Болезни Военный билет Призыв

Все, что нужно знать о термоядерном синтезе. Термоядерная энергетика: надежда человечества? Термоядерные реакции и их энергетическая выгодность

Ученые впервые в ходе управляемой реакции термоядерного синтеза получили на 1% больше энергии, чем было затрачено на ее инициацию. Это важное достижение на пути к овладению технологией, которая решит энергетические проблемы человечества.

С помощью набора самых мощных лазеров NIF (National Ignition Facility) американской Ливерморской национальной лаборатории, ученые впервые получили от управляемой реакции термоядерного синтеза чуть больше энергии, чем было поглощено топливом. По словам ученых, это важная символическая веха, которая укрепляет веру в то, что человечеству удастся овладеть практически неисчерпаемым источником энергии.

Разумеется, до конечной цели еще далеко: зажигание и поддержание стабильной реакции, выдающей огромное количество энергии, пока остается отдаленной перспективой. Тем не менее, руководитель проекта по изучению высокоэнергетических рентгеновских импульсов в Sandia National Laboratory Марк Херрманн отметил, что это важный шаг на пути к зажиганию продуктивной реакции.

Управление термоядерной реакцией оказалось чрезвычайно трудным делом. Проблема в том, что необходимо управлять чрезвычайно сложным рабочим телом: плазмой, нагретой до температуры в миллионы градусов. Ученые из разных стран исследуют различные способы поддержания термоядерной реакции, например опытная установка ITER, строящаяся на юге Франции, будет удерживать плазму магнитными полями внутри реактора тороидальной формы.

В ходе обычной ядерной реакции энергия выделяется в результате ядерного распада очень тяжелых атомных ядер, например, урана. При термоядерном синтезе, энергию образуется в результате слияния легких ядер, например водорода. Во время такой реакции крошечная часть массы отдельных атомных ядер водорода превращается в энергию. Именно термоядерный синтез питает звезды, в том числе и наше Солнце.

Мишень с хольраумом, готовая к "обстрелу" лазерами

Для зажигания термоядерной реакции необходимо применить значительное количество энергии, чтобы преодолеть силу электростатического отталкивания атомных ядер и сблизить их друг с другом. В NIF эта энергия обеспечивается воздействием 192 мощных лазеров, которые облучают золотой цилиндрический топливный контейнер размером с горошину. Этот контейнер, названный хольраум, содержит песчинку топлива: тончайший слой из дейтерия и трития. Хольраум поглощает энергию лазеров и повторно излучает ее в виде рентгеновских лучей, часть которых поглощается капсулой топлива. При этом внешний пластиковый корпус хольраума взрывается, и сила взрыва сжимает легкие атомные ядра до такой степени, что этого достаточно для запуска термоядерного синтеза.


Геометрия хольраума с капсулой внутри. Это модель топливной ячеки для будущих термоядерных реакторов

К сожалению, до сих пор большая часть энергии лазеров поглощалась хольраумом, а не пластиковой оболочкой, что приводило к ее неравномерному и менее интенсивному испарению. В итоге хольраум поглощал слишком много энергии - гораздо больше, чем давала термоядерная реакция на выходе.

Чтобы решить эту проблему, ученые перенастроили лазер, чтобы доставить больше энергии в начале импульса. Это приводит к более интенсивному нагреванию хольраума и "разбуханию", пластиковой оболочки. В результате пластиковая оболочка становится менее склонной к неравномерному испарению и меньше нарушает течение термоядерного синтеза.

В результате исследователи смогли достичь положительного выхода энергии на уровне 1,2-1,9 от затраченной, причем большая часть произведенной энергии была получена в ходе самонагревания топлива излучением, что является важным условием поддержания стабильной управляемой реакции синтеза. Ранее ни в одной лаборатории не удавалось достичь подобного результата. Несмотря на то, что положительный выход энергии составил лишь на 1% больше затраченной на зажигание синтеза, – это большой успех.

А что же это за "хольраум" такой?

Золотой хольраум лазерного термояда

Национальный комплекс лазерных термоядерных реакций (National Ignition Facility, NIF) в Соединённых Штатах называют лазерным термоядом двойного назначения. Он призван помочь американским вооружённым силам поддерживать в боеспособном состоянии свои ядерные арсеналы в условиях моратория на ядерные испытания, и он же предлагает прорывные открытия, способные обеспечить цивилизацию морем чистой и дешёвой энергии.

Если верить прессе, то дела на NIF разворачиваются как нельзя удачно. Но у аудиторов главной бухгалтерской службы США (GAO, аналог российской Счётной палаты) есть в этом сомнения, которым они поделились с конгрессом в докладе за номером GAO-10-488.

NIF, NIC и NNSA

В марте 2009 года национальное управление США по ядерной безопасности (NNSA) завершило строительство NIF - проекта стоимостью 3,5 миллиарда долларов в национальной лаборатории Лоуренс Ливермор. В смету входят 2,2 миллиарда долларов, затраченных на собственно строительство, и 1,3 миллиарда долларов, ушедших на сборку и монтаж 192 лазеров и связанного оборудования.

Управление планирует создавать в NIF экстремально высокие давления и температуры, характерные для ядерных взрывов. Если всё пройдёт удачно, то новая установка позволит американцам исследовать характеристики ядерных взрывных устройств без их испытаний, запрещённых условиями принятого в США в 1992 году моратория.

NNSA по праву называет лазерный термояд "критическим компонентом" крупномасштабной программы по поддержанию боеготовности американских ядерных арсеналов. Военные задачи станут для NIF первоочередным приоритетом, но военное управление готово предоставлять мощности установки и для гражданских исследователей.

За проектирование и строительство NIF непосредственно отвечает национальная лаборатория Лоуренс Ливермор. Первые теоретические исследования, имеющие целью подготовку к появлению NIF, датируются мартом 1997 года. В 2005 году управление NNSA, выполняя директивы конгресса, создало компанию NIC (National Ignition Campaign) и поручило ей курировать управленческие вопросы по проекту. Кроме этого, для стороннего контроля за проектом приглашаются независимые эксперты и экспертные группы.

Лазеры и хольраум

Технология, используемая в NIF, может быть названа "лазерной термоядерной реакцией". В американской литературе за ней закрепился термин "ignition". После того, как всё будет готово, операторы NIF должны одновременно сконцентрировать пучки 192 лазеров на мишенях с размерами меньше 10-центовой монеты. Общая энергия пучков составит 1,8 МДж.

За один рабочий цикл продолжительностью порядка одной миллионной доли секунды, пучки должны пройти сквозь ряд оптических умножителей, после чего сфокусироваться на микроскопической мишени. Последняя будет располагаться внутри сферической камеры высотой 10 метров.

Схема установки NIF - рисунок аудиторов GAO.


Сама по себе мишень, в свою очередь, представляет собой полый золотой цилиндр. Его называют немецким словом "хольраум" (hohlraum) - это полость, чьи стенки пребывают в радиационном равновесии с полостью. В хольрауме, как в матрёшке, скрывается топливная капсула размером с перчинку. Она состоит из замороженного слоя дейтерия и трития, окружающего охлаждённую газообразную смесь этих же изотопов.

Лазеры установки NIF должны в ходе работы быстро нагревать внутренние стенки хольраума, которые будут конвертировать энергию лазера в рентгеновское излучение. В свою очередь, рентгеновские лучи должны быстро нагревать внешнюю поверхность топливной капсулы. При должном нагреве капсула должна схлопнуться с силой, сравнимой с возникающими при запуске ракеты, то есть должен произойти направленный внутрь взрыв (имплозия) дейтерий-тритиевого слоя.

Если имплозия пройдёт симметрично и с желаемой скоростью, то атомы дейтерия и трития будут принуждены к вступлению в реакцию синтеза длительностью 10 триллионных долей секунды. Температуры, которые будут создаваться в топливной капсуле, ожидаются порядка 100 миллионов градусов - то есть, в капсуле окажется горячее, чем в центре Солнца.

Схема переноса энергии в хольрауме - рисунок аудиторов GAO.
Щёлкните левой клавишей мыши для просмотра в полном масштабе.


Предварительные испытания в обоснование процессов, заложенных в установке NIF, проходили в лаборатории лазерной энергетики университета Рочестера (Нью-Йорк). Лазерные системы OMEGA и OMEGA EP, действующие в лаборатории, играют на сегодняшний день роль рабочей лошадки для всех исследований, проводимых в NNSA по направлению лазерного термояда. До создания NIF, им принадлежал мировой рекорд по энергии лазерного пучка.

Мишени, хольраумы и другое связанное оборудование для NIF поставляет калифорнийская компания "General Atomics". Национальная лаборатория Лос-Аламоса отвечает за системы диагностики, а Сандийская лаборатория - за проведение вспомогательных исследований на установке "Z Machine", способной преобразовывать электромагнитное излучение в рентгеновское.

Технические проблемы

Приведёт ли создание NIF к успеху и смогут ли американские учёные зажечь термоядерную реакцию при помощи лазеров? Аудиторы GAO сухо напоминают о выводах независимой группы JASON, в которых перечислены стоящие перед разработчиками NIF технические проблемы.

Одна из главных задач - необходимо минимизировать потери лазерного излучения, то есть, существенно понизить долю энергии, которая пройдёт мимо хольраума или отразится от его стенок. Если отражение грозит простой потерей энергии, то каждый промахнувшийся пучок будет отрицательно влиять на симметричность сжатия топливной капсулы, ставя, тем самым, под сомнение факт инициации термоядерной реакции.

Даже самое точное нацеливание лазерного пучка не гарантирует полного успеха. Под воздействием лазерного излучения внутри хольраума стартует процесс ионизации, и образующийся заряженный газ вмешается в процессы передачи энергии. Говоря кратко, в результате взаимодействия ионизированных частиц и лазерных пучков часть прибывшей в хольраум энергии будет выведена обратно за его пределы.

Учёные называют такой процесс "нестабильностью типа лазер-плазма"(laser-plasma instability) . Помимо потери энергии, он приводит также к нежелательной интерференции между лазерными пучками, что будет плохо сказываться на симметричности имплозии.

Вторая важнейшая проблема NIF связана со скоростью имплозии. Чтобы возбудить термоядерную реакцию, топливную капсулу следует сжать в 40 тысяч раз по сравнению с её исходным размером. При этом капсула обязана сохранять сферическую форму. Более того, имплозия должна происходить с заданной скоростью, иначе не получится создать давления, необходимые для начала синтеза лёгких ядер.

Если поверхность топливной капсулы не будет достаточно гладкой, или если рентгеновские лучи будут падать на капсулу неравномерно, то на капсуле начнут образовываться пальчикообразные выступы. Как показывают результаты расчётов по математическим моделям, образование выступов станет следствием гидродинамических нестабильностей, возникающих при контакте материалов с различными плотностями. Если выступов окажется слишком много, то термоядерная реакция не пойдёт, так как за счёт выступов будет снижаться температура внутри капсулы.

Пальчикообразные выступы на поверхности топливной капсулы - рисунок аудиторов GAO.
Щёлкните левой клавишей мыши для просмотра в полном масштабе.


Кроме двух названных проблем, создатели NIF сталкиваются и с более традиционными, но от этого не менее серьёзными сложностями. Так, им нужно обеспечить надёжный контроль за состоянием оптики, которая, разумеется, будет со временем повреждаться проходящими через неё лазерными пучками.

Вначале таких повреждений будет мало, но со временем их количество начнёт расти, и если общий процент повреждений перевалит за определённый предел, то эксплуатация NIF на номинальных параметрах окажется невозможной.

К чести создателей NIF, они не устраняются от проблем. Был полностью переделан проект хольраума, и его новая конструкция обещает минимизировать потери лазерной энергии. Из его проекта были убраны покрытия точек входа лазерных пучков, как только оказалось, что благая на первый взгляд идея особым образом обустроить места попадания лучей в мишень ведёт к резкому росту нестабильностей "лазер-плазма".

После долгих поисков учёные остановились на гелии как материале, заполняющем хольраум. В исходном проекте предполагалось использовать смесь водорода и гелия. Эти и другие модификации прошли проверку боем в ходе первых экспериментов на NIF, выполнявшихся в 2009 году. Полученные результаты признаны удовлетворительными, и есть надежды избежать нестабильностей при работе на номинальной мощности.

Понимание процессов имплозии должно улучшиться после завершения серии компьютерных расчётов в двух- и трёхмерных моделях. Кроме этого, гидродинамическая нестабильность активно изучается на уже упоминавшемся комплексе OMEGA. Персонал NIF надеется также, что сумеет обеспечить контроль за состоянием оптики.

Работа NIF при суммарной энергии лазерных пучков 1,8 МДж отодвинута на 2011 год. До конца 2010 года установка будет трудиться с энергиями 1,2-1,3 МДж. По утверждению специалистов, при энергии 1,2 МДж потери энергии за счёт нестабильностей не превысили в первых экспериментах величины 6%, при том, что проект допускает 15%-ные потери.

Первые включения привели и к первым потерям в оптике. В марте 2009 года часть пучков была неожиданно отражена по дороге к мишени. "Удачный" залп в сочетании с погрешностью конструкции вывел из строя 4% от общего количества имеющихся в системе зеркал. К большой удаче, "расстрел" произошёл при низких энергиях пучков, в противном случае последствия могли оказаться ещё более худшими.

Установка NIF шаг за шагом продвигается к номиналу. Последние по времени результаты, полученные в экспериментах декабря 2009 года, получены при энергии лазеров 1,2 МДж.

Независимые эксперты призывают к осторожности. Они предсказывают, что NIF обязательно столкнётся с новыми технологическими и физическими проблемами, которые на данном этапе невозможно даже предсказать. А аудиторы GAO задаются вопросом - реален ли текущий график, согласно которому первая лазерная термоядерная реакция произойдёт в 2012 году?

Авария на японской станции Фукусима во второй раз продемонстрировала всему миру опасность атомной энергетики. В странах Европы прошли демонстрации против использования атомных станций. И все же, нет оснований считать, что АЭС больше не будут строиться. Жители Земли потребляют все больше и больше энергии. Для некоторых регионов, где запасы природного угля, нефти и газа минимальны, атомная энергия необходима. К сожалению, альтернативные источники энергии, такие как энергия солнечного света, ветра, волн и т.д. не способны принципиально заменить огромное количество потребляемой человечеством энергии (16 ТВт). Их доля в мировом производстве энергии пока составляет всего 0,5%.

Между тем, современный мир стоит перед очень серьезным энергетическим кризисом. Проблема связана с тем, что по всем серьезным прогнозам запасы ископаемых горючих веществ могут иссякнуть уже во второй половине текущего столетия. Более того, сжигание ископаемых топлив может привести к необходимости каким-то образом связывать и «сохранять» выпускаемый в атмосферу углекислый газ (программа CCS) для предотвращения серьезных изменений в климате планеты.

Сейчас крайне необходим новый мощный источник энергии. Настало время прорыва. Иначе человечество может само себя уничтожить в борьбе за оставшиеся под землей запасы нефти и газа.

Самой серьезной альтернативой современным источникам энергии ученые считают управляемый термоядерный синтез.

Ядерный синтез, являющийся основой существования Солнца и звезд, потенциально представляет собой неистощимый источник энергии для развития вселенной вообще.

Эксперименты, проводимые в Великобритании в рамках программы Joint European Torus (JET), являющейся одной из ведущих исследовательских программ в мире, показывают, что ядерный синтез может обеспечить не только текущие энергетические потребности человечества, но и гораздо большее количество энергии.

Пример термоядерной реакции — дейтерий + тритий

Два ядра: дейтерия и трития сливаются, с образованием ядра гелия (альфа-частица) и высокоэнергетического нейтрона.

Именно эту реакцию предполагается использовать в будущих термоядерных реакторах. Но осуществить эту реакцию и сделать ее управляемой очень сложно. Для инициирования (зажигания) реакции синтеза необходимо нагреть газ из смеси дейтерия и трития до температуры выше 100 миллионов градусов Цельсия, что примерно в десять раз выше температуры в центре Солнца. При этой температуре наиболее «энергетические» дейтроны и тритоны (ядра дейтерия и трития) сближаются при столкновениях на столь близкие расстояния, что между ними начинают действовать мощные ядерные силы, заставляющие их сливаться друг с другом в единое целое.

Осуществление процесса ядерного синтеза в лаборатории связано с очень сложными проблемами. Для решения задачи нагрева и удержания газовой смеси ядер D и T были придуманы «магнитные бутылки», получившие название «Токамак» , которые предотвращают взаимодействие плазмы со стенками реактора. Началом современной эпохи в изучении возможностей термоядерного синтеза следует считать 1969 год, когда на российской установке Токамак Т3 в плазме объемом около 1 м 3 была достигнута температура 3 10 6 °C. После этого ученые во всем мире признали конструкцию токамака наиболее перспективной для магнитного удержания плазмы. Уже через несколько лет было принято смелое решение о создании установки JET (Joint European Torus) со значительно большим объемом плазмы (~100 м 3). Эта установка начала работать в 1983 году и остается пока крупнейшим в мире токамаком, обеспечивающим нагрев плазмы до температуры 150 10 6 °C.

В настоящее время во Франции начинается строительство международного экспериментального термоядерного реактора ITER. Расшифровывается аббревиатура как International Tokamak Experimental Reactor, но в настоящее время название ITER официально не считается аббревиатурой, а связывается с латинским словом iter — путь.

На рисунке - проект строительства реактора ITER в местечке Кадараш, Франция

Задачи, стоящие на пути создания термоядерных реакторов и преимущества ядерной энергетики очень подробно и доступно для понимания были изложены в лекции «На пути к термоядерной энергетике», прочитанной председателем Совета ITER Кристофером Ллуэллин-Смитом в ФИАНе. (http:///elementy.ru/lib/430807)

ITER должен стать первой крупномасштабной энергетической установкой, рассчитанной на длительную эксплуатацию. Проблемы и сложности эксплуатации такой установки связаны, прежде всего, с тем, что мощный поток высокоэнергетических нейтронов и выделяющаяся энергия (в виде электромагнитного излучения и частиц плазмы) серьезно воздействуют на реактор и разрушают материалы, из которых он создан. Вторая основная проблема состоит в обеспечении высокой прочности конструкционных материалов реактора при длительной (в течение нескольких лет) бомбардировке нейтронами и под воздействием потока тепла. Третья и, возможно, самая главная проблема состоит в обеспечении высокой надежности работы. Таким образом, проектирование и постройка термоядерных станций требуют от физиков и инженеров решения целого ряда разнообразных и очень сложных технологических задач.

Однако, несмотря на все сложности, проблема стоит того, чтобы ей заниматься самым серьезным образом. Основное преимущество ядерного синтеза состоит в том, что в качестве топлива для него требуется лишь очень небольшое количество весьма распространенных в природе веществ. Реакция ядерного синтеза в описываемых установках может приводить к выделению огромного количества энергии, в десять миллионов раз превышающего стандартное тепловыделение при обычных химических реакциях (типа сжигания ископаемого топлива). Например, количество угля, необходимого для обеспечения работы тепловой электростанции мощностью 1 ГВт составляет 10 000 тонн в день (десять железнодорожных вагонов), а термоядерная установка такой же мощности будет потреблять в день лишь около 1 килограмма смеси D+T.

Дейтерий является устойчивым изотопом водорода. Примерно в одной из каждых 3350 молекул обычной воды один из атомов водорода замещен дейтерием (наследие, доставшееся нам от Большого Взрыва). Этот факт позволяет легко организовать достаточно дешевое получение необходимого количества дейтерия из воды. Более сложным является получение трития, который является нестабильным (период полураспада около 12 лет, вследствие чего его содержание в природе ничтожно), однако, тритий будет возникать прямо внутри термоядерной установки в процессе работы, за счет реакции нейтронов с литием.

Таким образом, исходным топливом для термоядерного реактора являются литий и вода. Литий представляет собой обычный металл, широко используемый в бытовых приборах (в батарейках для мобильных телефонов и т. п.). Описанная выше установка, даже с учетом неидеальной эффективности, сможет производить 200 000 кВт/час электрической энергии, что эквивалентно энергии, содержащейся в 70 тоннах угля. Требуемое для этого количество лития содержится в одной батарейке, а количество дейтерия — в 45 литрах воды. Указанная выше величина соответствует современному потреблению электроэнергии (в пересчете на одного человека) в странах ЕС за 30 лет. Сам факт, что столь ничтожное количество лития может обеспечить выработку такого количества электроэнергии (без выбросов CO 2 и без малейшего загрязнения атмосферы), является достаточно серьезным аргументом для быстрейшего и энергичного развития термоядерной энергетики (несмотря на все сложности и проблемы) и даже без стопроцентой уверенности в успехе таких исследований.

Дейтерия должно хватить на миллионы лет, а запасы легко добываемого лития вполне достаточны для обеспечения потребностей в течение сотен лет. Даже если запасы лития в горных породах иссякнут, мы можем добывать его из воды, где он содержится в достаточно высокой концентрации (в 100 раз превосходящей концентрацию урана), чтобы его добыча была экономически целесообразной.

Термоядерная энергетика не только обещает человечеству, в принципе, возможность производства огромного количества энергии в будущем (без выбросов CO 2 и без загрязнения атмосферы), но и обладает повышенной безопасностью. Используемая в термоядерных установках плазма имеет очень низкую плотность (примерно в миллион раз ниже плотности атмосферы), вследствие чего рабочая среда установок никогда не будет содержать в себе энергии, достаточной для возникновения серьезных происшествий или аварий. Кроме того, загрузка «топливом» должна производиться непрерывно, что позволяет легко останавливать ее работу, не говоря уже о том, что в случае аварии и резкого изменения условий окружения термоядерное «пламя» должно просто погаснуть.

В чем состоят связанные с ядерной энергетикой опасности? Во-первых, стоит отметить, что оболочка реактора при длительном нейтронном облучении может стать радиоактивной. Однако при подборе для оболочки материалов с заданными свойствами можно обеспечить распад радиоактивных продуктов с периодом полураспада порядка 10 лет, а полная замена всех компонентов могла бы осуществляться через 100 лет. В случае полного отказа контура охлаждения радиоактивность стенок будет продолжать выделять тепло, но максимальная температура будет значительно ниже того значения, при котором установка расплавится.

Во-вторых, тритий является радиоактивным и имеет относительно небольшой период полураспада (12 лет). Но хотя объем используемой плазмы значителен, из-за ее низкой плотности там содержится лишь очень небольшое количество трития (общим весом примерно как десять почтовых марок). Поэтому, даже при самых тяжелых ситуациях и авариях (полное разрушение оболочки и выделение всего содержащегося в ней трития, например, при землетрясении и падении самолета на станцию), в окружающую среду поступит лишь незначительное количество топлива, что не потребует эвакуации населения из близлежащих населенных пунктов.

Основное препятствие на пути развития исследований в области ядерного синтеза состоит в том, что термоядерную установку обсуждаемого типа нельзя создать и исследовать в малых размерах, поскольку для термоядерного синтеза необходимо не только магнитное удержание плазмы, но и достаточный ее нагрев. Отношение затрачиваемой и получаемой энергии возрастает, по меньшей мере, пропорционально квадрату линейных размеров установки, вследствие чего научно-технические возможности и преимущества термоядерных установок могут быть проверены и продемонстрированы лишь на достаточно крупных станциях, типа упоминавшегося реактора ITER. Общество просто не было готово к финансированию столь крупных проектов, пока не было достаточной уверенности в успехе.

За последние два десятилетия наблюдался и значительный прогресс в теоретическом понимании поведения плазмы. В этой области необходимо отметить два результата, имеющих особую важность в рассматриваемых задачах:

1. Была обнаружена способность горячей плазмы (предсказанная ранее в лаборатории Culham, Великобритания) к самогенерации собственного тока, что получило название «зашнуровки» плазмы. Например, можно ожидать, что примерно 80% от тока величиной 15 MA, необходимого для удержания плазмы в реакторе ITER, будет возникать на основе этого эффекта, в результате чего поддержание рабочего режима реактора потребует намного меньше энергии, а само управление его работой станет гораздо более простым.

2. В Институте физики плазмы в Гархинге (Garching, Германия) в экспериментах по термоядерному слиянию наблюдался режим «высокого удержания», позволяющий значительно повысить давление в системе (то есть увеличить эффективность работы установки) при некоторых значениях магнитного поля в установке.

Реактор ITER создается консорциумом, в который входят Европейское Сообщество, Япония, Россия, США, Китай, Южная Корея и Индия. Общая численность населения этих стран составляет около половины всего населения Земли, так что проект можно назвать глобальным ответом на глобальный вызов. Основные компоненты и узлы реактора ITER уже созданы и испытаны, а строительство уже начато в местечке Кадараш (Франция). Запуск реактора запланирован на 2019 год, а получение дейтерий-водородной плазмы — на 2026 год, так как ввод реактора в действие требует длительных и серьезных испытаний для плазмы из водорода и дейтерия.

Как сказал Кристофер Ллуэллин-Смит, председатель Совета ИТЭР: «Нет абсолютной гарантии, что задача создания термоядерной энергетики (в качестве эффективного и крупномасштабного источника энергии для всего человечества) завершится успешно, но я лично полагаю, что вероятность удачи в этом направлении достаточно высока. Учитывая огромный потенциал термоядерных станций, можно считать оправданными все затраты на проекты их быстрого (и даже ускоренного) развития, тем более, что эти капиталовложения выглядят весьма скромными на фоне чудовищного по объему мирового энергетического рынка (4 триллиона долларов в год). Обеспечение потребностей человечества в энергии является очень серьезной проблемой. По мере того, как ископаемое топливо становится всё менее доступным (помимо этого, его использование становится нежелательным), ситуация изменяется, и мы просто не можем позволить себе не развивать термоядерную энергетику.»

На вопрос «Когда появится термоядерная энергетика?» Лев Арцимович (признанный пионер и лидер исследований в этой области) как-то ответил, что «она будет создана, когда станет действительно необходимой человечеству» . Возможно, это время пришло.

Шиканов А.С. // Соросовский образовательный журнал, №8, 1997, с: 86-91

Мы рассмотрим физические принципы лазерного термоядерного синтеза — быстро развивающегося научного направления, в основу которого легли два выдающихся открытия XX столетия: термоядерные реакции и лазеры.

Термоядерные реакции протекают при слиянии (синтезе) ядер легких элементов. При этом наряду с образованием более тяжелых элементов выделяется избыточная энергия в виде кинетической энергии конечных продуктов реакции и гамма-излучения. Большое энерговыделение при протекании термоядерных реакций и привлекает внимание ученых из-за возможности их практического применения в земных условиях. Так, термоядерные реакции в крупных масштабах осуществлены в водородной (или термоядерной) бомбе.

Чрезвычайно привлекательной представляется возможность утилизации энергии, выделившейся при термоядерных реакциях для решения энергетической проблемы. Дело в том, что топливом при таком способе получения энергии является изотоп водорода дейтерий (D), запасы которого в Мировом океане практически неисчерпаемы.

ТЕРМОЯДЕРНЫЕ РЕАКЦИИ И УПРАВЛЯЕМЫЙ СИНТЕЗ

Термоядерная реакция — это процесс слияния (или синтеза) легких ядер в более тяжелые. Так как при этом происходит образование сильно связанных ядер из более рыхлых, процесс сопровождается выделением энергии связи. Легче всего происходит слияние изотопов водорода — дейтерия D и трития T. Ядро дейтерия — дейтрон содержит один протон и один нейтрон. Дейтерий содержится в воде в соотношении одна часть на 6500 частей водорода. Ядро трития — тритон состоит из протона и двух нейтронов. Тритий нестабилен (период полураспада 12,4 года), однако может быть получен в результате ядерных реакций.

При синтезе ядер дейтерия и трития образуются гелий He с атомной массой, равной четырем, и нейтрон n. В результате реакции выделяется энергия 17,6 МэВ.

Слияние ядер дейтерия происходит по двум каналам примерно с одинаковой вероятностью: в первом образуются тритий и протон p и выделяется энергия, равная 4 МэВ; во втором канале — гелий с атомной массой 3 и нейтрон, а выделившаяся энергия 3,25 МэВ. Эти реакции представляются в виде формул

D + T = 4He + n + 17,6 МэВ,

D + D = T + p + 4,0 МэВ,

D + D = 3He + n + 3,25 МэВ.

До процесса слияния ядра дейтерия и трития обладают энергией порядка 10 кэВ; энергия продуктов реакции достигает величины порядка единиц и десятков мегаэлектронвольт. Следует также отметить, что сечение реакции D + T и скорость ее протекания значительно выше (в сотни раз), чем для реакции D + D. Следовательно, для реакции D + T значительно легче достичь условий, когда выделившаяся термоядерная энергия превзойдет затраты на организацию процессов слияния.

Возможны и реакции синтеза с участием других ядер элементов (например, лития, бора и т.д.). Однако сечения реакций и скорости их протекания для этих элементов существенно меньше, чем для изотопов водорода, и достигают заметных значений лишь для температур порядка 100 кэВ. Достижение таких температур в термоядерных установках в настоящее время предоставляется совершенно нереальным, поэтому лишь реакции слияния изотопов водорода могут иметь практическое применение в ближайшем будущем.

Каким образом можно осуществить термоядерную реакцию? Проблема заключается в том, что слиянию ядер препятствуют электрические силы расталкивания. В соответствии с законом Кулона электрическая сила расталкивания растет обратно пропорционально квадрату расстояния между взаимодействующими ядрами F ~ 1/ r 2. Поэтому для синтеза ядер, образования новых элементов и выделения избыточной энергии необходимо преодолеть кулоновский барьер, то есть совершить работу против сил расталкивания, сообщая ядрам необходимую энергию.

Существуют две возможности. Одна из них заключается в столкновении двух ускоренных навстречу друг другу пучков легких атомов. Оказалось, однако, что этот путь неэффективен. Дело в том, что вероятность слияния ядер в ускоренных пучках чрезвычайно мала из-за низкой плотности ядер и ничтожно малого времени их взаимодействия, хотя создание пучков необходимой энергии в существующих ускорителях проблемы не составляет.

Другой путь, на котором и остановились современные исследователи, — нагрев вещества до высоких температур (порядка 100 млн градусов). Чем выше температура, тем выше среднекинетическая энергия частиц и тем большее их количество может преодолеть кулоновский барьер.

Для количественной оценки эффективности термоядерных реакций вводится коэффициент усиления по энергии Q, равный

где Eвых — энергия, выделившаяся в результате реакций синтеза, Eуст — энергия, идущая на нагрев плазмы до термоядерных температур.

Для того чтобы энергия, выделившаяся в результате реакции, сравнялась с энергетическими затратами на нагрев плазмы до температур порядка 10 кэВ, необходимо выполнение так называемого критерия Лоусона:

(Nt) $ 1014 c/см3 для D-T реакции,

(Nt) $ 1015 с/см3 для D-D реакции.

Здесь N — это плотность дейтериево-тритиевой смеси (количество частиц в кубическом сантиметре), t — время эффективного протекания реакций синтеза.

К настоящему времени сформировались два в значительной мере независимых подхода к решению проблемы управляемого термоядерного синтеза. Первый из них основан на возможности удержания и термоизоляции высокотемпературной плазмы относительно низкой плотности (N © 1014-1015 см- 3) магнитным полем специальной конфигурации в течение сравнительно длительного времени (t © 1-10 с). К таким системам относится «Токамак» (сокращенно от «тороидальная камера с магнитными катушками»), предложенный в 50-х годах в СССР.

Другой путь импульсный. При импульсном подходе необходимо быстро нагреть и сжать малые порции вещества до таких температур и плотностей, при которых термоядерные реакции успевали бы эффективно протекать за время существования ничем не удерживаемой или, как говорят, инерциально удерживаемой плазмы. Оценки показывают, что, для того чтобы сжать вещество до плотностей 100-1000 г/см3 и нагреть его до температуры Т © 5-10 кэВ, необходимо создать давление на поверхности сферической мишени Р © 5 » 109 атм, то есть нужен источник, который позволял бы подвести к поверхности мишени энергию с плотностью мощности q © 1015 Вт/см2.

ФИЗИЧЕСКИЕ ПРИНЦИПЫ ЛАЗЕРНОГО ТЕРМОЯДЕРНОГО СИНТЕЗА

Впервые идея использования мощного лазерного излучения для нагрева плотной плазмы до термоядерных температур была высказана Н.Г. Басовым и О.Н. Крохиным в начале 60-х годов. К настоящему времени сформировалось самостоятельное направление термоядерных исследований — лазерный термоядерный синтез (ЛТС).

Остановимся кратко на том, какие основные физические принципы заложены в концепцию достижения высоких степеней сжатия веществ и получения больших коэффициентов усиления по энергии с помощью лазерных микровзрывов. Рассмотрение построим на примере так называемого режима прямого сжатия. В этом режиме микросфера (рис. 1), наполненная термоядерным топливом, со всех сторон «равномерно» облучается многоканальным лазером. В результате взаимодействия греющего излучения с поверхностью мишени образуется горячая плазма с температурой в несколько килоэлектронвольт (так называемая плазменная корона), разлетающаяся навстречу лучу лазера с характерными скоростями 107-108 см/с.

Не имея возможности более детально остановиться на процессах поглощения в плазменной короне, отметим, что в современных модельных экспериментах на уровне энергий лазерного излучения 10-100 кДж для мишеней, сравнимых по размерам с мишенями для больших коэффициентов усиления, удается достичь высоких (© 90%) коэффициентов поглощения греющего излучения.

Как мы уже видели, световое излучение не может проникнуть в плотные слои мишени (плотность твердого тела составляет © 1023 см- 3). За счет теплопроводности энергия, поглощенная в плазме с электронной плотностью, меньшей nкр, передается в более плотные слои, где происходит абляция вещества мишени. Оставшиеся неиспаренными слои мишени под действием теплового и реактивного давления ускоряются к центру, сжимая и нагревая находящееся в ней топливо (рис. 2). В итоге энергия лазерного излучения превращается на рассматриваемой стадии в кинетическую энергию вещества, летящего к центру, и в энергию разлетающейся короны. Очевидно, что полезная энергия сосредоточена в движении к центру. Эффективность вклада световой энергии в мишень характеризуется отношением указанной энергии к полной энергии излучения — так называемым гидродинамическим коэффициентом полезного действия (КПД). Достижение достаточно высокого гидродинамического КПД (10-20%) является одной из важных проблем лазерного термоядерного синтеза.

Рис. 2. Распределение по радиусу температуры и плотности вещества в мишени на стадии ускоре- ния оболочки к центру

Какие же процессы могут препятствовать достижению высоких степеней сжатия? Один из них заключается в том, что при термоядерных плотностях излучения q > 1014 Вт/см2 заметная доля поглощенной энергии трансформируется не в классическую волну электронной теплопроводности, а в потоки быстрых электронов, энергия которых много больше температуры плазменной короны (так называемые надтепловые электроны). Это может происходить как за счет резонансного поглощения, так и вследствие параметрических эффектов в плазменной короне. При этом длина пробега надтепловых электронов может оказаться сравнимой с размерами мишени, что приведет к предварительному прогреву сжимаемого топлива и невозможности получения предельных сжатий. Большой проникающей способностью обладают и рентгеновские кванты большой энергии (жесткое рентгеновское излучение), сопутствующие надтепловым электронам.

Тенденцией экспериментальных исследований последних лет является переход к использованию коротковолнового лазерного излучения (l < 0,5 мкм) при умеренных плотностях потока (q < 1015 Вт/см2). Практическая возможность перехода к нагреву плазмы коротковолновым излучением связана с тем, что коэффициенты конверсии излучения твердотельного неодимого лазера (основного кандидата в драйверы для лазерного термоядерного синтеза) с длиной волны l = 1,06 мкм в излучения второй, третьей и четвертой гармоник с помощью нелинейных кристаллов достигает 70-80%. В настоящее время фактически все крупные лазерные установки на неодимовом стекле снабжены системами умножения частоты. Физической причиной преимущества использования коротковолнового излучения для нагрева и сжатия микросфер является то, что с уменьшением длины волны увеличивается поглощение в плазменной короне и возрастают абляционное давление и гидродинамический коэффициент передачи. На несколько порядков уменьшается доля надтепловых электронов, генерируемых в плазменной короне, что является чрезвычайно выгодным для режимов как прямого, так и непрямого сжатия. Для непрямого сжатия принципиально и то, что с уменьшением длины волны увеличивается конверсия поглощенной плазмой энергии в мягкое рентгеновское излучение. Остановимся теперь на режиме непрямого сжатия. Физический анализ показывает, что осуществление режима сжатия до высоких плотностей топлива оптимально для простых и сложных оболочечных мишеней с аспектным отношением R / DR в несколько десятков. Здесь R — радиус оболочки, DR — ее толщина. Однако сильное сжатие может быть ограничено развитием гидродинамических неустойчивостей, которые проявляются в отклонении движения оболочки на стадиях ее ускорения и торможения в центре от сферической симметрии и зависят от отклонений начальной формы мишени от идеально сферической, неоднородного распределения падающих лазерных лучей по ее поверхности. Развитие неустойчивости при движении оболочки к центру приводит сначала к отклонению движения от сферически-симметричного, затем к турбулизации течения и в конце концов к перемешиванию слоев мишени и дейтериево-тритиевого горючего. В результате в конечном состоянии может возникнуть образование, форма которого резко отличается от сферического ядра, а средние плотность и температура значительно ниже величин, соответствующих одномерному сжатию. При этом начальная структура мишени (например, определенный набор слоев) может быть полностью нарушена. Физическая природа такого типа неустойчивости эквивалентна неустойчивости слоя ртути, находящегося на поверхности воды в поле тяжести. При этом, как известно, происходит полное перемешивание ртути и воды, то есть в конечном состоянии ртуть окажется внизу. Аналогичная ситуация и может происходить при ускоренном движении к центру вещества мишени, имеющей сложную структуру, или в общем случае при наличии градиентов плотности и давления. Требования к качеству мишеней достаточно жестки. Так, неоднородность толщины стенки микросферы не должна превышать 1%, однородность распределения поглощения энергии по поверхности мишени 0,5%. Предложение использовать схему непрямого сжатия как раз и связано с возможностью решить проблему устойчивости сжатия мишени. Принципиальная схема эксперимента в режиме непрямого сжатия показана на рис. 3. Излучение лазера заводится в полость (хольраум), фокусируясь на внутренней поверхности внешней оболочки, состоящей из вещества с большим атомным номером, например золота. Как уже отмечалось, до 80% поглощенной энергии трансформируется в мягкое рентгеновское излучение, которое нагревает и сжимает внутреннюю оболочку. К преимуществам такой схемы относятся возможность достижения более высокой однородности распределения поглощенной энергии по поверхности мишени, упрощение схемы лазера и условий фокусировки и т.д. Однако имеются и недостатки, связанные с потерей энергии на конверсию в рентгеновское излучение и сложностью ввода излучения в полость. Каково же состояние исследований по лазерному термоядерному синтезу в настоящее время? Эксперименты по достижению высоких плотностей сжимаемого топлива в режиме прямого сжатия начались в середине 70-х годов в Физическом институте им. П.Н. Лебедева, где на установке «Кальмар» с энергией E = 200 Дж была достигнута плотность сжимаемого дейтерия © 10 г/см3. В дальнейшем программы работ по ЛТС активно развивались в США (установки «Шива», «Нова» в Ливерморской национальной лаборатории, «Омега» в Рочестерском университете), Японии («Гекко-12»), России («Дельфин» в ФИАНе, «Искра-4», «Искра-5» в Арзамасе-16) на уровне энергии лазеров 1-100 кДж. Детально исследуются все аспекты нагрева и сжатия мишеней различной конфигурации в режимах прямого и непрямого сжатий. Достигаются абляционное давление ~ 100 Мбар и скорости схлопывания микросфер V > 200 км/с при значениях гидродинамического КПД порядка 10%. Прогресс в развитии лазерных систем и конструкций мишеней позволил обеспечить степень однородности облучения сжимаемой оболочки 1-2% как при прямом, так и при непрямом сжатии. В обоих режимах были достигнуты плотности сжатого газа 20-40 г/см3, а на установке «Гекко-12» была зарегистрирована плотность сжатой оболочки 600 г/см3. Максимальный нейтронный выход N = 1014 нейтронов за вспышку.

ЗАКЛЮЧЕНИЕ

Таким образом, вся совокупность полученных экспериментальных результатов и их анализ указывают на практическую реализуемость следующего этапа в развитии лазерного термоядерного синтеза — достижение плотностей дейтериево-тритиевого газа 200-300 г/см3, осуществление сжатия мишени и достижение заметных коэффициентов усиления k на уровне энергии E = 1 МДж (см. рис. 4 и ).

В настоящее время интенсивно разрабатывается элементная база и создаются проекты лазерных установок мегаджоульного уровня. В Ливерморской лаборатории начато создание установки на неодимовом стекле с энергией Е = 1,8 МДж. Стоимость проекта составляет 2 млрд долл. Создание установки аналогичного уровня запланировано и во Франции. На этой установке планируется достижение коэффициента усиления по энергии Q ~ 100. Нужно сказать, что запуск установок такого масштаба не только приблизит возможность создания термоядерного реактора на основе лазерного термоядерного синтеза, но и предоставит в распоряжение исследователей уникальный физический объект — микровзрыв с энерговыделением 107-109 Дж, мощный источник нейтронного, нейтринного, рентгеновского и g-излучений. Это будет иметь не только большое общефизическое значение (возможность исследовать вещества в экстремальных состояниях, физики горения, уравнения состояния, лазерных эффектов и т.д.), но и позволит решить специальные задачи прикладного, в том числе военного, характера.

Для реактора на основе лазерного термоядерного синтеза необходимо, однако, создание лазера мегаджоульного уровня, работающего с частотой повторения в несколько герц. В ряде лабораторий исследуются возможности создания таких систем на основе новых кристаллов. Запуск опытного реактора по американской программе планируется на 2025 год.

Согласно современным астрофизическим представлениям, основным источником энергии Солнца и других звезд является происходящий в их недрах термоядерный синтез. В земных условиях он осуществляется при взрыве водородной бомбы. Термоядерный синтез сопровождается колоссальным энерговыделением на единицу массы реагирующих веществ (примерно в 10 миллионов раз большим, чем в химических реакциях). Поэтому представляет большой интерес овладеть этим процессом и на его основе создать дешевый и экологически чистый источник энергии. Однако несмотря на то, что исследованиями управляемого термоядерного синтеза (УТС) заняты большие научно-технические коллективы во многих развитых странах, предстоит решить еще немало сложных проблем, прежде чем промышленное производство термоядерной энергии станет реальностью.

Современные атомные станции, использующие процесс деления, лишь отчасти удовлетворяют мировые потребности в электроэнергии. Топливом для них служат естественные радиоактивные элементы уран и торий, распространенность и запасы которых в природе весьма ограничены; поэтому для многих стран возникает проблема их импорта. Главным компонентом термоядерного топлива является изотоп водорода дейтерий, который содержится в морской воде. Запасы его общедоступны и очень велики (мировой океан покрывает ~71% площади поверхности Земли, а на долю дейтерия приходится ок. 0,016% общего числа атомов водорода, входящих в состав воды). Помимо доступности топлива, термоядерные источники энергии имеют следующие важные преимущества перед атомными станциями: 1) реактор УТС содержит гораздо меньше радиоактивных материалов, чем атомный реактор деления, и поэтому последствия случайного выброса радиоактивных продуктов менее опасны; 2) при термоядерных реакциях образуется меньше долгоживущих радиоактивных отходов; 3) УТС допускает прямое получение электроэнергии.

ФИЗИЧЕСКИЕ ОСНОВЫ ЯДЕРНОГО СИНТЕЗА

Успешное осуществление реакции синтеза зависит от свойств используемых атомных ядер и возможности получения плотной высокотемпературной плазмы, которая необходима для инициирования реакции.

Ядерные силы и реакции.

Энерговыделение при ядерном синтезе обусловлено действующими внутри ядра чрезвычайно интенсивными силами притяжения; эти силы удерживают вместе входящие в состав ядра протоны и нейтроны. Они очень интенсивны на расстояниях ~10 –13 см и чрезвычайно быстро ослабевают с увеличением расстояния. Помимо этих сил, положительно заряженные протоны создают электростатические силы отталкивания. Радиус действия электростатических сил гораздо больше, чем у ядерных, поэтому они начинают преобладать, когда ядра удалены друг от друга.

Как показал Г.Гамов, вероятность реакции между двумя сближающимися легкими ядрами пропорциональна , где e основание натуральных логарифмов, Z 1 и Z 2 – числа протонов во взаимодействующих ядрах, W – энергия их относительного сближения, а K – постоянный множитель. Энергия, необходимая для осуществления реакции, зависит от числа протонов в каждом ядре. Если оно больше трех, то эта энергия слишком велика и реакция практически неосуществима. Таким образом, с возрастанием Z 1 и Z 2 вероятность реакции уменьшается.

Вероятность того, что два ядра вступят во взаимодействие, характеризуется «сечением реакции», измеряемом в барнах (1 б = 10 –24 см 2). Сечение реакции – это площадь эффективного поперечного сечения ядра, в которое должно «попасть» другое ядро, чтобы произошло их взаимодействие. Сечение реакции дейтерия с тритием достигает максимальной величины (~5 б), когда взаимодействующие частицы имеют энергию относительного сближения порядка 200 кэВ. При энергии 20 кэВ сечение становится меньше 0,1 б.

Из миллиона попадающих на мишень ускоренных частиц не более одной вступает в ядерное взаимодействие. Остальные рассеивают свою энергию на электронах атомов мишени и замедляются до скоростей, при которых реакция становится невозможной. Следовательно, способ бомбардировки твердой мишени ускоренными ядрами (как это было в эксперименте Кокрофта – Уолтона) для УТС непригоден, так как получаемая при этом энергия намного меньше затраченной.

Термоядерные топлива.

Реакции с участием p , играющие основную роль в процессах ядерного синтеза на Солнце и других гомогенных звездах, в земных условиях не представляют практического интереса, поскольку имеют слишком малое сечение. Для осуществления термоядерного синтеза на земле более подходящим видом топлива, как упоминалось выше, является дейтерий.

Но наиболее вероятная реакция реализуется в равнокомпонентной смеси дейтерия и трития (DT-смесь). К сожалению, тритий радиоактивен и, ввиду короткого периода полураспада (T 1/2 ~ 12,3 года) в природе практически не встречается. Его получают искусственным путем в реакторах деления, а также как побочный продукт в реакциях с дейтерием. Однако отсутствие в природе трития не является препятствием для использования DT – реакции синтеза, т.к. тритий можно производить, облучая изотоп 6 Li образующимися при синтезе нейтронами: n + 6 Li ® 4 He + t .

Если окружить термоядерную камеру слоем 6 Li (в природном литии его содержится 7%), то можно осуществить полное воспроизводство расходуемого трития. И хотя на практике часть нейтронов неизбежно теряется, их потерю легко восполнить, вводя в оболочку такой элемент, как бериллий, ядро которого, при попадании в него одного быстрого нейтрона, испускает два.

Принцип действия термоядерного реактора.

Реакция слияния легких ядер, цель которой – получение полезной энергии – называется управляемым термоядерным синтезом. Осуществляется он при температурах порядка сотен миллионов кельвинов. Такой процесс реализован пока только в лабораториях.

Временне и температурные условия.

Получение полезной термоядерной энергии возможно лишь при выполнении двух условий. Во-первых, предназначенная для синтеза смесь должна быть нагрета до температуры, при которой кинетическая энергия ядер обеспечивает высокую вероятность их слияния при столкновении. Во-вторых, реагирующая смесь должна быть очень хорошо термоизолирована (т.е. высокая температура должна поддерживаться достаточно долго, чтобы произошло необходимое число реакций и выделившаяся за счет этого энергия превышала энергию, затраченную на нагрев топлива).

В количественной форме это условие выражается следующим образом. Чтобы нагреть термоядерную смесь, одному кубическому сантиметру ее объема надо сообщить энергию P 1 = knT , где k – численный коэффициент, n – плотность смеси (количество ядер в 1 см 3), T – требуемая температура. Для поддержания реакции сообщенная термоядерной смеси энергия должна сохраняться в течение времени t. Чтобы реактор был энергетически выгоден, нужно, чтобы за это время в нем выделилось термоядерной энергии больше, чем было потрачено на нагрев. Выделившаяся энергия (также на 1 см 3) выражается следующим образом:

где f (T ) – коэффициент, зависящий от температуры смеси и ее состава, R – энергия, выделяющаяся в одном элементарном акте синтеза. Тогда условие энергетической рентабельности P 2 > P 1 примет вид

Последнее неравенство, известное под названием критерия Лоусона, представляет собой количественное выражение требований к совершенству термоизоляции. Правая часть – «число Лоусона» – зависит только от температуры и состава смеси, и чем оно больше, тем жестче требования к термоизоляции, т.е. тем труднее создать реактор. В области приемлемых температур число Лоусона для чистого дейтерия составляет 10 16 с/см 3 , а для равнокомпонентной DT-смеси – 2Ч10 14 с/см 3 . Таким образом, DT-смесь является более предпочтительным термоядерным топливом.

В соответствии с критерием Лоусона, определяющим энергетически выгодную величину произведения плотности на время удержания, в термоядерном реакторе следует использовать по возможности большие n либо t . Поэтому исследования УТС разошлись по двум разным направлениям: в первом исследователи пытались с помощью магнитного поля в течение достаточно длительного времени удерживать относительно разреженную плазму; во втором – с помощью лазеров на короткое время создать плазму с очень высокой плотностью. Первому подходу было посвящено гораздо больше работ, чем второму.

Магнитное удержание плазмы.

Во время реакции синтеза плотность горячего реагента должна оставаться на уровне, который обеспечивал бы достаточно высокий выход полезной энергии на единицу объема при давлении, которое в состоянии выдержать камера с плазмой. Например, для смеси дейтерий – тритий при температуре 10 8 К выход определяется выражением

Если принять P равным 100 Вт/см 3 (что примерно соответствует энергии, выделяемой топливными элементами в ядерных реакторах деления), то плотность n должна составлять ок. 10 15 ядер/см 3 , а соответствующее давление nT – примерно 3 МПа. Время удержания при этом, согласно критерию Лоусона, должно быть не менее 0,1 с. Для дейтерий-дейтериевой плазмы при температуре 10 9 К

В этом случае при P = 100 Вт/см 3 , n » 3Ч10 15 ядер/см 3 и давлении примерно 100 МПа требуемое время удержания составит более 1 с. Заметим, что указанные плотности составляют лишь 0,0001 от плотности атмосферного воздуха, так что камера реактора должна откачиваться до высокого вакуума.

Приведенные выше оценки времени удержания, температуры и плотности являются типичными минимальными параметрами, необходимыми для работы термоядерного реактора, причем легче они достигаются в случае дейтерий-тритиевой смеси. Что касается термоядерных реакций, протекающих при взрыве водородной бомбы и в недрах звезд, то следует иметь в виду, что в силу совершенно иных условий в первом случае они протекают очень быстро, а во втором – крайне медленно по сравнению с процессами в термоядерном реакторе.

Плазма.

При сильном нагреве газа его атомы частично или полностью теряют электроны, в результате чего образуются положительно заряженные частицы, называемые ионами, и свободные электроны. При температурах более миллиона градусов газ, состоящий из легких элементов, полностью ионизуется, т.е. каждый его атом утрачивает все свои электроны. Газ в ионизованном состоянии называется плазмой (термин введен И.Ленгмюром). Свойства плазмы существенно отличаются от свойств нейтрального газа. Поскольку в плазме присутствуют свободные электроны, плазма очень хорошо проводит электрический ток, причем ее проводимость пропорциональна T 3/2 . Плазму можно нагревать, пропуская через нее электрический ток. Проводимость водородной плазмы при 10 8 К такая же, как у меди при комнатной температуре. Очень велика и теплопроводность плазмы.

Чтобы удержать плазму, например, при температуре 10 8 К, ее нужно надежно термоизолировать. В принципе изолировать плазму от стенок камеры можно, поместив ее в сильное магнитное поле. Это обеспечивается силами, которые возникают при взаимодействии токов с магнитным полем в плазме.

Под действием магнитного поля ионы и электроны движутся по спиралям вдоль его силовых линий. Переход с одной силовой линии на другую возможен при столкновениях частиц и при наложении поперечного электрического поля. В отсутствие электрических полей высокотемпературная разреженная плазма, в которой столкновения происходят редко, будет лишь медленно диффундировать поперек магнитных силовых линий. Если силовые линии магнитного поля замкнуть, придав им форму петли, то частицы плазмы будут двигаться вдоль этих линий, удерживаясь в области петли. Кроме такой замкнутой магнитной конфигурации для удержания плазмы были предложены и открытые системы (с силовыми линиями поля, выходящими из торцов камеры наружу), в которых частицы остаются внутри камеры благодаря ограничивающим движение частиц магнитным «пробкам». Магнитные пробки создаются у торцов камеры, где в результате постепенного увеличения напряженности поля образуется сужающийся пучок силовых линий.

На практике осуществить магнитное удержание плазмы достаточно большой плотности оказалось далеко не просто: в ней часто возникают магнитогидродинамические и кинетические неустойчивости.

Магнитогидродинамические неустойчивости связаны с изгибами и изломами магнитных силовых линий. В этом случае плазма может начать перемещаться поперек магнитного поля в виде сгустков, за несколько миллионных долей секунды уйдет из зоны удержания и отдаст тепло стенкам камеры. Такие неустойчивости можно подавить, придав магнитному полю определенную конфигурацию.

Кинетические неустойчивости очень многообразны и изучены они менее детально. Среди них есть такие, которые срывают упорядоченные процессы, как, например, протекание через плазму постоянного электрического тока или потока частиц. Другие кинетические неустойчивости вызывают более высокую скорость поперечной диффузии плазмы в магнитном поле, чем предсказываемая теорией столкновений для спокойной плазмы.

Системы с замкнутой магнитной конфигурацией.

Если к ионизованному проводящему газу приложить сильное электрическое поле, то в нем возникнет разрядный ток, одновременно с которым появится окружающее его магнитное поле. Взаимодействие магнитного поля с током приведет к появлению действующих на заряженные частицы газа сжимающих сил. Если ток протекает вдоль оси проводящего плазменного шнура, то возникающие радиальные силы подобно резиновым жгутам сжимают шнур, отодвигая границу плазмы от стенок содержащей ее камеры. Это явление, теоретически предсказанное У.Беннеттом в 1934 и впервые экспериментально продемонстрированное А.Уэром в 1951, названо пинч-эффектом. Метод пинча применяется для удержания плазмы; примечательной его особенностью является то, что газ нагревается до высоких температур самим электрическим током (омический нагрев). Принципиальная простота метода обусловила его использование в первых же попытках удержания горячей плазмы, а изучение простого пинч-эффекта, несмотря на то, что впоследствии он был вытеснен более совершенными методами, позволило лучше понять проблемы, с которыми экспериментаторы сталкиваются и сегодня.

Помимо диффузии плазмы в радиальном направлении, наблюдается еще продольный дрейф и выход ее через торцы плазменного шнура. Потери через торцы можно устранить, если придать камере с плазмой форму бублика (тора). В этом случае получается тороидальный пинч.

Для описанного выше простого пинча серьезной проблемой являются присущие ему магнитогидродинамические неустойчивости. Если у плазменного шнура возникает небольшой изгиб, то плотность силовых линий магнитного поля с внутренней стороны изгиба увеличивается (рис. 1). Магнитные силовые линии, которые ведут себя подобно сопротивляющимся сжатию жгутам, начнут быстро «выпучиваться», так что изгиб будет увеличиваться вплоть до разрушения всей структуры плазменного шнура. В результате плазма вступит в контакт со стенками камеры и охладится. Чтобы исключить это губительное явление, до пропускания основного аксиального тока в камере создают продольное магнитное поле, которое вместе с приложенным позднее круговым полем «выпрямляет» зарождающийся изгиб плазменного шнура (рис. 2). Принцип стабилизации плазменного шнура аксиальным полем положен в основу двух перспективных проектов термоядерных реакторов – токамака и пинча с обращенным магнитным полем.

Открытые магнитные конфигурации.

Инерциальное удержание.

Теоретические расчеты показывают, что термоядерный синтез возможен и без применения магнитных ловушек. Для этого осуществляется быстрое сжатие специально приготовленной мишени (шарика из дейтерия радиусом ок. 1 мм) до столь высоких плотностей, что термоядерная реакция успевает завершиться прежде, чем произойдет испарение топливной мишени. Сжатие и нагрев до термоядерных температур можно производить сверхмощными лазерными импульсами, со всех сторон равномерно и одновременно облучающими топливный шарик (рис. 4). При мгновенном испарении его поверхностных слоев вылетающие частицы приобретают очень высокие скорости, и шарик оказывается под действием больших сжимающих сил. Они аналогичны движущим ракету реактивным силам, с той лишь разницей, что здесь эти силы направлены внутрь, к центру мишени. Этим методом можно создать давления порядка 10 11 МПа и плотности, в 10 000 раз превышающие плотность воды. При такой плотности почти вся термоядерная энергия высвободится в виде небольшого взрыва за время ~10 –12 с. Происходящие микровзрывы, каждый из которых эквивалентен 1–2 кг тротила, не вызовут повреждения реактора, а осуществление последовательности таких микровзрывов через короткие промежутки времени позволило бы реализовать практически непрерывное получение полезной энергии. Для инерциального удержания очень важно устройство топливной мишени. Мишень в виде концентрических сфер из тяжелого и легкого материалов позволит добиться максимально эффективного испарения частиц и, следовательно, наибольшего сжатия.

Расчеты показывают, что при энергии лазерного излучения порядка мегаджоуля (10 6 Дж) и кпд лазера не менее 10% производимая термоядерная энергия должна превышать энергию, израсходованную на накачку лазера. Термоядерные лазерные установки имеются в исследовательских лабораториях России, США, Западной Европы и Японии. В настоящее время изучается возможность использования вместо лазерного луча пучка тяжелых ионов или сочетания такого пучка со световым лучом. Благодаря современной технике такой способ инициирования реакции имеет преимущество перед лазерным, поскольку позволяет получить больше полезной энергии. Недостаток заключается в трудности фокусировки пучка на мишени.

УСТАНОВКИ С МАГНИТНЫМ УДЕРЖАНИЕМ

Магнитные методы удержания плазмы исследуются в России, США, Японии и ряде европейских стран. Главное внимание уделяется установкам тороидального типа, таким, как токамак и пинч с обращенным магнитным полем, появившимся в результате развития более простых пинчей со стабилизирующим продольным магнитным полем.

Для удержания плазмы при помощи тороидального магнитного поля B j необходимо создать условия, при которых плазма не смещалась бы к стенкам тора. Это достигается «скручиванием» силовых линий магнитного поля (т.н. «вращательным преобразованием»). Такое скручивание осуществляется двумя способами. В первом способе через плазму пропускается ток, приводящий к конфигурации уже рассмотренного устойчивого пинча. Магнитное поле тока B q Ј –B q вместе с B j создает суммарное поле с необходимым закручиванием. Если B j B q , то получается конфигурация, известная под названием токамак (аббревиатура выражения «ТОроидальная КАмера с МАгнитными Катушками»). Токамак (рис. 5) был разработан под руководством Л.А.Арцимовича в Институте атомной энергии им. И.В.Курчатова в Москве. При B j ~ B q получается конфигурация пинча с обращенным магнитным полем.

Во втором способе для обеспечения равновесия удерживаемой плазмы применяются специальные винтовые обмотки вокруг тороидальной плазменной камеры. Токи в этих обмотках создают сложное магнитное поле, приводящее к закручиванию силовых линий суммарного поля внутри тора. Такая установка, называемая стелларатором, была разработана в Принстонском университете (США) Л.Спитцером с сотрудниками.

Токамак.

Важным параметром, от которого зависит удержание тороидальной плазмы, является «запас устойчивости» q , равный rB j /RB q , где r и R – соответственно малый и большой радиусы тороидальной плазмы. При малом q может развиваться винтовая неустойчивость – аналог неустойчивости изгиба прямого пинча. Ученые в Москве экспериментально показали, что при q > 1 (т.е. B j B q) возможность возникновения винтовой неустойчивости сильно уменьшается. Это позволяет эффективно использовать выделяемое током тепло для нагревания плазмы. В результате многолетних исследований характеристики токамаков существенно улучшились, в частности за счет повышения однородности поля и эффективной очистки вакуумной камеры.

Полученные в России обнадеживающие результаты стимулировали создание токамаков во многих лабораториях мира, а их конфигурация стала предметом интенсивного исследования.

Омический нагрев плазмы в токамаке недостаточен для осуществления реакции термоядерного синтеза. Это связано с тем, что при нагреве плазмы сильно уменьшается ее электрическое сопротивление, и в результате резко снижается выделение тепла при прохождении тока. Увеличивать ток в токамаке выше некоторого предела нельзя, поскольку плазменный шнур может потерять устойчивость и переброситься на стенки камеры. Поэтому для нагрева плазмы используют различные дополнительные методы. Наиболее эффективные из них – инжекция пучков нейтральных атомов с высокой энергией и микроволновое облучение. В первом случае ускоренные до энергий 50–200 кэВ ионы нейтрализуются (чтобы избежать «отражения» их назад магнитным полем при введении в камеру) и инжектируются в плазму. Здесь они снова ионизуются и в процессе столкновений отдают плазме свою энергию. Во втором случае используется микроволновое излучение, частота которого равна ионной циклотронной частоте (частота вращения ионов в магнитном поле). На этой частоте плотная плазма ведет себя как абсолютно черное тело, т.е. полностью поглощает падающую энергию. На токамаке JET стран Европейского союза методом инжекции нейтральных частиц была получена плазма с ионной температурой 280 млн. кельвинов и временем удержания 0,85 с. На дейтериево-тритиевой плазме получена термоядерная мощность, достигающая 2 МВт. Длительность поддержания реакции ограничивается появлением примесей вследствие распыления стенок камеры: примеси проникают в плазму и, ионизуясь, существенно увеличивают энергетические потери за счет излучения. Сейчас работы по программе JET сосредоточены на исследованиях возможности контроля примесей и их удаления т.н. «магнитным дивертором».

Большие токамаки созданы также в США – TFTR, в России – T15 и в Японии – JT60. Исследования, выполненные на этих и других установках, заложили основу для дальнейшего этапа работ в области управляемого термоядерного синтеза: на 2010 намечается запуск большого реактора для технических испытаний. Предполагается, что это будет совместная работа США, России, стран Европейского союза и Японии. См. также ТОКАМАК .

Пинч с обращенным полем (ПОП).

Конфигурация ПОП отличается от токамака тем, что в ней B q ~ B j , но при этом направление тороидального поля вне плазмы противоположно его направлению внутри плазменного шнура. Дж.Тейлор показал, что такая система находится в состоянии с минимальной энергией и, несмотря на q

Достоинством конфигурации ПОП является то, что в ней отношение объемных плотностей энергии плазмы и магнитного поля (величина b) больше, чем в токамаке. Принципиально важно, чтобы b было как можно больше, поскольку это позволит уменьшить тороидальное поле, а следовательно, снизит стоимость создающих его катушек и всей несущей конструкции. Слабая сторона ПОП состоит в том, что термоизоляция у этих систем хуже, чем у токамаков, и не решена проблема поддержания обращенного поля.

Стелларатор.

В стеллараторе на замкнутое тороидальное магнитное поле налагается поле, создаваемое специальной винтовой обмоткой, навитой на корпус камеры. Суммарное магнитное поле предотвращает дрейф плазмы в направлении от центра и подавляет отдельные виды магнитогидродинамических нестабильностей. Сама плазма может создаваться и нагреваться любым из способов, применяемых в токамаке.

Главным преимуществом стелларатора является то, что примененный в нем способ удержания не связан с наличием тока в плазме (как в токамаках или в установках на основе пинч-эффекта), и потому стелларатор может работать в стационарном режиме. Кроме того, винтовая обмотка может оказывать «диверторное» действие, т.е. очищать плазму от примесей и удалять продукты реакции.

Удержание плазмы в стеллараторах всесторонне исследуется на установках Европейского союза, России, Японии и США. На стеллараторе «Вендельштейн VII» в Германии удалось поддерживать не несущую тока плазму с температурой более 5Ч10 6 кельвинов, нагревая ее путем инжекции высокоэнергетичного атомарного пучка.

Последние теоретические и экспериментальные исследования показали, что в большинстве описанных установок, и особенно в замкнутых тороидальных системах, время удержания плазмы можно увеличить, увеличивая ее радиальные размеры и удерживающее магнитное поле. Например, для токамака подсчитано, что критерий Лоусона будет выполняться (и даже с некоторым запасом) при напряженности магнитного поля ~50 ё 100 кГс и малом радиусе тороидальной камеры ок. 2 м. Таковы параметры установки на 1000 МВт электроэнергии.

При создании столь крупных установок с магнитным удержанием плазмы возникают совершенно новые технологические проблемы. Чтобы создать магнитное поле порядка 50 кГс в объеме нескольких кубических метров с помощью охлаждаемых водой медных катушек, потребуется источник электроэнергии мощностью в несколько сотен мегаватт. Поэтому очевидно, что обмотки катушек необходимо делать из сверхпроводящих материалов, таких, как сплавы ниобия с титаном или с оловом. Сопротивление этих материалов электрическому току в сверхпроводящем состоянии равно нулю, и, следовательно, на поддержание магнитного поля будет расходоваться минимальное количество электроэнергии.

Реакторная технология.

Перспективы термоядерных исследований.

Эксперименты, выполненные на установках типа токамак, показали, что эта система весьма перспективна в качестве возможной основы реактора УТС. На токамаках получены лучшие на сегодня результаты, и есть надежда, что при соответствующем увеличении масштабов установок на них удастся осуществить промышленный УТС. Однако токамак недостаточно экономичен. Для устранения этого недостатка необходимо, чтобы он работал не в импульсном, как сейчас, а в непрерывном режиме. Но физические аспекты этой проблемы пока еще мало исследованы. Необходимо также разработать технические средства, которые позволили бы улучшить параметры плазмы и устранить ее неустойчивости. Учитывая все это, не следует забывать и о других возможных, хотя и менее проработанных вариантах термоядерного реактора, например о стеллараторе или пинче с обращенным полем. Состояние исследований в этой области достигло этапа, когда имеются концептуальные реакторные проекты для большинства систем с магнитным удержанием высокотемпературной плазмы и для некоторых систем с инерциальным удержанием. Примером промышленной разработки токамака может служить проект «Ариес» (США).

Управляемый термоядерный синтез - интереснейший физический процесс, который (пока в теории) может избавить мир от энергетической зависимости от ископаемых источников топлива. В основе процесса лежит синтез атомных ядер из более легких в более тяжелые с выделением энергии. В отличие от другого использования атома - выделение из него энергии в ядерных реакторах в процессе распада - термоядерный синтез на бумаге практически не будет оставлять радиоактивных побочных продуктов. Особые надежды возлагают на реактор ИТЭР, на создание которого затратили безумное количество средств. Скептики, однако, делают ставку на разработки частных корпораций.

В 2018 году ученые сообщили суровую новость: несмотря на беспокойство на тему глобального потепления, за счет угля было выработано 38% мировой электроэнергии в 2017 году - то есть, ровно столько же, сколько и при появлении первых тревожных предупреждений о климате 20 лет назад. Хуже того, выбросы парникового газа выросли на 2,7% в прошлом году - это крупнейшее увеличение за семь лет. Такой застой привел к тому, что даже политики и экологи начали задумываться о том, что нам нужно больше ядерной энергии.