Болезни Военный билет Призыв

Видимая звездная величина солнца равна. Светимость звезд и звездные величины. Видимые звездные величины некоторых небесных тел

Даже далекие от астрономии люди знают, что звезды имеют разный блеск. Наиболее яркие звезды без труда видны на засвеченном городском небе, а самые тусклые едва различимы при идеальных условиях наблюдения. Для характеристики блеска звезд и других небесных светил (например, планет, метеоров, Солнца и Луны) ученые выработали шкалу звездных величин.

Понятие «звездная величина» используется астрономами более 2000 лет. Вероятно, первым его ввел известный древнегреческий астроном и математик Гиппарх во II веке до нашей эры. Регулярно наблюдая звездное небо с острова Родос в Эгейском море, Гиппарх однажды стал свидетелем появления новой яркой звезды в созвездии Скорпиона. Находясь под впечатлением от этого события, астроном решил составить каталог звезд, дабы в дальнейшем быстро находить новые звезды, если таковые появятся. В результате астроном переписал 1025 звезд: он не только дал для каждой звезды координаты, но и поделил их на 6 звездных величин.

Самым ярким звездам Гиппарх присвоил первую звездную величину, а самым тусклым , едва видимым глазом, - шестую . При этом звезды 2-й величины считались во столько раз слабее звезд 1-й, насколько звезды 3-й величины слабее звезд 2-й и так далее: получалась арифметическая прогрессия. В каталоге Гиппарха оказалось 15 звезд первой величины, 45 звезд - второй, 208 - третьей, 474 - четвертой, 217 - пятой и 49 звезд шестой величины (плюс несколько туманностей).

Почему Гиппарх назвал характеристику блеска звезд величиной ?

В древности люди полагали, что звезды находятся на небесной сфере на одном расстоянии от Земли, поэтому различие в яркости звезд объяснялось различием в их реальных размерах или величине.

Отсюда звезды первой величины должны были быть гораздо крупнее звезд шестой величины.

Согласно введенной Гиппархом шкале, такие звезды как , Денеб или Капелла имели первую звездную величину (сокращенно записывается как 1 m), и это были самые крупные, «важные» звезды. Звезды ковша Большой Медведицы имели в среднем 2 m , это были уже звезды «помельче». Со временем астрономы поняли, что звездная величина определяет не настоящие размеры светила, а лишь его блеск, то есть освещенность, которую оно создает на Земле , однако продолжали пользоваться шкалой Гиппарха.

Следует помнить, что шкала звездных величин - обратная: чем звезда ярче, тем ее величина меньше. И наоборот, чем звезда тусклее, тем большую величину она имеет.

К середине XIX века развитие науки потребовало определять блеск светил более точно. В частности, оказалось, что человеческое зрение устроено особым образом: при изменении освещенности в геометрической прогрессии оно передает нам ощущения в арифметической прогрессии. Оказалось, что не 6 звезд 6-й величины создадут такую же освещенность, как и звезда 1-й (как предполагалось ранее), а целая сотня!

В 1856 году английский астроном Норман Погсон предложил построить шкалу звездных величин, учитывая психофизический закон зрения. Согласно Погсону звезда 1-й величины по определению создавала освещенность ровно в 100 раз бо́льшую, чем звезда 6 m . Таким образом получается, что современная шкала звездных величин - логарифмическая: звезда 1-й величины примерно в 2,512 раз ярче звезды 2-й, а та, в свою очередь, в 2,512 раза ярче звезды 3-й звездной величины и так далее.

Звездная величина - безразмерная характеристика блеска небесного светила. На этом снимке изображено известное двойное скопление в созвездии Персея. Самые яркие звезды на фото имеют 6 звездную величину, самые тусклые - около 17-й. Согласно формуле Погсона ярчайшие звезды на фото в 25000 раз ярче едва заметных. © New Forest Observatory

Но от чего вести отчет? Что принять за нуль-пункт?

Как известно, астрономия - наука точная, и потому любая физическая характеристика должна измеряться в каких-то величинах. Так, сила измеряется в ньютонах, энергия - в джоулях. В этом смысле звездная величина - безразмерная характеристика блеска небесных светил. Погсон предложил считать блеск Полярной звезды равным ровно 2 m (совсем как Цельсий за 0° принял точку замерзания воды), а величины остальных звезд определить, отталкиваясь от нее. Но впоследствии оказалось, что блеск Полярной звезды не постоянен, и тогда в качестве эталона уже взяли Вегу. Сегодня за 0 m принята вполне определенная освещенность, равная энергетической величине E =2,48*10^-8 Вт/м² .

Собственно, именно освещенность и определяют при наблюдениях астрономы, а уже потом ее специально переводят в звездные величины.

Делают они это не только потому что «так привычнее», но и потому что звездная величина оказалась очень удобным понятием. Измерять освещенность в ваттах на квадратный метр крайне громоздко: для Солнца величина получается большой, а для слабых телескопических звезд - очень маленькой. В то же время оперировать звездными величинами гораздо легче (как раз из-за того, что это логарифмическая шкала). Так, блеск Солнца равен -26,73 m , а блеск самых слабых объектов, снимки которых можно получить с помощью телескопа «Хаббл», равен примерно 31,50 m . Как видим, разница составляет всего в 58 «ступенек».

Вначале звездная величина использовалась как указатель блеска звезд, которые наблюдались в оптике (то есть, визуально или фотографически). Позже шкалу распространили на ультрафиолетовый и инфракрасный диапазоны излучения. Ясно, что звезды излучают неравномерно на разных длинах волн, поэтому звездная величина небесного светила зависит от спектральной чувствительности приемника излучения.

Визуальная звездная величина mv отвечает спектральной чувствительности человеческого глаза (максимум приходится на длину волны лямбда=555 мкм).

Фотовизуальная звездная величина V (или желтая) практически совпадает с визуальной и в настоящее время именно в шкале фотовизуальных величин обозначается блеск звезд и других небесных тел в каталогах, предназначенных для любителей астрономии..

Фотографическая звездная величина B (или синяя) определяется измерением блеска звезды по фотопластинке, чувствительной к синим лучам, или при помощи фотоумножителя с синим фильтром.

Наконец, болометрическая звездная величина mbol отвечает суммарной мощности излучения звезды во всех диапазонах спектра. Например, болометрическая звездная величина Солнца лишь немного меньше визуальной, так как почти все излучение звезды приходится на видимый диапазон. С другой стороны, болометрическая зв. вел. красных карликов гораздо меньше их визуальной зв. величины, так как бо́льшая часть энергии излучения приходится на инфракрасный диапазон. Та же ситуация наблюдается и с горячими звездами спектральных классов О и В, которые излучают в основном в ультрафиолете.

Шкала звездных величин. Рисунок: Большая Вселенная

До сих пор, говоря о звездной величине, мы подразумевали видимую звездную величину , т. е. ту, которая регистрируется непосредственно при наблюдении небесного светила. Видимая звездная величина означает «наблюдаемая», «кажущаяся» и ничего не говорит о том, какова реальная светимость небесного тела . Например, Венера на небе выглядит гораздо ярче любой звезды; ее максимальный блеск достигает -4,67 m . Однако это не значит, что планета «излучает» больше света, чем звезды; большой блеск Венеры объясняется ее близостью к Земле.

Чтобы сравнить реальные потоки световой энергии, идущие от небесных тел, астрономы условно располагают их на стандартном расстоянии 10 парсек от Земли. Абсолютная звездная величина (М) показывает, какую видимую звездную величину имело бы небесное тело в том случае, если бы расстояние до него составляло 10 парсек .

Видимые звездные величины некоторых небесных тел

Солнце: -26,73
Луна (в полнолуние): -12,74
Венера (в максимуме блеска): -4,67
Юпитер (в максимуме блеска): -2,91
Сириус: -1,44
Вега: 0,03
Самые слабые звезды, видимые невооруженным глазом: около 6,0
Солнце с расстояния 100 световых лет: 7,30
Проксима Центавра: 11,05
Самый яркий квазар: 12,9
Самые слабые объекты, снимки которых получены телескопом «Хаббл»: 31,5

Продолжим нашу алгебраическую экскурсию к небесным светилам. В той шкале, которая применяется для оценки блеска звезд, могут, помимо неподвижных звезд, найти себе место и другие светила – планеты, Солнце, Луна. О яркости планет мы побеседуем особо; здесь же укажем звездную величину Солнца и Луны. Звездная величина Солнца выражается числом минус 26,8, а полной Луны – минус 12,6. Почему оба числа отрицательные, читателю, надо думать, понятно после всего сказанного ранее. Но, быть может его приведет в недоумение недостаточно большая разница между звездной величиной Солнца и Луны: первая «всего вдвое больше второй».

Не забудем, однако, что обозначение звездной величины есть, в сущности, некоторый логарифм (при основании 2,5). И как нельзя, сравнивая числа, делить один на другой их логарифмы, так не имеет никакого смысла, сравнивая между собой звездные величины, делить одно число на другое. Каков результат правильного сравнения, показывает следующий расчет.

Если звездная величина Солнца «минус 26,8», то это значит, что Солнце ярче звезды первой величины

в 2,5 27,8 раза.

Луна же ярче звезды первой величины

в 2,5 13,6 раза.

Значит, яркость Солнца больше яркости полной Луны в

Вычислив эту величину (с помощью таблиц логарифмов), получаем 447 000. Вот, следовательно, правильное отношение яркостей Солнца и Луны: дневное светило в ясную погоду освещает Землю в 447 000 раз сильнее, чем полная Луна в безоблачную ночь.

Считая, что количество теплоты , выделяемое Луной, пропорционально количеству рассеиваемого ею света, – а это, вероятно, близко к истине, – надо признать, что Луна посылает нам и теплоты в 447 000 раз меньше, чем Солнце. Известно, что каждый квадратный сантиметр на границе земной атмосферы получает от Солнца около 2 малых калорий теплоты в 1 минуту. Значит, Луна посылает на 1 см 2 Земли ежеминутно не более 225 000-й доли малой калории (т. е. может нагреть 1 г воды в 1 минуту на 225 000-ю часть градуса). Отсюда видно, насколько не обоснованы все попытки приписать лунному свету какое-либо влияние на земную погоду.

Распространенное убеждение, что облака нередко тают под действием лучей полной Луны, – грубое заблуждение, объясняемое тем, что исчезновение облаков в ночное время (обусловленное другими причинами) становится заметным лишь при лунном освещении.

Оставим теперь Луну и вычислим, во сколько раз Солнце ярче самой блестящей звезды всего неба – Сириуса. Рассуждая так же, как и раньше, получаем отношение их блеска:


т. е. Солнце ярче Сириуса в 10 миллиардов раз.

Очень интересен также следующий расчет: во сколько раз освещение, даваемое полной Луной, ярче совокупного освещения всего звездного неба, т. е. всех звезд, видимых простым глазом на одном небесном полушарии? Мы уже вычислили, что звезды от первой до шестой величины включительно светят вместе так, как сотня звезд первой величины. Задача, следовательно, сводится к вычислению того, во сколько раз Луна ярче сотни звезд первой величины.

Это отношение равно

Итак, в ясную безлунную ночь мы получаем от звездного неба лишь 2700-ю долю того света, какой посылает полная Луна, и в 2700 х 447 000, т. е. в 1200 миллионов раз меньше, чем дает в безоблачный день Солнце.

Представьте, что где-то в море в ночной тьме тихо мерцает огонек. Если бывалый моряк не объяснит вам, что это, вы часто и не узнаете: то ли перед вами фонарик на носу проходящей шлюпки, то ли мощный прожектор далекого маяка.

В том же положении в темную ночь находимся и мы, глядя на мерцающие звезды. Их видимый блеск зависит и от их истинной силы света, называемой светимостью , и от их расстояния до нас. Только знание расстояния до звезды позволяет подсчитать ее светимость по сравнению с Солнцем. Так например, светимость звезды, в десять раз менее яркой в действительности, чем Солнце, выразится числом 0,1.

Истинную силу света звезды можно выразить еще иначе, вычислив, какой звездной величины она бы нам казалась, если бы она находилась от нас на стандартном расстоянии в 32,6 светового года, то-есть на таком, что свет, несущийся со скоростью 300 000 км/сек, прошел бы его за это время.

Принять такое стандартное расстояние оказалось удобным для различных расчетов. Яркость звезды, как и всякого источника света, изменяется обратно пропорционально квадрату расстояния от него. Этот закон позволяет вычислять абсолютные звездные величины или светимости звезд, зная расстояние до них.

Когда расстояния до звезд стали известны, то мы смогли вычислить их светимости, то есть смогли как бы выстроить их в одну шеренгу и сравнивать друг с другом в одинаковых условиях. Надо сознаться, что результаты оказались поразительными, поскольку раньше предполагали, что все звезды «похожи на наше Солнце». Светимости звезд оказались поразительно разнообразными, и их в нашей шеренге не сравнить ни с какой шеренгой пионеров.

Приведем только крайние примеры светимости в мире звезд.

Самой слабой из известных долго являлась звезда, которая в 50 тысяч раз слабее Солнца, и ее абсолютная величина светимости: +16,6. Однако, впоследствии были открыты и ещё более слабые звезды, светимость которых, по сравнению с солнцем, меньше в миллионы раз!

Размеры в космосе обманчивы: Денеб с Земли сияет ярче Антареса, а вот Пистолет — не виден совсем. Тем не менее, наблюдателю с нашей планеты и Денеб и Антарес кажутся просто незначительными точками, по сравнению с Солнцем. Насколько это неверно можно судить по простому факту: Пистолет выпускает в секунду столько же света, сколько Солнце — за год!

На другом краю шеренги звезд стоит «S» Золотой Рыбы , видимая только в странах Южного полушария Земли как звездочка (то есть даже не видимая без телескопа!). В действительности она в 400 тысяч раз ярче Солнца, и ее абсолютная величина светимости: -8,9.

Абсолютная величина светимости нашего Солнца равна +5. Не так уж и много! С расстояния в 32,6 светового года мы бы его плохо видели без бинокля.

Если яркость обычной свечи принять за яркость Солнца, то в сравнении с ней «S» Золотой Рыбы будет мощным прожектором, а самая слабая звезда слабее самого жалкого светлячка.

Итак, звезды - это далекие солнца, но их сила света может быть совершенно иной, чем у нашего светила. Образно выражаясь, менять наше Солнце на другое нужно было бы с оглядкой. От света одного мы ослепли бы, при свете другого бродили бы, как в сумерках.

Звездные величины

Поскольку глаза служат первым инструментом при измерениях, мы должны знать простые правила, которым подчиняются наши оценки блеска источников света. Наша оценка различия в блеске является скорее относительной, чем абсолютной. Сравнивая две слабые звезды, мы видим, что они заметно отличаются друг от друга, но для двух ярких звёзд такое же различие в блеске остаётся нами незамеченным, так как оно ничтожно по сравнению с общим количеством излучаемого света. Другими словами, наши глаза оценивают относительное , а не абсолютное различие в блеске.

Гиппарх впервые поделил видимые простым глазом звёзды на шесть классов, соответственно их блеску. Позднее это правило несколько улучшили не меняя самой системы. Классы звёздных величин распределили так, чтобы звезда 1-й величины (средняя из 20 ) давала в сто раз больше света, чем звезда 6-й величины, которая находится на пределе видимости для большинства людей.

Разница в одну звездную величину равна квадрату числа 2,512. Разница в две величины соответствует 6,31 (2,512 в квадрате), в три величины- 15,85 (2,512 в третьей степени), в четыре- 39,82 (2,512 в четвертой степени), а в пять величин- 100 (2,512 в пятой степени).

Звезда 6-й величины даёт нам в сто раз меньше света, чем звезда 1-й величины, а звезда 11-й величины в десять тысяч раз меньше. Если же взять звезду 21-й величины, то её блеск будет меньше 100 000 000 раз.

Как уже понятно — абсолютная и относительная заездная величина,
вещи совершенно не сопоставимые. Для «относительного» наблюдателя с нашей планеты, Денеб в созвездии Лебедя выглядит примерно так. А на самом деле всей орбиты Земли едва хватило бы, чтобы целиком вместить окружность этой звезды.

Чтобы правильно классифицировать звезды (а вед все они отличаются друг от друга), нужно тщательно следить за тем, чтобы вдоль всего интервала между соседними звёздными величинами поддерживалось отношение блеска, равное 2,512. Простым глазом проделать такую работу невозможно, нужны специальные инструменты, по типу фотометров Пикеринга, использующих как эталон Полярную Звезду или даже «среднюю» искусственную звезду.

Также для удобства измерений необходимо ослабить свет очень ярких звёзд; этого можно добиться или поляризационным приспособлением, или с помощью фотометрического клина .

Чисто визуальными методами, даже с помощью больших телескопов, нельзя распространить нашу шкалу звёздных величин на слабые звёзды. Кроме того, визуальные методы измерения должны (и могут) производиться только непосредственно у телескопа. Поэтому, от чисто визуальной классификации, в наше время уже отказались, и используют метод фотоанализа.

Как можно сравнить количества света, получаемые фотопластинкой от двух звёзд различного блеска? Чтобы они казались одинаковыми, необходимо ослабить свет от более яркой звезды на известную величину. Проще всего сделать это, поставив диафрагму перед объективом телескопа. Количество света, попадающее в телескоп, меняется в зависимости от площади объектива, так что можно точно измерить ослабление света любой звезды.

Выберем какую-нибудь звезду в качестве стандартной и сфотографируем её с полным отверстием телескопа. Затем определим, каким отверстием нужно пользоваться при данной экспозиции, чтобы при съёмке более яркой звезды получить такое же изображение, как и в первом случае. Отношение площадей уменьшённого и полного отверстий даёт отношение блеска двух объектов.

Такой метод измерения дает погрешность всего 0,1 звёздной величины для любой из звезд в интервале от 1-й до 18-й звездной величины. Получаемые таким образом звёздные величины называются фотовизуальными .

Решение задач по теме: «Блеск звезд и звездные величины».

№ 1.Во сколько раз Сириус ярче, чем Альдебаран? Солнце ярче, чем Сириус?

https://pandia.ru/text/78/246/images/image002_37.gif" width="158" height="2 src=">

I1 / I2 - ? !!! m i звездная величина.

I3 / I1 - ? Ii - яркость звезды, блеск звезды.

№ 2 Во сколько раз звезда 3,4 звездной величины слабее, чем Сириус, имеющий величину -1,6?

https://pandia.ru/text/78/246/images/image004_26.gif">M1=3, 4 I1/I2= 1/ 2,512 5 =1/100.

M2= - 1, 6 Ответ: Сириус ярче данной звезды в 100

Следующую задачу решите самостоятельно.

№ 3 Во сколько раз Сириус(m 1 = -1, 6)Полярной звезды

(m 2 = + 2, 1)?

Выполните тестовые задания.

Желаем успешного выполнения!!!

Тестовые задания по астрономии. Тема: «Предмет и значение астрономии. Звездное небо. »

1. Астрономия изучает:

а) небесные законы;

б) звезды и другие небесные тела;

в) законы строения, движения и эволюции небесных тел.

2.Физики дали астрономии:

а) инструменты для исследования космоса;

б) формы для вычисления и решения задач;

в) методы изучения Вселенной.

3.Астрономию необходимо знать:

а) для того чтобы ориентироваться по звездам;

б) чтобы сформировать научное мировоззрение;

в) так как интересно узнать, как устроен мир.

4.Объектив телескопа нужен для того, чтобы:

а) собрать свет от небесного объекта и получить его изображение;

б) собрать свет от небесного объекта и увеличить угол зрения, под которым виден объект;

в) получить увеличенное изображение небесного тела.

5.Окуляр телескопа нужен для того, чтобы:

а) получить увеличенное изображение небесного тела;

б) увидеть полученное с помощью объектива изображение небесного тела;

в) увидеть под большим углом полученное с помощью объектива изображение небесного тела.

6.Астрограф отличается от телескопа, предназначенного для визуальных наблюдений:

а) меньшим увеличением;

б) большим увеличением;

в) отсутствием окуляра.

7.Можно ли астрограф, предназначенный для фотографирования в фокусе объектива, характеризовать его увеличением?

а) да, так как у астрографа имеется объектив;

б) нет, так как у астрографа отсутствует окуляр;

в) да, так как важной характеристикой любого телескопа является его увеличение.

8.При наблюдениях редко используют увеличение свыше 500 раз, так как:

а) искажаются изображения из-за атмосферы;

б) искажаются изображения из-за линз;

в) совокупность факторов а) и б).

9.Отличие системы рефрактора от системы рефлектора в том, что:

а) у первого - окуляр против объектива, а у второго – сбоку;

б) в рефлекторе объектив-линза, а у рефрактора - зеркало;

в) в рефракторе объектив-линза, а в рефлекторе - зеркало.

10.Чтобы подробнее рассмотреть удаленные объекты необходимо:

а) увеличить диаметр объектива телескопа;

б) повысить увеличение телескопа;

в) шире использовать наблюдения в радиодиапазоне;

г) в совокупности а) - в);

д) поднять инструменты исследования в космос.

11.Астрономия возникла:

а) из любознательности;

б) чтобы ориентироваться по сторонам горизонта;

в) для предсказания судеб людей и народов;

г) для измерения времени и навигации

12.Продолжите сообщения о звездном небе 1)-4), используя фрагменты А-Г.

1)На окружающий нас мир мы смотрим с Земли, и всегда нам кажется, что над нами простирается сферический купол, усеянный звездами.

2)На звездном небе звезды в течение долгого времени сохраняют относительное расположение. За эту кажущуюся особенность в древности звезды были названы неподвижными.

3)Общее число звезд, видимых человеком невооруженным глазом на всем небе, составляет около 6000, а на одной половине его мы видим примерно 3000 звезд. Звезды различаются блеском, а самые яркие и цветом.

4)Названия многих созвездий сохраняются с глубокой древности. Среди названий созвездий имеются названия предметов, напоминающих фигуры, образованные яркими звездами созвездия.

1.Под блеском звезды понимается освещенность, которую создает свет звезды на Земле. Блеск звезд измеряют в звездных величинах.

2.Отдельные звезды созвездия с XVII в. стали обозначать буквами греческого алфавита : «альфа», «бета», «гамма» и т. д., как правило, в порядке убывания блеска.

3.Именно поэтому и возникло в далекие времена представление о хрустальном своде.

4.Вдействительности все звезды движутся, обладают собственными движениями, но так как они находятся от нас очень далеко, то их годичное смещение на небе составляет лишь доли угловой секунды.

1.Наблюдаемые нами звезды находятся от нас на самых различных расстояниях, значительно превышающих полкилометра

2.Если нужно было обозначить еще какие-либо звезды в созвездии, но не хватало букв греческого алфавита, то для следующих звезд использовали буквы латинского алфавита, а затем порядковые номера.

3.Сейчас под созвездием понимается определенная область неба с видимыми звездами, границы созвездий строго определены.

4.Блеск звезд 1-й звездной величины в 2,512 раза больше блеска звезд второй звездной величины в 2,512 раза больше блеска звезд 3-й звездной величины и т. д.

1.Так как звезды сохраняют относительное расположение, то уже в древности люди использовали их в качестве ориентиров, в связи, с чем выделили на небе характерные сочетания звезд и назвали их созвездиями.

2.В древности все звезды по блеску были разделены на шесть групп: самые яркие отнесли к звездам первой величины, самые слабые - к звездам шестой величины.

3.Поэтому звезда «альфа» для большинства созвездий является самой яркой звездой этого созвездия.

4.В действительности никакого свода нет, а впечатление о небе в форме сферы объясняется особенностями нашего глаза не улавливать разницы в расстояниях, эти расстояния превосходят 0,5км.

1.Наиболее ярким или чем-либо примечательным звездам, кроме буквенного обозначения, даны собственные имена (обычно арабские, греческие и римские). Так, звезда «альфа» из созвездия Большого Пса называется Сириус, «альфа» из созвездия Лиры – Вега, «тета» Большой Медведицы – Алькор и т. д.

2.С помощью звездной величины можно выражать блеск любого светила, причем небесные тела более яркие, чем звезды первой величины, имеют нулевую или отрицательную звездную величину. Блеск небесных объектов, не наблюдаемых невооруженным глазом, выражается звездными величинами, большими шести.

3.На всем небе отмечено 88 созвездий, которые полностью занимают звездное небо.

4.Поэтому нам кажется, что все звезды и другие небесные объекты расположены на одинаковых расстояниях, т. е. как бы на поверхности некоторой сферы в центре которой всегда находится наблюдатель.

13.Продолжите утверждения 1.-4, используя фрагменты:

1).Астрономия-наука о небесных телах. Современная астрономия изучает движение, строение, взаимную связь, образование и развитие небесных тел и их систем …

2).Астрономия - древнейшая наука на Земле. Возникла астрономия из практических потребностей человека …

3). И в наше время астрономия решает ряд практических задач

4)Развитие астрономии способствует прогрессу в физике, математике, химии и технике …

5). Исключительное значение имеет астрономия для формирования научного мировоззрения. Наблюдения звездного неба, движение Солнца, Луны и других небесных тел без научных знаний может привести(и в действительности приводило) к неправильным взглядам на устройство окружающего мира и к всевозможным суевериям …

А. К числу таких задач относится точное время, вычисление и составление календаря, определение географических координат на Земле.

Б. . В качестве примера достаточно указать на достижения в области ракетной техники, создание искусственных спутников и космических кораблей. Эти достижения, в свою, вызвали бурное развитие радиоэлектроники. Это практическое значение астрономии.

В . Астрономия, изучая физическую природу небесных тел, выявляя действительные законы строения и движения их и их систем, утверждает единство мира, доказывая, что мир материален, что все процессы во Вселенной протекают как результат естественного развития без вмешательства каких бы то ни было сверхъестественных сил. На огромном фактическом материале об окружающем нас мире астрономия утверждает научное мировоззрение.

Г. В результате мы получаем представление о строении и развитии доступной нашим наблюдениям части Вселенной.

Д. Там, где нет явно выраженной смены времен года(например, в Египте), только по наблюдению за звездным небом можно было установить, когда начинать посев; у скотоводов и мореходов возникла потребность в ориентировке и в пустыне и на море –это тоже заставило наблюдать за движением небесных тел; развитие общества вызвало к жизни календарь.

Запишите домашнее задание:

1) Задача: Какая звезда ярче-звезда 2 m или звезда 5 m?

(2 m –звезда второй звездной величины, …)

2) ??? : а) Как Вы думаете, можно ли долететь до какого - нибудь созвездия?

б) Сколько времени идет до нас свет от Сириуса (расстояние 8,1*1016 м)?

литература:

1. «Астрономия-11», Москва, «Просвещение», 1994, параграфы 1, 2.

2., «Астрономия-11»,Москва, «Просвещение», 1993 ,параграфы 1, 2 (2.1), 13.

Проверьте правильность выполнения заданий:

№3.Ответ: Сириус ярче Полярной звезды в 30 раз.

Коды ответов на тестовые задания:

1-В 6-В 11-Г 13:

2-В 7-Б 12: 1-Г

3-Б 8-В 1)А3-В4-Б1-Г4. 2-Д

4-Б 9-В 2)А4-В1-Б3-Г3. 3-А

5-Б 10-Г 3)А1-В2-Б4-Г2. 4-Б

4)А2-В3-Б2-Г1. 5-В.

Устали? Отдохните! Посмотрите!

Как прекрасен этот мир!

ДО СВИДАНИЯ!!!

Ответы домашнего задания:

1) звезда 2 m ярче звезды 5m в 2,512 3 раз.

2) Созвездие-это условно определенный участок неба, в пределах которого оказались светила, находящиеся от нас на разных расстояниях. Поэтому выражение «долететь до созвездия» лишено смысла.

Каждая из этих звезд имеет определенную величину, позволяющую их увидеть

Звездная величина - числовая безразмерная величина, характеризирующая яркость звезды или другого космического тела по отношению к видимой площади. Другими словами, эта величина отображает количество электромагнитных волн, телом, которые регистрируются наблюдателем. Поэтому данная величина зависит от характеристик наблюдаемого объекта и расстояния от наблюдателя до него. Термин охватывает лишь видимый, инфракрасный и ультрафиолетовый спектры электромагнитного излучения.

По отношению к точечным источникам света используют также термин «блеск», а к протяженным – «яркость».

Древнегреческий ученый , который жил на территории Турции во II веке до н. э., считается одним из влиятельнейших астрономов античности. Он составил объемный , первый в Европе, описав расположения более чем тысячи небесных светил. Также Гиппарх ввел такую характеристику как звездная величина. Наблюдая невооруженным глазом за звездами, астроном решил разделить их по яркости на шесть величин, где первая величина – самый яркий объект, а шестая - наиболее тусклый.

В XIX веке, британский астрономом Норман Погсон усовершенствовал шкалу измерений звездных величин. Он расширил диапазон ее значений и ввел логарифмическую зависимость. То есть с повышением звездной величины на единицу, яркость объекта уменьшается в 2.512 раза. Тогда звезда 1-й величины (1 m) в сто раз ярче, нежели светило 6-й величины (6 m).

Эталон звездной величины

За эталон небесного светила с нулевой звездной величиной изначально брался блеск , самой яркой точки в . Несколько позже было изложено более точное определение объекта нулевой звездной величины – его освещённость должная равняться 2,54·10 −6 люкс, а световой поток в видимом диапазон 10 6 квантов/(см²·с).

Видимая звездная величина

Описанная выше характеристика, которую определил Гиппарх Никейский, впоследствии стала носить название «видимая» или «визуальная». Имеется в виду, что ее можно наблюдать как при помощи человеческих глаз в видимом диапазоне, так и с использованием различных инструментов вроде телескопа, включая ультрафиолетовый и инфракрасный диапазон. Звездная величина созвездия равна 2 m . Однако мы знаем, что Вега с нулевым блеском (0 m) не самая яркая звезда на небосводе (пятая по блеску, третья для наблюдателей с территории СНГ). Поэтому более яркие звезды могут иметь отрицательную звездную величину, к примеру, (-1.5 m). Также сегодня известно, что среди небесных светил могут быть не только звезды, но и тела, отражающие свет звезд – планеты, кометы или астероиды. Звездная величина полной составляет −12,7 m .

Абсолютная звездная величина и светимость

Для того чтобы была возможность сравнить истинную яркость космических тел, была разработана такая характеристика как абсолютная звездная величина. Согласно ней вычисляется значение видимой звездной величины объекта, если бы этот объект располагался на за 10 (32,62 ) от Земли. В таком случае отсутствуют зависимость от расстояния до наблюдателя при сравнении различных звезд.

Абсолютная звездная величина для космических объектов в использует иное расстояние от тела к наблюдателю. А именно 1 астрономическую единицу, при этом, в теории, наблюдатель должен находиться в центре Солнца.

Более современной и полезной величиной в астрономии стала «светимость». Эта характеристика определяет полную , которую излучает космическое тело за определенный отрезок времени. Для ее вычисления как раз и служит абсолютная звездная величина.

Спектральная зависимость

Как уже говорилось ранее, звездная величина может быть измерена для различных видов электромагнитного излучения, а потому имеет разные значения для каждого диапазона спектра. Для получения картинки какого-либо космического объекта астрономы могут использовать , которые более чувствительны к высокочастотной части видимого света, и на изображении звезды получаются голубыми. Такая звездная величина называется «фотографической», m Pv . Чтобы получилось значение близкое к визуальному («фотовизуальное», m P), фотопластинку покрывают специальной ортохроматической эмульсией и используют желтый светофильтр.

Учеными была составлена так называемая фотометрическая система диапазонов, благодаря которой можно определять основные характеристики космических тел, такие как: температура поверхности, степень отражения света (альбедо, не для звезд), степень поглощения света и прочие. Для этого производится фотографирование светила в разных спектрах электромагнитного излучения и последующие сравнение результатов. Для фотографии наиболее популярны следующие фильтры: ультрафиолетовый, синий (фотографическая звездная величина) и желтый (близкий к фотовизуальному диапазону).

Фотография с запечатленными энергиями всех диапазонов электромагнитных волн определяет так называемую болометрическую звездную величину (m b). С ее помощью, зная расстояние и степень межзвездного поглощения, астрономы вычисляют светимость космического тела.

Звездные величины некоторых объектов

  • Солнце = −26,7 m
  • Полная Луна = −12,7 m
  • Вспышка Иридиума = −9,5 m . Iridium – это система из 66 спутников, которых движутся по орбите Земли и служат для передачи голоса и прочих данных. Периодически поверхность каждого из трех главных аппаратов отсвечивает солнечный свет в сторону Земли, создавая ярчайшую плавную вспышку на небосводе до 10 секунд.