечности, а система вообще не переходит “сама собой” в равновесное состояние, задерживаясь в каком-то другом состоянии, в котором так­ же не видно никаких изменений. Рассмотрим, например, газообразную смесь водорода и йода, адиабатически изолированную в закрытом сосуде. Количество атомов йода и атомов водорода можно взять произвольно. В предельном состоянии, в которое эта смесь должна перейти по принципу необратимости, все ее свойства должны однозначно определяться объемом сосуда, энергией смеси и количествами находящихся в ней атомов H и J. В частности, в предельном состоянии совершенно определенное количество атомов Н должно соединиться в молекулы Н 2 , совершенно определенное ко­ личество атомов J - в молекулы J 2 и должно получиться совершенно определенное количество молекул НJ. Следовательно, при приближении смеси к равновесию в ней должны идти реакции и т. д.

Однако если температура газа не очень высока, то такие превращения (например, диссоциация молекул Н 2) при столкновении частиц почти не происходят. Да и вообще, перегруппировка атомов в молекулах - процесс, часто идущий без катализаторов очень медленно и трудно. Поэтому в действительности, когда изменения в смеси прекратятся, в ней окажутся практически те же количества свободных атомов Н и J и те же количества молекул Н 2 , J 2 и НJ, которые имелись изначально, и в таком состоянии смесь может простоять очень долго. Она “задерживается” в состоянии, по существу, вовсе не равновесном, в чем можно убедиться, катализируя не идущие в ней реакции. Напри­ мер, если смесь осветить, то в ней начнется очень бурное, взрывное превращение молекул Н 2 и J 2 в НJ и смесь перейдет в новое “равновесие”, опять-таки неполное, поскольку реакция Н 2 2Н все равно еще не будет идти.

Если полное равновесие никогда не достигается, то сам принцип необратимости как будто теряет свой абсолютный характер; по- видимому, требуется новая его формулировка. Вопрос этот нельзя решить, не выяснив смысла понятия неполного равновесия. Если во­ обще различать равновесные (хотя бы и не вполне) и неравновесные состояния, то нужно понять, чем же они различаются. В чем прежде всего различие между полным и неполным равновесием? Неполное равновесие - это настоящее равновесие в системе, в которой некоторое свойство, способное меняться, когда нет за­ держивающих факторов, фиксировано. Величины, значения которых определяют какое-либо внутреннее свойство системы, часто называют внутренними параметрами. Можно сказать, что неполное равновесие - это настоящее равновесие в системе с фиксированными внутренними параметрами. Фиксирование внутренних параметров можно представить себе как результат действия некоторых дополнительных сил, под влиянием которых отдельные медленно идущие в системе процессы прекращаются вовсе. Конечно, такие силы вводятся только абстрактно. Система с фиксированными внутренними параметрами как будто становится другой системой - с другими внутренними движениями или с другим множеством микросостояний. Настоящее равновесие достигается тогда, когда нет никаких причин, мешающих внутренним движениям, и когда все идущие в системе процессы проходят до конца. Если же некоторые процессы протекают очень медленно и мы не дожидаемся их завершения или если какие-либо причины вообще прекращают отдельные внутренние процессы, то мы имеем дело как будто с новой системой, многообразие микросостояний которой меньше, чем у незаторможенной. В примере с газовой смесью роль внутренних параметров игра­ ют количества молекул Н 2 и J 2 . Состояния, в которых количества этих молекул отличаются от первоначальных, вовсе исключаются, так что молекулы Н 2 и J 2 рассматриваются как неделимые частицы. В примере с магнитом считается, что магнитные моменты отдельных доменов не могут меняться. Таким образом, мы высказываем следующее предположение: неполное равновесие является настоящим равновесием в системе с фиксированными внутренними параметрами. Чтобы его доказать, надо убедиться в применимости принципа необратимости к системам с фиксированными параметрами. Вряд ли есть основания сомневаться в этом. Однако нужно иметь в виду, что фиксирование внутренних параметров не должно быть таким, чтобы система фактически распалась на не связанные между собой части. Целесообразно различать случаи, когда скрытые движения совершенно не ограничены (в той мере, в какой это допускают фиксированные параметры), даже при неизменных механических параметрах отдельных частей системы, и случаи, когда отдельные части системы вообще изолированы друг от друга или могут передавать друг другу движение только при изменении механических параметров отдельных частей, т. е. через посредство механических систем. В первом случае мы будем называть систему термически однородной, а во втором - термически неоднородной . Термически однородная система с фиксированными параметрами полностью подчиняется принципу необратимости и переходит при неизменных внешних условиях в предельное состояние, которое будет для нее настоящим равновесием; для системы со свободными внутренними параметрами подобное состояние является неполным равновесием. Это неполное равновесие не зависит от начального состояния системы, если фиксированные параметры вначале имели нужные (фиксированные) значения. В неполном равновесии также не остается никакого следа от приведшего к нему процесса. Например, смесь определенных количеств молекул Н 2 и J 2 можно взять в данном объеме и с данной энергией в самых разнообразных начальных состояниях: молекулы смеси можно произвольно разместить в объеме, между ними можно самыми разнообразными способами распределить энергию. Окончательное (неполное) равновесие (равновесие при неизменных количествах молекул Н 2 и J 2) будет всегда одно и то же. Поскольку любое микросостояние рассматриваемой системы с заданными количествами Н2 и J 2 может перейти в любое другое такое микросостояние, система термически однородна. Для термически неоднородных систем принцип необратимости не имеет места, и понятно почему. Энергия каждой части такой системы может и не быть фиксирована. Предполагается, что энергия любой части меняется только при изменении ее механических параметров. Однако если силы, действующие со стороны нескольких частей системы вдоль этих параметров, в сумме равны нулю (уравновешиваются), то параметры остаются неизменными. Тогда энергия рассматриваемой части системы будет постоянной и в ней наступит равновесие, определяемое значениями ее механических параметров и ее энергией. Но эти энергия (при данной общей энергии системы) и значения механических параметров (при данных значениях внешних для всей системы механических параметров) могут быть разными; тогда вся система будет иметь несколько равновесий при одних и тех же внешних условиях и одной и той же энергии.

равновесие термодинамический изобарный

1. 2 Фазовое равновесие

Фазовое равновесие, одновременное существование термодинамически равновесных фаз в многофазной системе. Простейшие примеры - равновесие жидкости со своим насыщенным паром, равновесие воды и льда при температуре плавления, расслоение смеси воды с триэтиламином на два несмешивающихся слоя (две фазы), отличающихся концентрациями. В равновесии могут находиться (в отсутствии внешнего магнитного поля) две фазы ферромагнетика с одинаковой осью намагничивания, но различным направлением намагниченности; нормальная и сверхпроводящая фазы металла во внешнем магнитном поле и т.д. При переходе в условиях равновесия частицы из одной фазы в другую энергия системы не меняется. Другими словами, при равновесии химические потенциалы каждой компоненты в различных фазах одинаковы. Отсюда следует фаз правилоГиббса: в веществе, состоящем из k компонент, одновременно могут существовать не более чем k + 2 равновесные фазы. Например, в однокомпонентном веществе число одновременно существующих фаз не превосходит трёх (см. Тройная точка).Число термодинамических степеней свободы, т. е. переменных (физических параметров), которые можно изменять, не нарушая условий Фазовое равновесие, равно

где j - число фаз, находящихся в равновесии.

Например, в двухкомпонентной системе три фазы могут находиться в равновесии при разных температурах, но давление и концентрации компонент полностью определяются температурой. Изменение температуры фазового перехода (кипения, плавления и др.) при бесконечно малом изменении давления определяется Клапейрона - Клаузиуса уравнением. Графики, изображающие зависимость одних термодинамических переменных от других в условиях Фазовое равновесие, называются линиями (поверхностями) равновесия, а их совокупность - диаграммами состояния. Линия Фазовое равновесие может либо пересечься с другой линией равновесия (тройная точка), либо кончиться критической точкой.

В твёрдых телах из-за медленности процессов диффузии, приводящих к термодинамическому равновесию, возникают неравновесные фазы, которые могут существовать наряду с равновесными. В этом случае правило фаз может не выполняться. Правило фаз не выполняется также и в том случае, когда на кривой равновесия фазы не отличаются друг от друга (см. Фазовые переходы).

В массивных образцах в отсутствии дальнодействующих сил между частицами число границ между равновесными фазами минимально. Например, в случае двухфазного равновесия имеется лишь одна поверхность раздела фаз. Если хотя бы в одной из фаз существует дальнодействующее поле (электрическое или магнитное), выходящее из вещества, то энергетически более выгодны равновесные состояния с большим числом периодически расположенных фазовых границ (домены ферромагнитные и сегнетоэлектрические, промежуточное состояние сверхпроводников) и таким расположением фаз, чтобы дальнодействующее поле не выходило из тела. Форма границы раздела фаз определяется условием минимальности поверхностной энергии. Так, в двухкомпонентной смеси при условии равенства плотностей фаз граница раздела имеет сферическую форму. Огранка кристаллов определяется теми плоскостями, поверхностная энергия которых минимальна.

1.3 Локальное термодинамическое равновесие

Одно из основных понятий термодинамики неравновесных процессов и механики сплошных сред; равновесие в очень малых (элементарных) объёмах среды, содержащих всё же столь большое число частиц (молекул, атомов, ионов и др.), что состояние среды в этих физически бесконечно малых объёмах можно характеризовать темп-рой Т (х), хим. потенциалами(х)и др. термодинамические параметрами, но не постоянными, как при полном равновесии, а зависящими от пространств, координат х и времени. Ещё один параметр Л.Т.Р.- гидродинамическая скорость и (х) - характеризует скорость движения центра масс элемента среды. При Л.Т.Р. элементов среды состояние среды в целом неравновесно. Если малые элементы среды рассматривать приближённо как термодинамически равновесные подсистемы и учитывать обмен энергией, импульсом и веществом между ними на основе уравнений баланса, то задачи термодинамики неравновесных процессов решаются методами термодинамики и механики. В состоянии Л.Т.Р. плотность энтропии s(z)на единицу массы является функцией плотности внутренней энергии и концентраций компонентов Сk (x), такой же, как и в состоянии равновесия термодинамического. Термодинамического равенства остаются справедливыми для элемента среды при движении вдоль пути его центра масс:

где grad, (х)- давление, - удельный объём.

Статистическая физика позволяет уточнить понятие Л.Т.Р. и указать пределы его применимости. Понятию Л.Т.Р. соответствует локально равновесная функция распределения f плотности энергии, импульса и массы, которая отвечает максимуму информационной энтропии при заданных средних значениях этих величин как функций координат и времени:

где Z - статистическая сумма, (х) - динамическая переменные (функции координат и импульсов всех частиц системы), соответствующие плотности энергии (в системе координат, движущейся с гидродинамической скоростью) и плотности массы. При помощи такой функции распределения можно определить понятие энтропии неравновесного состояния как энтропии такого локально равновесного состояния, которое характеризуется теми же значениями плотностей энергии, импульса и массы, что и рассматриваемое неравновесное состояние. Однако локально равновесное распределение позволяет получать лишь уравнения т. н. идеальной гидродинамики, в которых не учитываются необратимые процессы. Для получения уравнений гидродинамики, учитывающих необратимые процессы теплопроводности, вязкости и диффузии (т. е. переноса явления), требуется обращаться к кинетическому уравнению для газов или к Лиувилля уравнению, справедливому для любой среды, и искать такие их решения, которые зависят от координат и времени лишь через средние значения параметров, определяющих неравновесное состояние. В результате получается неравновесная функция распределения, которая позволяет вывести все уравнения, описывающие процессы переноса энергии, импульса и вещества (уравнения диффузии, теплопроводности и Навье - Стокса уравнения) .

2. Критерии обратимости в качестве критериев равновесия

Пользуясь тем, что п изохорно-изотермическом обратимом процессе d ut U = Td ut S . Выведем критерии равновесия произвольной термодинамической системы, основываясь, на том, что равновесие - необходимое условие обратимости процесса и что, таким образом, каждое из состояний, через которые проходит система в обратимом процессе, оказывается состоянием равновесия. Отсюда следует: Критерии обратимости всегда являются вместе с тем критериями равновесия. Этим обстоятельством и пользуются в термодинамике: определяют состояния, в которых может происходить обратимый процесс, н каждое такое состояние считают состоянием равновесия. В настоящее время в термодинамике нет других средств нахождения состояний равновесия. Однако, пользуясь критериями обратимости вместо критериев равновесия, нужно помнить, что равновесие- необходимое, но недостаточное условие обратимости, т. с, что, кроме равновесных состояний, в которых может начаться обратимый процесс, существуют и такие равновесные состояния, в которых обратимый процесс невозможен. Из этого явствует, что, применяя критерии обратимости в качестве критериев равновесия, можно определить не все состояния равновесия, а только часть их. Этим объясняется тот хорошо известный факт, что все предсказанные термодинамикой состояния равновесия, действительно имеют место; но, кроме них, наблюдаются и такие состояния, которые термодинамикой не предсказываются. Между тем в некоторых таких смесях в довольно значительном интервале температур при постоянном объеме равновесный состав также остается постоянным, т. е. имеется непрерывный ряд равновесий и только одно из них указывается термодинамикой .

3. Некоторые условия устойчивости равновесия

Специальный термодинамический анализ позволяет показать, что из соображений термодинамической устойчивости системы для любого вещества должны выполняться следующие соотношения:

т.е., во-первых, изохорная теплоемкость С v всегда положительна и, во-вторых, в изотермическом процессе увеличение давления всегда приводит к уменьшению объема вещества. Условие (1) называют условием термической устойчивости, а условие (2) - условием механической устойчивости. Условия (1) и (2) можно объяснить так называемым принципом смещения равновесия (принцип Ле Шателье - Брауна), смысл которого заключается в том, что, если система, находившаяся в равновесии, выводится из него, соответствующие параметры системы изменяются таким образом, чтобы система вернулась в состояние равновесия. Эти условия термодинамической устойчивости системы ясны и без формальных выкладок. Представим себе, что теплоемкость сv некоторого вещества отрицательна. Это означало бы, поскольку cv = dq v /dT , что подвод теплоты к веществу при постоянном объеме этого вещества приводил бы не к повышению, а к понижению температуры. Таким образом, чем больше теплоты мы подводили бы к веществу в изохорном процессе, тем больше становилась бы разность между температурами этого вещества и источника теплоты (окружающая среда).

Для вывода условий устойчивости можно предположить, что при малом отклонении от положения равновесия система однородна по внутренним параметрам T иp, ноTT o ,PP o , пока не достигнуто равновесие. Можно обойтись и без этого предположения и рассмотреть не всю систему, а столь малую ее часть, что ее можно считать однородной поTиp. Результат будет получен один и тот же. Согласно (49) запишем

dU-T c dS+p c dV=-T c (d i S+d i S пов )

Если система выведена из условия устойчивого равновесия, то поскольку правая часть положительна, то

dU-T c dS+p c dV>0.

При малом, но не бесконечно малом отклонении от устойчивого равновесия должно быть

U-T c S+p c V>0 (51)

При этом U=T S-p V . Подставляя это выражение в (51) получим условия устойчивости равновесия в виде

TS-pV>0, (52)

где T=T-T c ,p=p-p c отклоненияT иp от равновесных значений поскольку в равновесииT=T c , p=p c .

Для изобарных (p=0) и изохорных (V=0) систем условия устойчивости равновесия (52) принимают видTS>0

Будем неограниченно приближать систему к равновесию, меняя S. Тогда

В изобарных и изохорных условиях

Следовательно, условие устойчивости изобарного равновесия имеет вид, (53)то есть,. (54)

Условие устойчивости изохорного равновесия, (55) то есть, . (56)

В изотермической (T=0)и изэнтропической (S=0)системах условие (52) принимает видpV<0. Будем неограниченно приближать систему к равновесию, меняя V. Тогда

в изотермических, а в изэнтропических условиях

Следовательно, условие устойчивости изотермического равновесия имеет вид. То есть(57) или T >0 (58)

Для изэнтропического равновесия - , то есть, (59) или S >0(60)

Неравенства,называют условиями термической устойчивости, а неравенства, T >0, S >0 называют условием механической устойчивости равновесия системы. Равновесие изобарно-изотермической системы устойчиво при одновременном выполнении как условия термической (54), так и механической устойчивости (58) T >0. Физический смысл условий устойчивости ясен из их вывода. Термодинамическое равновесие термически устойчиво, если термические флуктуации (отклонения от равновесного значения энтропииSприT=constили температурыTприS=consrt)выводят систему в такое неравновесное состояние, из которого она возвращается в исходное равновесное состояние. Термодинамическое состояние механически устойчиво, если“механические”флуктуации (отклонения от равновесного объемаVприp=const или давленияPприV=const) выводят систему в такое неравновесное состояние, из которого она возвращается в исходное равновесное.

Термодинамическое равновесие неустойчиво, если сколь угодно малые флуктуации выводят систему в такое неравновесное состояние, из которого она не возвращается в исходное равновесное, а движется к некоторому иному равновесному.

Следует отметить, что, если в данных условиях рассматриваемое равновесное состояние оказывается неустойчивым (не выполнены условия устойчивости), то при этих условиях существует непременно некоторое иное, устойчиво равновесное состояние. Система не может находиться в неустойчивом равновесии сколь - нибудь долго. Понятие неустойчиво равновесное состояния достаточно условно. Строго говоря, неустойчиво равновесные состояния не реализуются. Могут существовать лишь неравновесные состояния, в какой-то мере близкие или приближающиеся к неустойчиво равновесным.

Если выполнены все условия устойчивости (54),(56),(57),(58), то все четыре характеристик C P ,C V , S T положительны. При этом,как видно, из (43)C P >C V и, как следует из (37) T > S .

Как видно из (36), P может быть и положительным и отрицательным; знак P не определяется условиями устойчивости, Из опыта известно, что почти всегда P >0. При этом, как следует из (39) и (40) изохорный и адиабатический коэффициенты давленияпри выполнении условий устойчивости V >0, S >0. Если выполнены условия C P >0, T >0, то из (41) следует P > S и, вообще говоря, P и S могут иметь разный знак.

Список использованных источников

1Сорокин, В. С. Макроскопическая необратимость и энтропия. Введение в термодинамику. / В.С. Сорокин. - М.: ФИЗМАТЛИТ, 2004. - 176 с.

2Михеева, Е.В. Физическая и коллоидная химия: учебное пособие / Е.В.Михеева, Н.П.Пикула; Томский политехнический университет. - Томск: ТПУ, 2010. - 267 с.

3Де Гроот, С. Неравновесная термодинамика. / С. Де Гроот, П. Мазур. М.: Мир, 1964. - 456 с.

4Химия и химическая технология / Некоторые условия устойчивости равновесия [Электронный ресурс] // URL: http://www.chem21.info/page/104.html (дата обращения 18.04.2016).

Размещено на Allbest.ru

...

Подобные документы

    Термодинамико-топологический анализ структур диаграмм фазового равновесия. Закономерности векторного поля нод и скалярного поля равновесных температур. Уравнение их взаимосвязи. Нелокальные закономерности диаграмм фазового равновесия жидкость – пар.

    дипломная работа , добавлен 04.01.2009

    Рассчет сродства соединений железа к кислороду воздуха при определееной константе равновесия реакции. Определение колличества разложившегося вещества при нагревании. Вычисление константы равновесия реакции CO+0,5O2=CO2 по стандартной энергии Гиббса.

    тест , добавлен 01.03.2008

    Характеристика химического равновесия в растворах и гомогенных системах. Анализ зависимости константы равновесия от температуры и природы реагирующих веществ. Описания процесса синтеза аммиака. Фазовая диаграмма воды. Исследование принципа Ле Шателье.

    презентация , добавлен 23.11.2014

    Современное состояние исследований в области азеотропии. Термодинамико-топологический анализ структур диаграмм парожидкостного равновесия. Новый подход к определению классов диаграмм трехкомпонентных биазеотропных систем. Математическое моделирование.

    дипломная работа , добавлен 12.11.2013

    Характеристика химического равновесия. Зависимость скорости химической реакции от концентрации реагирующих веществ, температуры, величины поверхности реагирующих веществ. Влияние концентрации реагирующих веществ и температуры на состояние равновесия.

    лабораторная работа , добавлен 08.10.2013

    Получение и применение силицидов марганца. Химические и фазовые равновесия в системе Mn-Si. Обобщенная теория "регулярных" растворов. Термодинамические функции образования интерметаллидов. Интерполяционная формула Лагранжа. Формулы Миедемы и Истмена.

    дипломная работа , добавлен 13.03.2011

    Расчетные методы определения рН. Примеры уравнений реакций гидролиза солей. Понятие и формулы расчета константы и степени гидролиза. Cмещение равновесия (вправо, влево) гидролиза. Диссоциация малорастворимых веществ и константа равновесия этого процесса.

    лекция , добавлен 22.04.2013

    Определение константы равновесия реакции. Вычисление энергии активации реакции. Осмотическое давление раствора. Схема гальванического элемента. Вычисление молярной концентрации эквивалента вещества. Определение энергии активации химической реакции.

    контрольная работа , добавлен 25.02.2014

    Понятие и единицы измерения адсорбции. Зависимость величины адсорбции от концентрации, давления и температуры. Изотерма, изобара, изопикна, изостера адсорбции. Поверхностно-активные и поверхностно-инактивные вещества. Уравнения адсорбционного равновесия.

    реферат , добавлен 22.01.2009

    Понятие химического анализа. Теоретические основы количественного химического анализа. Требования к химическим реакциям. Понятие и суть эквивалента вещества. Понятие химического равновесия и законы действующих масс. Константы равновесия реакций и их суть.

Термодинамическое условие химического равновесия

Термодинамическим условием равновесия процесса, протекающего в изобарно-изотермических условиях, является равенство нулю изменения энергии Гиббса (D r G (Т )=0). При протекании реакции n а A + n b B = n с C + n d D

изменение стандартной энергии Гиббса равно˸

D r G 0 T =(n c ×D f G 0 C + n d ×D f G 0 D )–(n a ×D f G 0 A + n b ×D f G 0 B ).

Данное выражение соответствует идеальному процессу, в котором концентрации реагирующих веществ равны единице и неизменны в ходе реакции. В ходе реальных процессов концентрации реагентов меняются˸ концентрация исходных веществ уменьшается, а продуктов реакции увеличивается. С учетом концентрационной зависимости энергии Гиббса (см. п. 1. 3. 4) её изменение в ходе реакции равно˸

D r G T =–

=

=(n c ×D f G 0 C + n d ×D f G 0 D )–(n a ×D f G 0 A + n b ×D f G 0 B ) +

+ R ×T ×(n c ×lnC C + n d ×lnC D –n a ×lnC A –n b ×lnC B )

D r G T =D r G 0 T + R ×T × ,

где – безразмерная концентрация i -го вещества; X i – мольная доля i -го вещества; p i – парциальное давление i -го вещества; р 0 = =1,013×10 5 Па – стандартное давление; с i – молярная концентрация i -го вещества; с 0 =1 моль/л – стандартная концентрация.

В состоянии равновесия

D r G 0 T + R×T × = 0,

Величина К 0 называется стандартной (термодинамичской) константой равновесия реакции. Таким образом при определенной температуре Т в результате протекания прямой и обратной реакции в системе устанавливается равновесие при определенных концентрациях реагирующих веществ – равновесных концентрациях (С i ) р . Величины равновесных концентраций определяются значением константы равновесия, которая является функцией температуры, и зависит от энтальпии (D r Н 0) и энтропии (D r S 0) реакции˸

D r G 0 T + R ×T ×lnK 0 = 0,

поскольку D r G 0 T =D r Н 0 T – Т ×D r S 0 T ,

Если известны величины энтальпии (D r Н 0 T ) и энтропии (D r S 0 T ) или D r G 0 T реакции, то можно вычислить значение стандартной константы равновесия.

Константа равновесия реакции характеризует идеальные газовые смеси и растворы. Межмолекулярные взаимодействия в реальных газах и растворах приводят к отклонению расчетных величин констант равновесия от реальных. Для учета этого вместо парциальных давлений компонентов газовых смесей используется их фугитивность, а вместо концентрации веществ в растворах их активность. Фугитивность i -го компонента связана с ᴇᴦο парциальным давлением соотношением f i =g i ×p i , где g i – коэффициент фугитивности.Активность и концентрация компонента связаны соотношением а i =g i ×С i , где g i – коэффициент активности.

Необходимо отметить, что в достаточно широкой области давлений и температур газовые смеси можно считать идеальными и проводить расчёты равновесного состава газовой смеси, считая коэффициент фугитивности g i @ 1.В случае жидких растворов, особенно растворов электролитов, коэффициенты активности их компонентов могут значительно отличаться от единицы (g i ¹ 1) и для расчета равновесного состава необходимо использовать активности.

Термодинамическое условие химического равновесия - понятие и виды. Классификация и особенности категории "Термодинамическое условие химического равновесия" 2015, 2017-2018.

Термодинамическое равновесие – это полностью стабильное состояние, в котором система может находиться в течение неограниченного периода времени. При выведении изолированной системы из равновесия, она стремится возвратиться к этому состоянию самопроизвольно (термос с горячей водой и кусочек льда).

В состоянии термодинамического равновесия в системе не только все параметры постоянны во времени, но и нет никаких стационарных потоков за счет действия каких-либо внешних источников.

Для открытых и закрытых систем характерное стационарное состояние (параметры системы с течением времени не изменяются).

Равновесная система – параметры в разных частях системы одинаковы. Движущие силы отсутствуют. Если такая система изолирована, то она может находиться в состоянии равновесия неограниченно долго.

Неравновесная система – их параметры различны в разных точках объема, что приводит к наличию постоянных градиентов и сил, и создаваемых ими потоков вещества и энергии за счет поступления энергии из внешней среды. Если такая система изолирована, то она необратимо эволюционирует к состоянию ТД равновесия.

7. Первый закон термодинамики. История открытия. Формулировка, физический и биологический смысл.

Открытие первого закона термодинамики исторически связано с установлением эквивалентности теплоты и механической работы. Это открытие связано с имена Р. Майера и Д. Джоуля. Основная работа Майера, в которой он подробно и систематически развил свои идеи, была опубликована в 1845 г. и называлась «Органическое движение в его связи с обменом веществ». Майер сразу же сформулировал первое начало термодинамики как принцип, которому подчиняются любые формы движения в природе. Он указывал, что источником механических и тепловых эффектов в живом организме является не жизненная сила, как утверждали виталисты, а те химические процессы, которые протекают в нем в результате поглощения кислорода и пищи.

Джоуль пришел к установлению эквивалентности тепла и механической работы индуктивным путем, т.е. непосредственно экспериментальным измерением превращения механического движения в теплоту.

Первый закон термодинамики формулируется следующим образом: «Общая энергия в изолированной системе – величина постоянная и не изменяется во времени, а лишь переходит из одной формы в другую.

Теплота σQ, поглощенная системой из внешней среды идет на увеличение внутренней энергии dU системы и совершение работы σА против внешних сил.



Если теплота передается в систему, то ΔQ > 0.

Если теплота передается системой, то ΔQ < 0.

Работа, совершенная системой считается положительной.

Работа, совершенная над системой – отрицательна.

Первое начало термодинамики объясняет невозможность существования вечного двигателя первого рода, т.е. такого двигателя, который совершал бы работу без затрат энергии.

В 19 веке было доказано, что первый закон термодинамики применим для живых систем. Это доказательство отражено в работе «О теплоте», 1873г. Лавуазье, Лаплас – ледяной калориметр, для определения количества выделенной теплоты. Смысл осуществления эксперимента заключался в том, что дыхание аналогично медленному горению (многоступенчатый процесс). Процесс дыхания служит источником тепла для живых организмов. Так же в опытах использовалась пневматическая установка, которая позволяла вычислить количество выделенного углекислого газа.

При сжигании углеводов в калориметре

C 6 H 12 O 6 + 6O 2 = 6CO 2 + 6H 2 O – углеводы окисляются до углекислого газа и воды.

Величина энергии, высвобождаемой из каждого грамма глюкозы в этой реакции, составляется 4,1 кКал.

Пути превращения продуктов питания в метаболических процессах в живых организмах и в химических реакциях вне живой клетки являются эквивалентными с точки зрения суммарных тепловых эффектов.

(Отсюда следствие из первого закона ТД – закон Гесса: тепловой эффект не зависит от его промежуточных этапов, определяется лишь начальным и конечным состояниями системы.)

Термодинамические функции состояния (термодинамический потенциал). Свободная энергия Гиббса. Примеры использования термодинамических представлений.

Цель введения термодинамических потенциалов - использование такого набора естественных независимых переменных, описывающих состояние термодинамической системы, который наиболее удобен в конкретной ситуации, с сохранением тех преимуществ, которые даёт применение характеристических функций с размерностью энергии. В частности, убыль термодинамических потенциалов в равновесных процессах, протекающих при постоянстве значений соответствующих естественных переменных, равна полезной внешней работе.



Термодинамические потенциалы были введены У. Гиббсом.

Выделяют следующие термодинамические потенциалы:

внутренняя энергия

энтальпия

свободная энергия Гельмгольца

потенциал Гиббса

большой термодинамический потенциал

Свободная энергия (Гиббса G) биологической системы определяется наличием и величиной градиента:

G = RT ln Ф1/Ф2

R – универсальная газовая постоянная,

Т – термодинамическая температура по Кельвину

Ф1 и Ф2 – значения параметра, определяющего градиенты.

Примеры: Первый закон термодинамики – закон сохранения энергии: Энергия не создается и не исчезает. Для любого химического процесса общая энергия в замкнутой системе всегда остается постоянной. Экология изучает связь между солнечным светом и экологическими системами, внутри которых происходят превращения энергии света. Энергия не создается заново и никуда не исчезает. Свет как одна из форм энергии может быть превращен в работу, теплоту или потенциальную энергию химических веществ пищи. Из этого следует, что если какая-либо система (как неживая, так и живая) получает или затрачивает энергию, то такое же количество энергии должно быть изъято из окружающей ее среды. Энергия может лишь перераспределяться либо переходить в другую форму в зависимости от ситуации, но при этом она не может возникнуть ниоткуда или бесследно исчезнуть.

Лучистая энергия Солнца, попав на Землю, стремится превратиться в рассеянную тепловую. Доля световой энергии, преобразованная зелеными растениями в потенциальную энергию их биомассы, намного меньше поступившей (qконц < Qсол). Незначительная часть энергии отражается, основная же ее часть превращается в теплоту, покидающую затем и растения, и экосистему и биосферу.

Второй закон термодинамики гласит: процессы, связанные с превращением энергии, могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной формы в рассеянную (деградирует). Этот закон называютзаконом энтропии. Теплота не передается самопроизвольно от более холодного тела к более горячему (хотя первый закон такой переход не запрещает). В природе масса примеров однонаправленных процессов. Например, газы перемешиваются в сосуде, но сами не разделяются, кусок сахара растворяется в воде, но не выделяется обратно в виде куска. Мерой количества связанной энергии, которая становится недоступной для использования, является энтропия (от греч. внутрь и превращение). Т.е. энтропия является мерой беспорядка, мерой количества связанной энергии, которая становится недоступной для использования. В замкнутых системах энтропия (S) не может убывать; ее изменение (ΔS) равно нулю при обратимых процессах или больше нуля при необратимых процессах. Система и ее окружение, предоставленные сами себе, стремятся к состоянию максимальной энтропии (неупорядоченности). Таким образом, самопроизвольные процессы идут в сторону увеличения беспорядка .

Второй закон термодинамики можно сформулировать также следующим образом: поскольку некоторая часть энергии всегда рассеивается в виде не доступных для использования тепловых потерь энергии, эффективность превращения энергии света в потенциальную энергию химических соединений всегда меньше 100%. Существует еще одна формулировка закона: любой вид энергии в конечном счете переходит форму, наименее пригодную для использования и наиболее легко рассеивающуюся.

Отношения между растениями продуцентами и животными консументами управляются потоком аккумулированной растениями энергии, которая используется затем животными. Весь живой мир получает необходимую энергию из органических веществ, созданных растениями и, в меньшей мере, хемосинтезирующими организмами. Пища, созданная в результате фотосинтетической деятельности зеленых растений, содержит потенциальную энергию химических связей, которая при потреблении ее животными организмами превращается в другие формы. Животные, поглощая энергию пищи, также большую ее часть переводят в теплоту, а меньшую в химическую потенциальную энергию синтезируемой ими протоплазмы.

Энтальпия. Закон Гесса. Примеры использования в биологических системах.

Энтальпия - это свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту. Является функцией состояния. Обозначается как ΔH, измеряется в Дж/кг. Внесистемной единицей измерения является ккал/кг.

Закон Гесса: Тепловой эффект многоступенчатого процесса не зависит от его промежуточных этапов, а определяется лишь начальным и конечным состоянием системы. Следовательно, тепловой эффект химической реакции зависит только от вида и состояния исходных веществ и не зависит от пути ее протекания.

Калория – внесистемная единица количества теплоты. Средняя величина физиологически доступной энергии в 1 грамме (в ккал): белков – 4,1; углеводов – 4,1; жиров – 9,3.

Количество энергии, поглощенной живыми организмами вместе с питательными веществами, равно выделенной за это же время теплоте. Следовательно, сами по себе организмы не являются источником какой-либо новой формы энергии.

Виды теплоты, теплопродукция. Удельная теплопродукция. Примеры.

Количество теплоты - энергия, которую получает или теряет тело при теплопередаче. Количество теплоты является одной из основных термодинамических величин. Количество теплоты является функцией процесса, а не функцией состояния, (т. е количество теплоты, полученное системой, зависит от способа, которым она была приведена в текущее состояние.)

Теплопродукция, теплообразование, выработка теплоты в организме в результате энергетических превращений в живых клетках; связана с непрерывно совершающимся биохимическим синтезом белков и др. органических соединений, с осмотической работой (перенос ионов против градиента концентраций), с механической работой мышц (сердечная мышца, гладкие мышцы различных органов, скелетная мускулатура). Даже при полном мышечном покое такая работа в сумме достаточно велика, и человек среднего веса и возраста при оптимальной температуре среды освобождает около 1 ккал (4,19 кДж) на кг массы тела в 1 ч.

У гомойотермных животных в покое:

50% всей теплоты образуется в органах брюшной полости,

20% - в скелетных мышцах,

10% - при работе органов дыхания и кровообращения.

(В покое около 50% всей теплоты образуется в органах брюшной полости (главным образом в печени), по 20% в скелетных мышцах и центральной нервной системе и около 10% при работе органов дыхания и кровообращения. Т. называется также химической терморегуляцией.)

Все реальные процессы, сопровождаются рассеянием некоторой части энергии в теплоту. Теплота - деградированная форма энергии. Теплота – это особый вид энергии (низкого качества) не может переходить без потери в другие виды энергии. Тепловая энергия связана с хаотическим движением молекул, остальные виды энергии базируются на упорядоченном движении молекул.

Существует классификация видов энергии по способности вида энергии превращаться в другие виды энергии.

A. – max эффективная, превращается во все другие виды энергии. Гравитационная, ядерная, световая, электрическая,

B. – химическая,

C. – тепловая.

Выделяют первичную и вторичную теплоту, а также удельную теплопродукцию.

Первичная теплота - это результат неизбежного рассеивания энергии в ходе реакций диссимиляции из-за необратимо протекающих биохимических реакций. Первичная теплота выделяется сразу же после поглощения организмом кислорода и продуктов питания независимо от того, совершает он работу или нет. Она идет на нагревание организма и рассеивается в окружающем пространстве.

Выделение вторичной теплоты наблюдается лишь при реализации энергии макроэргических соединений (АТФ, ГТФ). Идет на совершение полезной работы.

Удельная теплопродукция – это количество теплоты, выделяемое единицей массы животного в единицу времени:

q = QT / μT, ,где:

QT - количество теплоты, выделенное в единицу времени,

μT - единица массы,

q - удельная теплопродукция.

Теплопродукция пропорциональна массе животного:

q = a + b/M 2/3 ,где:

а – количество клеток,

b – площадь поверхности,

М – масса тела животного.

(Удельная теплопродукция уменьшается с увеличением массы животного).