Болезни Военный билет Призыв

Атомный электростанция с реактором на быстрых нейтронах. Ядерные реакторы на быстрых нейтронах. Перспективы близки, но дорога не проста

Наибольшее распространение сегодня получили водно-водяные и кипящие тепловые реакторы. Состав ОЯТ различных реакторов несколько различается. Он зависит, в частности от выгорания, но не только. В типичном реакторе типа ВВЭР электрической мощностью 1000 МВт при использовании уранового топлива ежегодно образуется 21 т отработавшего ядерного топлива (ОЯТ) объемом 11 м 3 (1/3 общей загрузки топлива). В 1 т ОЯТ, только что извлеченного из реактора типа ВВЭР, содержится 950- 980 кг урана-235 и 238, 5 - 10 кг плутония, продуктов деления (1.2 - 1.5 кг цезия-137, 770 г технеция-90, 500 г стронция-90, 200 г иода-129, 12 - 15 г самария-151), минорных актинидов (500 г нептуния-237, 120 - 350 г америция-241 и 243, 60 г кюрия-242 и 244), а также в меньшем количестве радиоизотопы селена, циркония, палладия, олова и других элементов. При использовании МОХ-топлива в ОЯТ будет больше америция и кюрия.

Продукты деления

В течении первых десяти лет тепловыделение ОЯТ после выгрузки падает приблизительно на два порядка и определяется в основном продуктами деления. Наибольший вклад в активность отработавшего топлива с трехлетним временем выдержки вносят: 137 Cs + 137m Ba (24%), 144 Ce + 144 Pr (21%), 90 Sr + 90 Y (18%), 106 Ru + 106 Rh (16%), 147 Pm (10%), 134 Cs (7%), относительный вклад 85 Kr, 154 Eu, 155 Eu равен приблизительно 1% от каждого изотопа.

Короткоживущие продукты деления

Нуклид Т 1/2 Нуклид Т 1/2
85 Kr 10.8года 137 Cs 26.6 года
90 Sr 29 лет 137m Ba 156 сут
90 Y 2.6 сут 144 Ce 284.91 сут
106 Ru 371.8 сут 144 Pr 17.28 м
106 Rh 30.07 с 147 Pm 2.6 года
134 Cs 2.3 года 154 Eu 8.8 года
155 Eu 4.753 года

В течение нескольких лет после выгрузки, в то время как отработавшее топливо хранится в водонаполненных бассейнах, основной риск состоит в том, что потеря охлаждающей воды может привести к нагреву топлива до температуры, достаточно высокой, чтобы воспламенить циркониевый сплав из которого изготавливаются ТВЭЛы, что приведет к выбросу летучих радиоактивных продуктов деления.

Долгоживущие продукты деления

В долгосрочном плане (10 4 -10 6 лет) эти продукты могут представлять опасность из-за своей большей, чем у актинидов мобильности.

Актиниды

К минорным актиноидам относятся долгоживущие и относительно долгоживущие изотопы нептуния (Np-237), америция (Am-241, Am-243) и кюрия (Cm-242, Cm-244, Cm-245).

Нептуний

Нептуний, который преимущественно представлен единственным изотопом Np-237 нарабатывается на изотопе урана U-235 по следующей цепочке:

Схема его распада до ближайшего долгоживущего дочернего ядра имеет вид

Np-237 (T 1/2 = 2.14·10 6 лет; α) → Pa-233 (T 1/2 = 27 суток; β) → U-233 (T 1/2 = 1.59·10 5 лет; α)

Анализируя динамику изменения активностей ядер в цепочке распадов, можно сказать, что Np-237 и Ра-233 будут находиться в вековом равновесии и их активности будут равны, а активность Ра-233 будет очень мала и ее можно не учитывать.

Радиационные характеристики Np-237 и Ра-233

C 0 – удельная активность материала в расчете на 1 кг Np-237 (Ки/кг); Q – энергия распада (МэВ);
E α – энергия α-частиц (МэВ); E β – средняя энергия β-частиц (МэВ);
E γ – общая энергия γ-квантов (кэВ); W – тепловыделение (Вт/кг).

Нептуний, который преимущественно представлен единственным изотопом Np-237, вносит значительным вклад в долгосрочную радиотоксичность из-за его большого периода полураспада. Однако Np-237 не вносят существенного вклада в тепловыделение. Np-237 может быть трансмутирован как в тепловых, так и в быстрых реакторах.

Америций

К долгоживущим изотопам америция, нарабатываемым в значимых количествах в реакторах на тепловых нейтронах, относятся изотопы Аm-241 и Am-243. Изотоп Аm-242m нарабатывается в существенно меньших количествах, однако его содержание в америции, выделяемом из ОЯТ, может оказывать значительное влияние на характеристики нейтронного излучения материала.
Изотопы америция Am-241, Am-243 и изотопы кюрия Cm-242, Cm-244 и Cm-245 нарабатываются на изотопе урана U-238 по следующим цепочкам:



Am-241
В ОЯТ Am-241 является доминирующим изотопов америция, хотя там есть также Am-242, Am-242m и Am-243.
Схема распада Am-241 до ближайшего долгоживущего дочернего ядра имеет вид

Am-241 (T 1/2 = 4.32·10 2 лет; α) → Np-237 (T 1/2 = 2.14·10 6 лет; α)

Так как T 1/2 (Am-241) << T 1/2 (Np-237), то радиационные характеристики процесса определяются исключительно параметрами распада собственно Аm-241

Am-243
Схема распада Am-243 до ближайшего долгоживущего дочернего ядра имеет вид

Am-243 (T 1/2 = 7.38·10 3 лет; α) → Np-239 (T 1/2 = 2.35 суток; β) →Pu-239 (T 1/2 = 2.42·10 4 лет; α)

Am-243 и Np-239 находятся в радиационном равновесии и их активности равны.

Am-242m
В реакторах на тепловых нейтронах нарабатывается также долгоживущий изомер Am-242m

Am-242m (T 1/2 = 1.52·10 2 лет; γ) → Am-242 (T 1/2 = 16 часов; 82% β ; 18% ЭЗ*) →
→ Pu-242 (T 1/2 = 3.76·10 5 лет; α) → Cm-242 (T 1/2 = 1.63·10 2 суток; α) → Pu-238 (T 1/2 = 88 лет; α)

В радиоактивность материала, содержащего Am-242m, дают вклад следующие радионуклиды:
Am-242m, Am-242, Cm-242

Радиационные характеристики Аm-241, Am-243, Np-239, Am-242m, Am-242 и Cm-242

Изотоп T 1/2 C 0 Тип
распада
Q E α E β E γ W
Am-241 4.32·10 2 лет 3.44·10 3 α 5.64 5.48 29 1.11·10 2
Am-243 7.38·10 3 лет 200 α 5.44 5.27 0 48 6.6
Np-239 2.35 суток β 0.72 0 0.118 175
Am-242m 1.52·10 2 лет 9.75·10 3 γ 0.072 0 0 49 310
Am-242 16 часов 1.75·10 3
8·10 3
ЭЗ
β
0.75, 17.3%
0.66, 82.7%
0
0
0
0.16
18
Cm-242 1.63·10 2 суток 8·10 3 α 6.2 6.1 0 1.8

Америций является основным вкладчиком гамма-активности и радиотоксичности ОЯТ прилизительно через 500 лет после выгрузки, когда вклад продуктов деления уменьшается на на несколько порядков. Весь америций поддается трансмутации в интенсивном потоке нейтронов помощью реакций захвата и деления.

Кюрий

Cm-242
Схема распада Cm-242 имеет вид:

Сm-242 (Т 1/2 = 163 суток; α) → Pu-238 (Т 1/2 = 87.7 лет; α) → U-234 (Т 1/2 = 2.46·10 5 лет; α)

Активность Сm-242 быстро спадает, при этом активность Pu-238 увеличивается и, довольно быстро, за ≈ 3.4 года, активности Pu-238 и Сm-242 сравниваются при этом активность Cm-242 уменьшается приблизительно в 200 раз по сравнению с первоначальным уровнем.

Радиационные характеристики Сm-242 и Pu-238

Сm-244
Схема распада Сm-244 имеет вид:

Сm-244 (Т 1/2 = 18.1 лет; α) → Pu-240 (Т 1/2 = 6.56·10 3 лет; α).

Радиационные характеристики Сm-244

Сm-245
Схема распада Сm-245 имеет вид:

Сm-245 (Т 1/2 = 8.5·10 3 лет; α) → Pu-241 (Т 1/2 = 14.4 лет; β) → Am-241 (Т 1/2 = 4.33·10 2 лет; α).

При t >> Т 1/2 (Pu-241) активность Pu-241 находится в равновесии с активностью Cm-245.

Радиационные характеристики Cm-245 и Pu-241

Кюрий вносит значительный вклад в гамма-активность, нейтронное излучение и радиотоксичность. Кюрий плохо подходит для трансмутации, поскольку сечения деления и захвата основных изотопов (Cm-242 и Cm-244) довольно малы. Хотя Cm-242 имеет очень короткий период полураспада (163 дней), он постоянно генерируется в облученном топливе в результате распада
Am-242m (период полураспада 141 год).

Тепловыделение и радиотоксичность ОЯТ


Рис. 3. Тепловыделение отработавшего топлива легководного реактора с выгоранием 50 ГВт·дн/ттм

На рис. 3 показана тепловыделение отработавшего топлива легководного реактора с выгоранием 50 ГВт·д/ттм. Выгорание определяется как отношение выработанной тепловой энергии за время кампании реактора к массе загруженного топлива. После хранения в течение примерно 40 лет в отработавшем топливе остается лишь несколько процентов от исходной радиоактивности. Тепловыделение быстро падает в течение первых 200 лет после выгрузки. Причем первые 60 лет основной вклад в тепловыделение вносит распад продуктов деления. Наибольший вклад вносят 137 Cs + 137 Ba и 90 Sr + 90 Y. Несмотря на то, что минорные актиниды в реакторах производятся в относительно небольших количествах, они вносят существенный вклад в тепловыделение, выход нейтронов и радиотоксичность ОЯТ. Через 60 лет в величине тепловыделения превалируют актиниды. После 200 лет тепловыделение почти полностью вызвано актинидами − плутонием и америцием. Медленное снижение тепловыделения обусловлена относительно большими периодами полураспадов 241 Am, 238 Pu, 239 Pu и 240 Pu.
На рис. 4 показано как изменяется со временем мощность дозы внешнего облучения от ОЯТ.


Рис. 4. Зависимость от времени мощности дозы излучения от одной тонны отработавшего ядерного топлива после выгрузки из реактора с выгоранием 38 Гвтּ дн/т на расстоянии 1 метра.

Примерно через год после загрузки топлива, когда ОЯТ выгружается из реактора, мощность дозы от 1 т составляет около 1000 Зв/ч. Это означает, что смертельная доза, около 5 Зв, принимается примерно за 20 секунд. Доза полностью полностью зависит от вклада гамма излучения. Излучение уменьшается со временем, но мощность дозы после 40 лет, когда отработавшее топливо должно быть размещено в глубоком хранилище, по-прежнему высока − 65 Зв/ч. Поэтому при обращении с отработавшим ядерным топливом требуются защитные меры против внешнего облучения, от выгрузки из реактора до окончательного захоронения. Из рис. 4 видно, что доза от нейтронного излучения всегда много меньше, чем от гамма-излучения, но нейтронное излучение снижается медленнее.
В течение первых нескольких десятилетий радиотоксичность в основном определяется такими продуктами деления как 90 Sn и 137 Cs и продуктами их распада. После промежуточного хранения в течение примерно 40 лет в отработавшем топливе остается только несколько процентов от первоначальной радиоактивности. В течение нескольких сотен лет большинство радионуклидов распадается и основной вклад в радиотоксичность вносят долгоживущие актиниды (плутоний и америций). Радиотоксичность ОЯТ снизится до уровня радиотоксичности урановой руды примерно через 100 000 лет.


Рис. 5. Зависимость от времени радиотоксичности ОЯТ при выгорании 60 Гвтּ дн/т.

Когда нам сообщают, к примеру, что «построена электростанция на солнечных панелях мощностью 1200 МВт», это вовсе не значит, что эта СЭС даст столько же электроэнергии, сколько ее дает атомный реактор ВВЭР-1200. Солнечные панели не могут работать ночью – следовательно, если усреднить по временам года, половину суток они простаивают, а это уже уменьшает КИУМ вдвое. Солнечные панели, даже самых новых разновидностей, в пасмурную погоду работают значительно хуже, и средние величины тут тоже не радуют – тучки с дождичками да снегом, туманы уменьшают КИУМ еще в два раза. «СЭС мощностью 1200 МВт» звучит звонко, но надо держать в голове цифру 25% – эти мощности технологически могут быть использованы только на ¼.

Солнечные панели, в отличие от АЭС, работают не 60-80 лет, а 3-4 года, утрачивая возможность преобразования солнечного света в электрический ток. Можно, конечно, говорить о некоем «удешевлении генерации», но это ведь откровенное лукавство. Солнечные электростанции требуют большие участки территории, проблемами утилизации отработавших свой срок солнечных панелей пока никто нигде толком не занимался. Утилизация потребует разработки достаточно серьезных технологий, экологию вряд ли радующих. Если говорить о электростанциях, использующих ветер, то слова придется использовать почти те же, поскольку и в этом случае КИУМ составляет около четверти установленной мощности. То вместо ветра штиль, то ветер такой силы, что вынуждает остановить «мельницы», поскольку угрожает целости их конструкции.

Погодные капризы энергетики на ВИЭ

Никуда не деться и от второй «ахиллесовой пяты» ВИЭ. Электростанции на их основе работают не тогда, когда вырабатываемая ими электроэнергия необходима потребителям, а тогда, когда на улице солнечная погода или ветер подходящей силы. Да, такие электростанции могут вырабатывать электроэнергию, но что делать, если сети электропередач не способны ее принять? Подул ночью ветер, можно включать ветровые ЭС (электростанции), но ночью и мы с вами спим, и предприятия не работают. Да, такие традиционные ЭС на возобновляемых ресурсах, как ГЭС, с этой проблемой умеют справляться, увеличивая холостой сброс воды («мимо турбины») или попросту накапливая запас воды в своих водохранилищах, но в случае паводков и им приходится не так просто. А для ЭС на солнце и ветре технологии аккумулирования энергии не настолько развиты, чтобы выработанную электроэнергию «припасти» на тот момент, когда вырастет потребление в сети.

Есть и обратная сторона медали. Будет ли инвестор вкладываться в строительство, допустим, газовой ЭС в регионе, где в массовом количестве установлены солнечные панели? Деньги-то вложенные как окупать, если половину времени «твоя» электростанция не работает? Срок окупаемости, банковские проценты… «Ай, да зачем мне такая головная боль – заявляет осторожничающий капиталист и ничего не строит. А у нас – погодная аномалия, дожди на неделю зарядили при полном штиле. И крики возмущенных потребителей, вынужденных запускать дизель-генераторы на лужайках перед домом, сливаются в гул. Инвесторов пинками строить тепловые ЭС не заставишь, без льгот и субсидий со стороны государства они рисковать не будут. А это в любом случае становится дополнительной нагрузкой на государственные бюджеты, равно как и в том случае, если государство, не найдя сговорчивых инвесторов, строит тепловые ЭС самостоятельно.

Нам много рассказывают про то, как много солнечных панелей используют в Германии, не так ли? Но при этом в стране растет количество электростанций, работающих на местном буром угле, нещадно выбрасывая в атмосферу тот самый «цэ о два», с которым надо бороться, выполняя условия Парижского соглашения 2015 года. «Бурые электростанции» вынуждены строить федеральное правительство Германии, органы управления федеральными землями – у них нет другого выхода, в противном случае те самые поклонники «зеленой энергетики» выйдут на улицы с протестами из-за того, что в их розетках нету тока, что по вечерам приходится сидеть при лучине.

Утрируем, конечно – но только для того, чтобы очевиднее была абсурдность ситуации. Если генерация электроэнергии в буквальном смысле этого слова зависит от погоды, то получается, что за счет солнца и ветра удовлетворять базовые потребности в электроэнергии технически невозможно. Да, теоретически можно опутать всю Европу с Африкой дополнительными ЛЭП (линиями электропередач), чтобы ток из солнечной Сахары пришел в дома, стоящие на хмуром побережье Северного моря, но это стоит уже совсем невероятных денег, срок окупаемости которых близится к бесконечности. Рядом с каждой СЭС держать ЭС на угле или на газе? Повторимся, но сжигание углеводородных энергетических ресурсов на электростанциях не дает возможности выполнять в полном объеме положения Парижского соглашения о снижении выбросов СО 2 .

АЭС как основа «зеленой энергетики»

Тупик? Для тех стран, которые решили избавляться от атомной энергетики – именно он. Конечно, выход из него ищут. Усовершенствуют системы сжигания угля, газа, отказываются от ЭС на мазуте, прилагают усилия для повышения КПД топок, парогенераторов, котлов, наращивают усилия по применению энергосберегающих технологий. Это хорошо, это полезно, это обязательно надо делать. Но Россия и ее Росатом предлагают куда более радикальный вариант – строить АЭС.

Строительство АЭС, Фото: rusatom-overseas.com

Вам такой способ кажется парадоксальным? Давайте посмотрим на него с точки зрения логики. Во первых, выбросы СО 2 из атомных реакторов отсутствуют как таковые – нет в них никаких химических реакций, не ревет в них буйно пламя. Следовательно, выполнение условий Парижского соглашения «имеет место быть». Второй момент – масштаб генерации электроэнергии на АЭС. В большинстве случаев на площадках атомной электростанции стоят, как минимум, два, а то и все четыре реактора, их совокупная установленная мощность огромна, а КИУМ стабильно превышает 80%. Эта «прорва» электроэнергии достаточна, чтобы удовлетворить потребности не одного города, а целого региона. Вот только атомные реакторы «не любят», когда меняют их мощность. Извините, сейчас будет немножко технических подробностей, чтобы было понятнее, что мы имеем в виду.

Системы управления и защиты атомных реакторов

Принцип работы энергетического реактора схематично не так уж и сложен. Энергия атомных ядер превращается в тепловую энергию теплоносителя, тепловая энергия превращается в механическую энергию ротора электрогенератора, та, в свою очередь, преобразуется в энергию электрическую.

Атомная – тепловая – механическая – электрическая, такой вот своеобразный цикл энергий.

В конечном итоге, электрическая мощность реактора зависит от мощности контролируемой, управляемой атомной цепной реакции деления ядерного топлива. Подчеркиваем – контролируемой и управляемой. Что бывает, если цепная реакция из-под контроля и управления выходит, мы, к огромному сожалению, хорошо знаем с 1986 года.

Как контролируют и управляют течением цепной реакции, что необходимо делать для того, чтобы реакция не распространилась сразу на весь объем урана, содержащегося в «атомном котле»? Вспоминаем школьные прописные истины, не вдаваясь в научные подробности ядерной физики – этого будет вполне достаточно.

Что такое цепная реакция «на пальцах», если кто-то подзабыл: прилетел один нейтрон, выбил два нейтрона, два нейтрона выбили четыре и так далее. Если число этих самых свободных нейтронов становится слишком большим, реакция деления распространится на весь объем урана, грозя перерасти в «большой ба-бах». Да, конечно, ядерного взрыва не состоится, для него необходимо, чтобы содержание изотопа урана-235 в топливе превышало 60%, а в энергетических реакторах обогащение топлива не превышает 5%. Но и без атомного взрыва проблем будет выше головы. Перегреется теплоноситель, сверхкритично вырастет его давление в трубопроводах, после их разрыва может нарушиться целостность тепловыделяющих сборок и все радиоактивные вещества вырвутся за пределы реактора, безумно загрязнив прилегающие территории, ворвутся в атмосферу. Впрочем, подробности катастрофы Чернобыльской АЭС известны всем, не будем повторяться.

Авария на Чернобыльской АЭС, Фото: meduza.io

Одна из основных составляющих любого атомного реактора – СУЗ, система управления и защиты. Свободных нейтронов не должно быть больше жестко рассчитанной величины, но их не должно быть и меньше этой величины – это приведет к затуханию цепной реакции, АЭС просто «встанет». Внутри реактора должно находиться вещество, которое поглощает лишние нейтроны, но в том количестве, которое позволяет продолжаться цепной реакции. Физики-атомщики давно вычислили, какое вещество делает это лучше всего – изотоп бора-10, поэтому систему управления и защиты называют еще и попросту «борной».

Стержни с бором включены в конструкцию реакторов с графитовым и водным замедлителем, для них имеются такие же технологические каналы, как и для ТВЭЛ-ов, тепловыделяющих элементов. Счетчики нейтронов в реакторе работают непрерывно, автоматически отдавая команду системе, управляющей стержнями с бором, та перемещает эти стержни, погружая или извлекая их из реактора. При начале топливной сессии урана в реакторе много – борные стержни погружены глубже. Идет время, выгорает уран, и борные стержни начинают постепенно извлекать – количество свободных нейтронов должно оставаться постоянным. Да, заметим, что есть еще и «аварийные» борные стержни, «висящие» над реактором. В случае нарушений, потенциально способных вывести цепную реакцию из-под контроля, они погружаются в реактор мгновенно, на корню убивая цепную реакцию. Прорвало трубопровод, произошла утечка теплоносителя – это риск перегрева, аварийные борные стержни срабатывают мгновенно. Остановим реакцию и потихоньку разберемся, что именно произошло и как устранить проблему, а риск должен быть сведен к нулю.

Нейтроны бывают разные, а бор у нас один

Простая логика, как видите, показывает, что увеличение и уменьшение энергетической мощности атомного реактора – «маневр по мощности», как говорят энергетики – очень непростая работа, в основе которой лежит ядерная физика, квантовая механика. Еще чуточку «вглубь процесса», не сильно далеко, не бойтесь. При любой реакции деления уранового топлива образуются вторичные свободные нейтроны – те самые, которые в школьной формуле «выбил два нейтрона». В энергетическом реакторе два вторичных нейтрона – это слишком много, для контролируемости и управляемости реакции нужен коэффициент 1,02. Прилетело 100 нейтронов, выбило 200 нейтронов, и вот из этих 200 вторичных нейтронов 98 должен «скушать», поглотить тот самый бор-10. Подавляет бор излишнюю активность, это мы вам точно говорим.

Но помните, что бывает, если ребенка ведром мороженого накормить – он с удовольствием скушает первые 5-6 порций, а потом уйдет прочь, поскольку «больше не влезает». Человеки из атомов состоят, потому и характер у атомов ничем особо от нашего не отличается. Бор-10 может кушать нейтроны, но не бесконечное же количество, обязательно настанет то самое «больше не влезает». Бородатые в белых халатах на АЭС подозревают, что многие догадываются, что в душе атомщики остаются любопытными детьми, поэтому стараются использовать как можно более «взрослую» лексику. Бор в их лексиконе не «обожрался нейтронами», а «выгорел» – это звучит намного солиднее, согласитесь. Так или иначе, но каждое требование электросетей «приглушить реактор» приводит к более интенсивному выгоранию системы борной защиты и управления, вызывает дополнительные сложности.

Макет реактора на «быстрых» нейтронах, Фото: topwar.ru

С коэффициентом 1,02 тоже не все так просто, поскольку кроме мгновенных вторичных нейтронов, которые возникают сразу после реакции деления, есть еще и запаздывающие. Атом урана после деления разваливается на части, и вот из этих осколков тоже вылетают нейтроны, но спустя несколько микросекунд. Их немного по сравнению с мгновенными, всего около 1%, но при коэффициенте 1,02 и они весьма важны, ведь 1,02 – это прибавка всего-то в 2%. Следовательно, расчет количества бора нужно выполнять с ювелирной точностью, постоянно балансируя на тонкой грани «выход реакции из-под контроля – внеплановая остановка реактора». Потому в ответ на каждое требование «подай газку!» или «тормози, чего так раскочегарился!» начинается цепная реакция дежурной смены АЭС, когда каждый атомщик из ее состава предлагает большее количество идиоматических выражений…

И еще раз об АЭС как об основе «зеленой энергетики»

Вот теперь вернемся к тому, на чем остановились – на большой мощности генерации электроэнергии, на большой территории, которую обслуживает АЭС. Чем больше территория – тем больше возможностей разместить на ней ЭС, работающих на ВИЭ. Чем больше таких ЭС – тем выше вероятность того, что пиковое потребление совпадет с периодом их наибольшей генерации. Вот оттуда придет электроэнергия солнечных панелей, вот отсюда – энергия ветра, вот там о борт удачно ударит приливная волна, и все вместе они сгладят пиковую нагрузку, позволят атомщикам на АЭС спокойно пить чай, поглядывая на монотонно, без перебоев работающие счетчики нейтронов.

Возобновляемые источники энергии, hsto.org

Чем спокойнее обстановка на АЭС – тем толще могут становиться бюргеры, поскольку без проблем смогут и дальше греть на гриле свои колбаски. Как видите, ничего парадоксального в сочетании ЭС на ВИЭ и атомной генерации как базовой нет, все ровно наоборот – такое сочетание, если уж мир всерьез решил бороться с выбросами СО 2 , и есть оптимальный выход из ситуации, ни в коей мере не перечеркивая всех вариантов модернизаций и усовершенствований тепловых ЭС, о которых мы говорили.

Продолжая «стиль кенгуру», предлагаем «перепрыгнуть» на самое первое предложение этой статьи – о конечности любых традиционных энергетических ресурсов на планете Земля. В силу этого магистральное, стратегическое направление развития энергетики – покорение термоядерной реакции, однако технология ее невероятно сложна, требует слаженных, совместных усилий ученых и конструкторов всех стран, серьезных вложений и многих лет упорного труда. Сколько понадобится времени, сейчас можно гадать на кофейной гуще или внутренностях птиц, а закладываться нужно, разумеется, на самый пессимистический сценарий. Нужно искать топливо, которое способно обеспечить ту самую базовую генерацию на как можно более длительный срок. Нефти и газа как бы полным полно, но и население планеты растет, и к уровню потребления такому же, как в странах «золотого миллиарда» стремятся новые и новые царства-государства. По прикидкам геологов, ископаемого углеводородного топлива на Земле осталось годиков на 100-150, если только потребление не будет расти более быстрыми темпами, чем в нынешнее время. А оно, похоже, так и получится, поскольку население развивающихся стран жаждет повышения уровня комфорта…

Реакторы на быстрых нейтронах

Предлагаемый российским атомным проектом выход из сложившейся ситуации известен, это – замыкание ядерного топливного цикла за счет вовлечения в процесс ядерных реакторов-бридеров, реакторов на быстрых нейтронах. Бридер – это реактор, в котором в результате топливной сессии ядерного топлива на выходе получается больше, чем его изначально загрузили, реактор-размножитель. Те, кто еще не совсем забыл курс школьной физики, вполне могут задать вопрос: простите, а как же закон сохранения массы? Ответ прост – да никак, поскольку в ядерном реакторе и процессы ядерные, и закон сохранения массы не действует в классическом виде.

Альберт Эйнштейн больше сотни лет назад в специальной теории относительности связал воедино массу и энергию, и в атомных реакторах эта теория является сугубой практикой. Сохраняется общее количество энергии, а про сохранение общего количества массы в данном случае речи не идет. В атомах ядерного топлива «спит» огромный запас энергии, высвобождающийся в результаты реакции деления, часть этого запаса мы используем себе во благо, а другая часть удивительным образом превращает атомы урана-238 в смесь атомов изотопов плутония. Реакторы на быстрых нейтронах, и только они – позволяют превратить в топливный ресурс основной компонент урановой руды – уран-238. Накопленные в процессе работы АЭС на тепловых нейтронах запасы обедненного по содержанию урана-235, неиспользуемого в тепловых атомных реакторах урана-238, составляют сотни тысяч тонн, которые уже не надо добывать из шахт, которые уже не надо «вышелушивать» от пустой породы – его на заводах по обогащению урана неимоверное количество.

МОКС-топливо «на пальцах»

Теоретически понятно, но не до конца, потому попробуем снова «на пальцах». Само название «МОКС-топливо» – всего лишь буквами славянского алфавита записанная англоязычная аббревиатура, которая пишется как МОХ. Расшифровка – Mixed-Oxide fuel, вольный перевод – «топливо из микста оксидов». В основном под этим термином понимают микст оксида плутония и оксида урана, но это только в основном. Поскольку наши уважаемые американские партнеры освоить технологию производства МОКС-топлива из оружейного плутония оказались не в силах, отказалась от этого варианта и Россия. Но построенный нами завод заранее был рассчитан как универсальный – он способен производить МОКС-топливо и из ОЯТ тепловых реакторов. Если кто-то читал статьи Геоэнергетики.ru по этому поводу, то помнит, что изотопы плутония 239, 240 и 241 в ОЯТ уже «замикстованы» – их там по 1/3 каждого, так что в МОКС-топливе, созданном из ОЯТ, присутствует микст плутония, эдакий вот микст внутри микста.

Вторая же часть основного микста – обедненный уран. Утрируя: берем микст оксида плутония, добытого из ОЯТ при помощи ПУРЕКС-процесса, досыпаем безхозный уран-238 и получаем МОКС-топливо. Уран-238 при этом в цепной реакции не участвует, «горит» только микст изотопов плутония. Но уран-238 не просто «присутствует» – изредка, нехотя, время от времени он принимает внутрь себя один нейтрон, превращаясь в плутоний-239. Часть этого нового плутония тут же и «сгорает», а часть просто не успевает этого сделать до окончания топливной сессии. Вот, собственно, и весь секрет.

Цифры условны, взяты с потолка, просто для наглядности. В начальном составе МОКС-топлива 100 кило оксида плутония и 900 кило урана-238. Пока «горел» плутоний, 300 кило урана-238 превратились в дополнительный плутоний, из которого 150 кило тут же и «сгорело», а 150 кило не успело. Вытащили ТВС, «вытряхнули» из него плутоний, но его оказалось на 50 кило больше, чем было изначально. Ну, или вот то же самое, но на дровах: кинул в топку 2 полена, печка у тебя всю ночь грела, а утром ты из нее вытащил … три полена. Из 900 кг бесполезного, неучаствующего в цепной реакции урана-238 при его использовании в составе МОКС-топлива получили 150 кило топлива, которое с пользой для нас тут же «прогорело», да еще и 150 кило осталось для дальнейшего использования. А этого отвального, бесполезного урана-238 стало на 300 кило меньше, что тоже не плохо.

Реальные соотношения обедненного урана-238 и плутония в МОКС-топливе, разумеется, другие, поскольку при наличии в МОКС-топливе 7% плутония смесь ведет себя почти так же, как обычное урановое топливо с обогащением по урану-235 около 5%. Но придуманные нами цифры показывают главный принцип МОКС-топлива – бесполезный уран-238 превращается в ядерное топливо, его огромные запасы становятся энергетическим ресурсом. По приблизительным подсчетам, если предположить, что на Земле прекратить использовать углеводородное топливо для производства электроэнергии и перейти только на использование урана-238, нам его хватит на 2’500 – 3’000 лет. Вполне приличный запас времени, чтобы успеть освоить технологию управляемого термоядерного синтеза.

МОКС-топливо позволяет одновременно решить и еще одну проблему – уменьшить запасы накопленного во всех странах-участницах «атомного клуба» ОЯТ, уменьшить количество накопленных в ОЯТ радиоактивных отходов. Тут дело не в неких чудесных свойствах МОКС-топлива, все прозаичнее. Если ОЯТ не использовать, а пытаться отправить его на вечное геологическое захоронение, то вместе с ним придется отправлять на захоронение и все высокоактивные отходы, которые в нем содержатся. А вот применение технологий переработки ОЯТ с целью извлечения из него плутония волей-неволей вынуждает нас сокращать объемы этих радиоактивных отходов. В борьбе за использование плутония мы просто таки вынуждены уничтожать радиоактивные отходы, но при этом процесс такого уничтожения становится куда как менее затратен – ведь плутоний идет в дело.

МОКС-топливо – дорогое удовольствие, которое нужно сделать дешевым

При этом производство МОКС-топлива в России началось совсем недавно, даже у самого нового, самого технологичного реактора на быстрых нейтронах – БН-800, переход на 100%-ное использование МОКС-топлива происходит в режиме онлайн, тоже еще не завершен. Совершенно естественно, что в настоящее время производство МОКС-топлива обходится дороже, чем производство традиционного уранового. Удешевление производства, как и в любой другой отрасли промышленности, возможно, прежде всего, за счет производства массового, «конвейерного».

Следовательно, для того, чтобы замыкание ядерного топливного цикла было целесообразно с экономической точки зрения, в России нужно большее количество реакторов на быстрых нейтронах, это должно стать стратегической линией развития атомной энергетики. Больше реакторов – хороших и разных!

При этом необходимо не выпускать из поля зрения и вторую возможность использования МОКС-топлива – в качестве топлива для реакторов ВВЭР. Реакторы на быстрых нейтронах создают такое дополнительное количество плутония, которое они сами использовать уже толком и не могут – им столько просто не надо, плутония хватит и для реакторов ВВЭР. Мы выше уже писали, что МОКС-топливо, в котором на 93% обедненного урана-238 приходится 7% плутония, ведет себя почти так же, как обычное урановое топливо. Да вот только применение МОКС-топлива в тепловых реакторах приводит к снижению эффективности применяемых в ВВЭР поглотителей нейтронов. Причина этого заключается в том, что бор-10 гораздо хуже поглощает быстрые нейтроны – таковы его физические особенности, на которые мы никак повлиять не можем. Такая же проблема возникает и с аварийными борными стержнями, предназначение которых – мгновенная остановка цепной реакции в случае нештатных ситуаций.

Разумный выход – снижение количества МОКС-топлива в ВВЭР до 30-50%, что уже реализуется на части легководных реакторов Франции, Японии и других стран. Но и в этом случае может потребоваться модернизация борной системы и выполнение всех необходимых обоснований безопасности, сотрудничество с надзорными органами МАГАТЭ для получения лицензий на использование МОКС-топлива в тепловых реакторах. Или, если коротко – количество борных стержней придется увеличить, причем и тех, которые предназначены для управления, и тех, что «припасены» на случай ЧП. Но только освоение этих технологий позволит перейти к массовому производству этого вида топлива, к удешевлению его производства. Одновременно это позволит значительно более активно решать и проблемы уменьшения количества ОЯТ, более активно использовать запасы обедненного урана.

Перспективы близки, но дорога не проста

Освоение этой технологии в сочетании со строительством реакторов-бридеров энергетического плутония – реакторов на быстрых нейтронах позволит России не только замкнуть ядерный топливный цикл, но и сделать его экономически привлекательным. Большие перспективы имеются и у использования СНУП-топлива (смешанное нитридное уран-плутониевое топливо). Экспериментальные ТВС, прошедшие в 2016 году облучение на реакторе БН-600, уже доказали свою эффективность как при реакторных испытаниях, так и по итогам послереакторных исследований. Полученные результаты дают для продолжения работ по обоснованию использования СНУП-топлива при создании реакторной установки БРЕСТ-300 и пристанционных модулей по производству СНУП-топлива опытно-демонстрационного комплекса, строящегося в Северске. БРЕСТ-300 позволит продолжить отработку технологий, необходимых для полного замыкания ядерного топливного цикла, обеспечить более полное решение проблем ОЯТ и РАО, реализовать идеологию «вернуть природе столько же радиоактивности, сколько ее было извлечено». Реактор БРЕСТ-300, как и реакторы БН – реактор на быстрых нейтронах, что только подчеркивает правильность стратегического направления развития атомной энергетики – сочетание водноводяных реакторов и реакторов на быстрых нейтронах.

Освоение технологии 100%-ного использования МОКС-топлива на БН-800 обеспечивает и возможность создания реакторов БН-1200 – не только более мощных, но и экономически более выгодных. Решение о создании в России реактора БН-1200 принято, а это означает, что темп научно-исследовательских работы атомным специалистам придется только увеличивать, и создание МБИР, намеченное на 2020 год, может существенно помочь в решении всех проблем, в освоении технологии полного замыкания топливного ядерного цикла. Россия была и остается единственно страной, создавшей энергетические реакторы на быстрых нейтронах, обеспечив наше мировое лидерство в этом важнейшем направлении атомной энергетики.

Разумеется, все рассказанное – всего лишь первое знакомство с особенностями реакторов на быстрых нейтронах, но мы постараемся продолжить, поскольку тема эта важная и, как нам кажется, достаточно интересная.

Вконтакте

Атомной энергетике всегда уделялось повышенное внимание из-за ее перспективности. В мире около двадцати процентов электроэнергии получают при помощи атомных реакторов, а в развитых странах этот показатель продукта атомной энергетики еще выше – больше трети от всего электричества. Однако, основным видом реакторов остаются тепловые, типа LWR и ВВЭР. Ученые считают, что одной из основных проблем этих реакторов в ближайшее время будет нехватка природного топлива, урана, его изотопа 238, необходимого для проведения цепной реакции деления. Исходя из возможного истощения ресурсов этого естественного материала топлива для тепловых реакторов, на развитие атомной энергетики накладываются ограничения. Более перспективным считается применение ядерных реакторов с использованием быстрых нейтронов, при котором возможно воспроизводство топлива.

История разработки

Исходя из программы Министерства атомной промышленности РФ в начале века были поставлены задачи по созданию и обеспечению безопасной работы ядерных комплексов энергетики, модернизированных АЭС нового типа. Одним из таких объектов стала Белоярская атомная электростанция, расположенная в 50-и километрах под Свердловском (Екатеринбург) Решение о ее создании принято в 1957 году, а в 1964 – запущен в работу первый блок.

В двух ее блоках работали тепловые ядерные реакторы, которые к 80-90 годам прошлого века исчерпали свой ресурс. На третьем блоке впервые в мире был апробирован реактор на быстрых нейтронах БН-600. За время его работы были получены планируемые разработчиками результаты. На высоте оказалась и безопасность процесса. В течение проектного срока, а он закончился в 2010 году, не произошло никаких серьезных нарушений и отклонений. Окончательный срок его работы истекает к 2025 году. Уже сейчас можно сказать, что ядерные реакторы на быстрых нейтронах, к которым относятся БН-600 и его преемник, БН-800, имеют большое будущее.

Запуск нового БН-800

Ученые ОКБМ им. Африкантова из Горького (нынешний Нижний Новгород) подготовили проект четвертого энергоблока Белоярской АЭС еще в 1983 году. В связи с аварией, произошедшей в Чернобыле в 1987 и введения новых нормативов безопасности в 1993 работы были прекращены и запуск отложен на неопределенное время. Только в 1997 году после получения лицензии на возведение блока №4 с реактором БН-800 мощностью 880 МВт от Госатомнадзора процесс возобновился.

25-го декабря 2013 началось разогревание реактора для дальнейшего вхождения теплоносителя. В июне четырнадцатого, как и намечалось по плану, произошел выход на массу, достаточную для проведения минимальной цепной реакции. Дальше дело застопорилось. МОКС-топливо, состоящее из делящихся оксидов урана и плутония, аналогичное тому, что применялось в энергоблоке №3, и не было готово. Именно его хотели использовать разработчики в новом реакторе. Пришлось комбинировать, искать новые варианты. В результате, чтобы не переносить запуск энергоблока, решили применять в части сборки урановое топливо. Запуск ядерного реактора БН-800 и блока №4 состоялся 10 декабря 2015.

Описание процесса

Во время работы в реакторе с быстрыми нейтронами происходит образование, вследствие реакции деления, вторичных элементов, которые при процессе поглощения урановой массой образуют вновь созданный ядерный материал плутоний-239, способный продолжать процесс дальнейшего деления. Главным достоинством этой реакции является получение нейтронов плутония, который применяется в качестве топлива для ядерных реакторов АЭС. Его наличие позволяет сократить добычу урана, запасы которого ограничены. Из килограмма урана-235 можно получить чуть более килограмма плутония-239, обеспечивая тем самым воспроизводство топлива.

В результате производство энергии в атомных энергоблоках при наименьших расходах дефицитного урана и отсутствия ограничений на производство возрастет в сотни раз. Подсчитано, что в этом случае урановых запасов хватит человечеству на несколько десятков веков. Оптимальным вариантом в атомной энергетике для сохранения баланса по минимальному расходу урана будет соотношение 4 к 1, где на четыре тепловых реактора будет использоваться один, работающий на быстрых нейтронах.

Цели БН-800

Во время срока эксплуатации в энергоблоке №4 Белоярской АЭС перед ядерным реактором были поставлены определенные задачи. Реактор БН-800 должен работать на MOX топливе. Небольшая заминка, произошедшая в начале работы, планы создателей не поменяла. По словам директора Белоярской АЭС г-н Сидорова переход в полном объеме на MOX топливо будет осуществлен в 2019 году. Если это осуществится, то местный ядерный реактор на быстрых нейтронах станет первым мире, полностью работающим с таким топливом. Он должен стать прототипом будущих подобных быстрых реакторов с жидкометаллическим теплоносителем, более производительных и безопасных. Исходя из этого на БН-800 проходит апробирование инновационного оборудования в рабочих условиях, проверка правильности применения новых технологий, влияющих на надежность, экономичность работы энергоблока.

class="eliadunit">

Проверка работы новой системы топливного цикла.

Испытания по выжиганию радиоактивных отходов с длительным сроком жизни.

Утилизация, накопленного в больших количествах, оружейного плутония.

БН-800, так же, как и его предшественник, БН-600, должны стать отправной точкой для накопления бесценного опыта создания и эксплуатации быстрых реакторов российским разработчикам.

Преимущества реактора на быстрых нейтронах

Применение в атомной энергетике БН-800 и ему подобных ядерных реакторов позволяет

Существенно увеличить срок по запасам урановых ресурсов, что значительно увеличивает полученный объем энергии.

Возможность сокращать срок жизни радиоактивных продуктов деления до минимального (от несколько тысяч лет до трехсот).

Повысить безопасность АЭС. Применение реактора на быстрых нейтронах позволяет нивелировать до минимального уровня возможность расплавления активной зоны, позволяет существенно повысить уровень самозащиты объекта, исключить выделения плутония при переработке. Реакторы такого типа с натриевым теплоносителем обладают повышенным уровнем безопасности.

17 августа 2016 года энергоблок №4 Белоярской АЭС вышел на режим работы мощности 100%. В объединенную систему «Урал» с декабря прошлого года поступает энергия, выработанная на быстром реакторе.

class="eliadunit">

В нашей стране первые оценки по свойствам быстрого спектра нейтронов в приложении к ядерным реакторам были сделаны в 1946 г. по инициативе И.В. Курчатова. С 1949 г. руководителем работ по быстрым реакторам становится А.И. Лейпунский, под научным руководством которого примерно в то же время расчетным путем была показана возможность расширенного воспроизводство ядерного горючего и использование жидкометаллического теплоносителя в реакторах с быстрым спектром нейтронов. Обширные исследования с целью разработки физических и физико-технических основ быстрых реакторов начались в Физико-энергетическом институте в Обнинске, а затем во многих других организациях.

Для проведения исследований по физике и инженерным проблемам реакторов на быстрых нейтронах в ФЭИ были построены и введены в действие критические сборки (реакторы «нулевой» мощности) и исследовательские реакторы (ИР) на быстрых нейтронах: БР-1 (в 1955 г.), БР-2 (в 1956 г.), БР-5 (в 1959 г.), БФС-1 (в 1961 г.), БФС-2 (в 1969 г.), БР-10 (реконструкция БР-5, в 1973 г.).

В результате проведенных исследований на этих первых установках была подтверждена возможность достижения коэффициента воспроизводства ядерного горючего в быстрых реакторах КВ>1, в качестве основного ядерного топлива была рекомендована двуокись урана, а основного теплоносителя - жидкий натрий.

Первым демонстрационным быстрым реактором был ныне действующий исследовательский реактор БОР-60 .

  • получение опыта эксплуатации реакторов на быстрых нейтронах большей мощности;
  • проверка методов расчета нейтронно-физических характеристик (критмасса, поле тепловыделения, наработка плутония и его качество, коэффициенты реактивности);
  • проверка надежности оборудования, топлива; установка обессоливания морской воды, проверка систем безопасности;
  • проблемы с маслом, с парогенераторами, с твэлами, барабаном отработавших сборок (БОС), с системой перегрузки, с конструкционными материалами твэлов, ТВС и их решения;
  • материаловедческие исследования, исследования коэффициента воспроизводства, проверка естественной циркуляции, эксперимент с выходом в режим кипения в ТВС, эксперименты по динамике развития межконтурной течи.

Быстрый реактор БН-600 - работает в составе энергоблока мощностью 600 МВт - с 1980 года поставляет электроэнергию в сеть. В нем используется главным образом топливо на основе оксида урана, обогащенного до 17, 21 и 26%, и небольшое количество МОКС-топлива. Это реактор интегрального типа, промежуточные натрий-натриевые теплообменники и главные циркуляционные насосы находятся в корпусе реактора. Давление натриевого теплоносителя в корпусе немного (на 0,05 МПа) превышает атмосферное, поэтому опасность разрыва корпуса исключается. Парогенераторы, установленные за пределами корпуса, снабжают паром три 200 МВт турбогенератора.

27 июня 2014 г. состоялся физический пуск энергоблока №4 с реактором БН-800 , 10 декабря 2015 г. он был впервые включён в единую энергосистему страны, 31 октября 2016 г. - введен в промышленную эксплуатацию. Реактор начал работать с использованием так называемой гибридной активной зоны, в которой основную часть (84%) составляют ТВС с урановым топливом, и 16% – ТВС с МОХ-топливом. Перевод этого реактора на полную загрузку МОХ-топливом планируется в 2019 г. Для производства МОКС топлива построен завод.

Вреакторе БН-800 использованы как проверенные технические решения, реализованные в БН-600 , так и новые, существенно повышающие безопасность энергоустановки, такие как: нулевой натриевый пустотный эффект реактивности, гидравлически взвешенные стержни аварийной защиты, срабатывающие при снижении расхода теплоносителя, пассивные системы аварийного расхолаживания, под активной зоной предусмотрена специальная «ловушка» для сбора и удержания расплава и фрагментов активной зоной при ее разрушении в результате тяжелой аварии, повышена сейсмостойкость конструкции.

Быстрые реакторы, работающие в мире на данный момент

Реактор Статус реактора, компоновка, теплоноситель Мощность (тепловая/
электрическая)
Топливо
Страна Годы эксплуатация
БОР-60 Исследовательский, петлевой, натрий 55/10 оксид Россия 1969-2020
БН-600 1470/600 оксид Россия 1980-2020
БН-800 Опытно-промышленный, интегральный, натрий 2100/800 МОКС Россия 2016-2043
FBTR 40/13,2 карбид (металл) Индия 1985-2030
PFBR Прототип, интегральный, натрий 1250/500 оксид (металл) Индия -
CEFR Экспериментальный, интегральный, натрий 65/20 оксид
(МОКС)
Китай 2010-2040
Joyo Экспериментальный, интегральный, натрий 140/- оксид Япония 1978-2007, в данный момент находится на длительной реконструкции, возможен запуск 2021
Monju Прототип, петлевой, натрий 714/280 оксид Япония 1994-96, 2010, вывод из эксплуатации по решению японского правительства

Правительство Японии приняло решение полностью вывести из эксплуатации АЭС Monju - единственную в стране атомную электростанцию с реактором на быстрых нейтронах.

Агентство по ядерному регулированию (NRA) отложило рассмотрение вопроса о повторном пуске быстрого натриевого исследовательского реактора JOYO . Заявка на разрешение повторного пуска JOYO была подана в регулирующий орган 30 марта 2017 года. В заявке отсутствует предполагаемая дата рестарта.

Таким образом, с 1972 года (с момента пуска БН-350) в нашей стране быстрые реакторы используются для получения электроэнергии, опреснения воды. В настоящее время Россия является единственной в мире страной, в структуре атомной энергетики которой присутствуют реакторы на быстрых нейтронах. Это достигнуто благодаря тому, что только в нашей стране успешно пройдены все необходимые этапы освоения технологии БН - быстрых реакторов с натриевым теплоносителем.

Слайд 11. В активной зоне реактора на быстрых нейтронах размещаются твэлы с высокообогащенным 235U топливом. Активная зона окружается зоной воспроизводства, состоящей

из твэлов, содержащих топливное сырье (обедненный 228U или 232Th). Вылетающие из активной зоны нейтроны захватываются в зоне воспроизводства ядрами топливного сырья, в результате образуется новое ядерное топливо. Достоинством быстрых реакторов является возможность организации в них расширенного воспроизводство ядерного топлива, т.е. одновременно с выработкой энергии производить вместо выгоревшего ядерного топлива новое. Для быстрых реакторов не требуется замедлитель, а теплоноситель не должен замедлять нейтроны.

Основное назначение реактора на быстрых нейтронах - производство оружейного плутония (и некоторых других делящихся актинидов), компонентов атомного оружия. Но подобные реакторы находят применение и в сфере энергетики, в частности, для обеспечения расширенного воспроизводства делящегося плутония 239Pu из 238U с целью сжигания всего или значительной части природного урана, а также имеющихся запасов обедненного урана. При развитии энергетики реакторов на быстрых нейтронах может быть решена задача самообеспечения ядерной энергетики топливом.

Слайд 12. Реактор-размножитель, ядерный реактор, в котором «сжигание» ядерного топлива сопровождается расширенным воспроизводством вторичного топлива. В реакторе-размножителе, нейтроны, освобождающиеся в процессе деления ядерного топлива (например, 235U), взаимодействуют с ядрами помещенного в реактор сырьевого материала (например,238U), в результате образуется вторичное ядерное топливо (239Pu). В реакторе-размножителе типа бридер воспроизводимое и сжигаемое топливо представляют собой изотопы одного и того же химического элемента (например, сжигается 235U, воспроизводится 233U), в реакторе типа реактор - конвертер - изотопы разных химических элементов (например, сжигается 235U, воспроизводится 239Pu).

В быстрых реакторах ядерным горючим является обогащенная смесь, содержащая не менее 15% изотопа 235U . Такой реактор обеспечивает расширенное воспроизводство ядерного горючего (в нем наряду с исчезновением атомов, способных к делению, происходит регенерация некоторых из них (например, образование 239Pu)). Основное число делений вызывается быстрыми нейтронами, причем каждый акт деления сопровождается появлением большого (по сравнению с делением тепловыми нейтронами) числа нейтронов, которые при захвате ядрами 238U превращает их (посредством двух последовательных в--распадов) в ядра 239Pu, т.е. нового ядерного топлива. Это значит, что, например, на 100 разделившихся ядер горючего (235U) в реакторах на быстрых нейтронах образуется 150 ядер 239Pu, способных к делению. (Коэффициент воспроизводства таких реакторов достигает 1,5, т.е. на 1 кг 235U получается до 1,5 кг Pu). 239Pu можно использовать в реакторе как делящийся элемент.

С точки зрения развития мировой энергетики, преимущество реактора на быстрых нейтронах (БН) состоит в том, что он позволяет использовать как топливо изотопы тяжелых элементов, не способные к делению в реакторах на тепловых нейтронах. В топливный цикл могут быть вовлечены запасы 238U и 232Th, которых в природе значительно больше, чем 235U - основного горючего для реакторов на тепловых нейтронах. В том числе может быть использован и так называемый «отвальный уран», оставшийся после обогащения ядерного горючего 235U. Отметим, что в обычных реакторах также образуется плутоний, но в гораздо меньших количествах.

Слайд 13. БН - ядерный реактор, на быстрых нейтронах. Корпусной реактор-размножитель. Теплоносителем первого и второго контуров обычно является натрий. Теплоноситель третьего контура - вода и пар. В быстрых реакторах замедлитель отсутствует.

К достоинствам быстрых реакторов можно отнести большую степень выгорания топлива (т.е. больший срок кампании), а к недостаткам - дороговизну, из-за невозможности использования простейшего теплоносителя - воды, конструкционной сложности, высоких капитальных затрат и высокой стоимости высокообогащенного топлива.

Высокообогащенный уран - уран с содержанием изотопа урана-235 по массе равным или более 20 %. Для обеспечения высокой концентрации ядерного топлива необходимо достижение максимального тепловыделения на единицу объема активной зоны. Тепловыделение реактора на быстрых нейтронах в десять-пятнадцать раз превосходит тепловыделение реакторов на медленных нейтронах. Теплосъём в таком реакторе можно осуществить только с помощью жидкометаллических теплоносителей, например натрия, калия или энергоемких газовых теплоносителей, обладающих наилучшими теплотехническими и теплофизическими характеристиками, таких как гелий и диссоциирующие газы. Обычно используются жидкие металлы, например, расплав натрия (температура плавления натрия 98 °C). К недостаткам натрия следует отнести его высокую химическую активность по отношению к воде, воздуху и пожароопасность. Температура теплоносителя на входе в реактор - 370 оС, а на выходе - 550, что в десять раз выше аналогичных показателей, скажем, для ВВЭР - там температура воды на входе - 270 градусов, а на выходе - 293.