Болезни Военный билет Призыв

Уф излучение в медицине. Лечебное применение ультрафиолетового излучения. Влияние УФ излучения на иммунную систему

И фиолетовый), ультрафиолетовые лучи, УФ-излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн λ 400-10 нм. Вся область ультрафиолетового излучения условно делится на ближнюю (400-200 нм) и далёкую, или вакуумную (200-10 нм); последнее название обусловлено тем, что ультрафиолетовое излучение этого участка сильно поглощается воздухом и его исследование производят с помощью вакуумных спектральных приборов.

Ближнее ультрафиолетовое излучение открыто в 1801 году немецким учёным Н. Риттером и английским учёным У. Волластоном по фотохимическому действию этого излучения на хлористое серебро. Вакуумное ультрафиолетовое излучение обнаружено немецким учёным В. Шуманом при помощи построенного им вакуумного спектрографа с флюоритовой призмой (1885-1903) и безжелатиновых фотопластинок. Он получил возможность регистрировать коротковолновое излучение до 130 нм. Английский учёный Т. Лайман, впервые построив вакуумный спектрограф с вогнутой дифракционной решёткой, регистрировал ультрафиолетовое излучение с длиной волны до 25 нм (1924). К 1927 году был изучен весь промежуток между вакуумным ультрафиолетовым излучением и рентгеновским излучением.

Спектр ультрафиолетового излучения может быть линейчатым, непрерывным или состоять из полос в зависимости от природы источника ультрафиолетового излучения (см. Спектры оптические). Линейчатым спектром обладает УФ-излучение атомов, ионов или лёгких молекул (например, H 2). Для спектров тяжёлых молекул характерны полосы, обусловленные электронно-колебательно-вращательными переходами молекул (см. Молекулярные спектры). Непрерывный спектр возникает при торможении и рекомбинации электронов (см. Тормозное излучение).

Оптические свойства веществ.

Оптические свойства веществ в ультрафиолетовой области спектра значительно отличаются от их оптических свойств в видимой области. Характерной чертой является уменьшение прозрачности (увеличение коэффициента поглощения) большинства тел, прозрачных в видимой области. Например, обычное стекло непрозрачно при λ < 320 нм; в более коротковолновой области прозрачны лишь увиолевое стекло, сапфир, фтористый магний, кварц, флюорит, фтористый литий и некоторые другие материалы. Наиболее далёкую границу прозрачности (105 нм) имеет фтористый литий. Для λ < 105 нм прозрачных материалов практически нет. Из газообразных веществ наибольшую прозрачность имеют инертные газы, граница прозрачности которых определяется величиной их ионизационного потенциала. Самую коротковолновую границу прозрачности имеет гелий - 50,4 нм. Воздух непрозрачен практически при λ < 185 нм из-за поглощения кислородом.

Коэффициент отражения всех материалов (в том числе металлов) уменьшается с уменьшением длины волны излучения. Например, коэффициент отражения свеженапылённого алюминия, одного из лучших материалов для отражающих покрытий в видимой области спектра, резко уменьшается при λ < 90 нм (рис. 1) . Отражение алюминия значительно уменьшается также вследствие окисления поверхности. Для защиты поверхности алюминия от окисления применяются покрытия из фтористого лития или фтористого магния. В области λ < 80 нм некоторые материалы имеют коэффициент отражения 10-30% (золото, платина, радий, вольфрам и др.), однако при λ < 40 нм и их коэффициент отражения снижается до 1% и меньше.

Источники ультрафиолетового излучения.

Излучение накалённых до 3000 К твёрдых тел содержит заметную долю ультрафиолетового излучения непрерывного спектра, интенсивность которого растет с увеличением температуры. Более мощное ультрафиолетовое излучение испускает плазма газового разряда. При этом в зависимости от разрядных условий и рабочего вещества может испускаться как непрерывный, так и линейчатый спектр. Для различных применений ультрафиолетового излучения промышленность выпускает ртутные, водородные, ксеноновые и другие газоразрядные лампы, окна которых (либо целиком колбы) изготовляют из прозрачных для ультрафиолетового излучения материалов (чаще из кварца). Любая высокотемпературная плазма (плазма электрических искр и дуг, плазма, образующаяся при фокусировке мощного лазерного излучения в газах или на поверхности твёрдых тел, и так далее) является мощным источником ультрафиолетового излучения. Интенсивное ультрафиолетовое излучение непрерывного спектра испускают электроны, ускоренные в синхротроне (синхротронное излучение). Для ультрафиолетовой области спектра разработаны также оптические квантовые генераторы (лазеры). Наименьшую длину волны имеет водородный лазер (109,8 нм).

Естественные источники ультрафиолетового излучения - Солнце, звёзды, туманности и другие космические объекты. Однако лишь длинноволновая часть ультрафиолетового излучения (λ > 290 нм) достигает земной поверхности. Более коротковолновое ультрафиолетовое излучение поглощается озоном, кислородом и другими компонентами атмосферы на высоте 30-200 км от поверхности Земли, что играет большую роль в атмосферных процессах. Ультрафиолетовое излучение звёзд и других космических тел, кроме поглощения в земной атмосфере, в интервале 91,2-20 нм практически полностью поглощается межзвёздным водородом.

Приёмники ультрафиолетового излучения.

Для регистрации ультрафиолетового излучения при λ > 230 нм используются обычные фотоматериалы. В более коротковолновой области к нему чувствительны специальные маложелатиновые фотослои. Применяются фотоэлектрические приёмники, использующие способность ультрафиолетового излучения вызывать ионизацию и фотоэффект: фотодиоды, ионизационные камеры, счётчики фотонов, фотоумножители и др. Разработан также особый вид фотоумножителей - каналовые электронные умножители, позволяющие создавать микроканаловые пластины. В таких пластинах каждая ячейка является каналовым электронным умножителем размером до 10 мкм. Микроканаловые пластины позволяют получать фотоэлектрические изображения в ультрафиолетовом излучении и объединяют преимущества фотографических и фотоэлектрических методов регистрации излучения. При исследовании ультрафиолетового излучения также используют различные люминесцирующие вещества, преобразующие ультрафиолетовое излучение в видимое. На этой основе созданы приборы для визуализации изображений в ультрафиолетовом излучении.

Применение ультрафиолетового излучения.

Изучение спектров испускания, поглощения и отражения в УФ-области позволяет определять электронную структуру атомов, ионов, молекул, а также твёрдых тел. УФ-спектры Солнца, звёзд и др. несут информацию о физических процессах, происходящих в горячих областях этих космических объектов (см. Ультрафиолетовая спектроскопия, Вакуумная спектроскопия). На фотоэффекте, вызываемом ультрафиолетовым излучением, основана фотоэлектронная спектроскопия. Ультрафиолетовое излучение может нарушать химические связи в молекулах, в результате чего могут происходить различные химические реакции (окисление, восстановление, разложение, полимеризация и так далее, см. Фотохимия). Люминесценция под действием ультрафиолетового излучения используется при создании люминесцентных ламп, светящихся красок, в люминесцентном анализе и люминесцентной дефектоскопии. Ультрафиолетовое излучение применяется в криминалистике для установления идентичности красителей, подлинности документов и тому подобное. В искусствоведении ультрафиолетовое излучение позволяет обнаружить на картинах не видимые глазом следы реставраций (рис. 2) . Способность многих веществ к избирательному поглощению ультрафиолетового излучения используется для обнаружения в атмосфере вредных примесей, а также в ультрафиолетовой микроскопии.

Мейер А., Зейтц Э., Ультрафиолетовое излучение, пер. с нем., М., 1952; Лазарев Д. Н., Ультрафиолетовая радиация и ее применение, Л. - М., 1950; Samson I. A. R., Techniques of vacuum ultraviolet spectroscopy, N. Y. - L. - Sydney, ; Зайдель А. Н., Шрейдер Е. Я., Спектроскопия вакуумного ультрафиолета, М., 1967; Столяров К. П., Химический анализ в ультрафиолетовых лучах, М. - Л., 1965; Бейкер А., Беттеридж Д., Фотоэлектронная спектроскопия, пер. с англ., М., 1975.

Рис. 1. Зависимости коэффициента отражения r слоя алюминия от длины волны.

Рис. 2. Спектры действия ультр. изл. на биообъекты.

Рис. 3. Выживаемость бактерий в зависимости от дозы ультрафиолетового излучения.

Биологическое действие ультрафиолетового излучения.

При действии на живые организмы ультрафиолетовое излучение поглощается верхними слоями тканей растений или кожи человека и животных. В основе биологического действия ультрафиолетового излучения лежат химические изменения молекул биополимеров. Эти изменения вызываются как непосредственным поглощением ими квантов излучения, так и (в меньшей степени) образующимися при облучении радикалами воды и других низкомолекулярных соединений.

На человека и животных малые дозы ультрафиолетового излучения оказывают благотворное действие - способствуют образованию витаминов группы D (см. Кальциферолы), улучшают иммунобиологические свойства организма. Характерной реакцией кожи на ультрафиолетовое излучение является специфическое покраснение - эритема (максимальным эритемным действием обладает ультрафиолетовое излучение с λ = 296,7 нм и λ = 253,7 нм), которая обычно переходит в защитную пигментацию (загар). Большие дозы ультрафиолетового излучения могут вызывать повреждения глаз (фотоофтальмию) и ожог кожи. Частые и чрезмерные дозы ультрафиолетового излучения в некоторых случаях могут оказывать канцерогенное действие на кожу.

В растениях ультрафиолетовое излучение изменяет активность ферментов и гормонов, влияет на синтез пигментов, интенсивность фотосинтеза и фотопериодической реакции. Не установлено, полезны ли и тем более необходимы ли для прорастания семян, развития проростков и нормальной жизнедеятельности высших растений малые дозы ультрафиолетового излучения. Большие дозы ультрафиолетового излучения, несомненно, неблагоприятны для растений, о чём свидетельствуют и существующие у них защитные приспособления (например, накопление определённых пигментов, клеточные механизмы восстановления от повреждений).

На микроорганизмы и культивируемые клетки высших животных и растений ультрафиолетовое излучение оказывает губительное и мутагенное действие (наиболее эффективно ультрафиолетовое излучения с λ в пределах 280-240 нм). Обычно спектр летального и мутагенного действия ультрафиолетового излучения примерно совпадает со спектром поглощения нуклеиновых кислот - ДНК и РНК (рис. 3, А) , в некоторых случаях спектр биологического действия близок к спектру поглощения белков (рис. 3, Б) . Основная роль в действии ультрафиолетового излучения на клетки принадлежит, по-видимому, химическим изменениям ДНК: входящие в её состав пиримидиновые основания (главным образом тимин) при поглощении квантов ультрафиолетовое излучение образуют димеры, которые препятствуют нормальному удвоению (репликации) ДНК при подготовке клетки к делению. Это может приводить к гибели клеток или изменению их наследственных свойств (мутациям). Определённое значение в летальном действии ультрафиолетового излучения на клетки имеют также повреждение биолеских мембран и нарушение синтеза различных компонентов мембран и клеточной оболочки.

Большинство живых клеток может восстанавливаться от вызываемых ультрафиолетовым излучением повреждений благодаря наличию у них систем репарации. Способность восстанавливаться от повреждений, вызываемых ультрафиолетовым излучением, возникла, вероятно, на ранних этапах эволюции и играла важную роль в выживании первичных организмов, подвергавшихся интенсивному солнечному ультрафиолетовому облучению.

По чувствительности к ультрафиолетовому излучению биологические объекты различаются очень сильно. Например, доза ультрафиолетового излучения, вызывающая гибель 90% клеток, для разных штаммов кишечной палочки равна 10, 100 и 800 эрг/мм 2 , а для бактерий Micrococcus radiodurans - 7000 эрг/мм 2 (рис. 4, А и Б) . Чувствительность клеток к ультрафиолетовому излучению в большой степени зависит также от их физиологического состояния и условий культивирования до и после облучения (температура, состав питательной среды и др.). Сильно влияют на чувствительность клеток к ультрафиолетовому излучению мутации некоторых генов. У бактерий и дрожжей известно около 20 генов, мутации которых повышают чувствительность к ультрафиолетовому излучению. В ряде случаев такие гены ответственны за восстановление клеток от лучевых повреждений. Мутации других генов нарушают синтез белка и строение клеточных мембран, тем самым повышая радиочувствительность негенетических компонентов клетки. Мутации, повышающие чувствительность к ультрафиолетовому излучению, известны и у высших организмов, в том числе у человека. Так, наследственное заболевание - пигментная ксеродерма обусловлено мутациями генов, контролирующих темновую репарацию.

Генетические последствия облучения ультрафиолетовым излучением пыльцы высших растений, клеток растений и животных, а также микроорганизмов выражаются в повышении частот мутирования генов, хромосом и плазмид. Частота мутирования отдельных генов, при действии высоких доз ультрафиолетового излучения, может повышаться в тысячи раз по сравнению с естественным уровнем и достигает нескольких процентов. В отличие от генетического действия ионизирующих излучений, мутации генов под влиянием ультрафиолетового излучения возникают относительно чаще, чем мутации хромосом. Благодаря сильному мутагенному эффекту ультрафиолетовое излучение широко используют как в генетических исследованиях, так и в селекции растений и промышленных микроорганизмов, являющихся продуцентами антибиотиков, аминокислот, витаминов и белковой биомассы. Генетическое действие ультрафиолетового излучения могло играть существенную роль в эволюции живых организмов. О применении ультрафиолетового излучения в медицине см. Светолечение.

Самойлова К. А., Действие ультрафиолетовой радиации на клетку, Л., 1967; Дубров А. П, Генетические и физиологические эффекты действия ультрафиолетовой радиации на высшие растения, М., 1968; Галанин Н. Ф., Лучистая энергия и ее гигиеническое значение, Л., 1969; Смит К., Хэнеуолт Ф., Молекулярная фотобиология, пер. с англ., М., 1972; Шульгин И. А., Растение и солнце, Л., 1973; Мясник М. Н., Генетический контроль радиочувствительности бактерий, М., 1974.

Общая характеристика ультрафиолетового излучения

Замечание 1

Ультрафиолетовое излучение открыл И.В. Риттер в $1842$ г. Впоследствии свойства этого излучения и его применение подверглись самому тщательному разбору и изучению. Такие ученые как А. Беккерель, Варшавер, Данциг, Франк, Парфенов, Галанин и многие другие внесли в это изучение большой вклад.

В настоящее время ультрафиолетовое излучение широко применяется в разных областях деятельности. Пик активности по воздействию ультрафиолет достигает в интервале высоких температур. Появляется этот вид спектра, когда температура доходит от $1500$ до $20000$ градусов.

Условно диапазон излучения делят на 2 области:

  1. Ближний спектр , который от Солнца через атмосферу доходит до Земли и имеет длину волны $380$-$200$ нм;
  2. Далекий спектр поглощается озоном, кислородом воздуха и другими компонентами атмосферы. Исследовать этот спектр можно при помощи специальных вакуумных устройств, поэтому его называют ещё вакуумным . Длина его волны $200$-$2$ нм.

Ультрафиолетовое излучение может быть ближним, дальним, экстремальным, средним, вакуумным, причем каждый его вид имеет свои свойства и находит свое применение. Каждый вид ультрафиолетового излучения имеет свою длину волны, но в обозначенных выше пределах.

Спектр ультрафиолетовых солнечных лучей , достигающих поверхности Земли, узок – $400$…$290$ нм. Получается, что Солнце не излучает свет с длиной волны короче $290$ нм. Так это или не так? Ответ на этот вопрос был найден французом А. Корню , установившим, что ультрафиолетовые лучи короче $295$ нм поглощаются озоном. На основании этого А.Корню предположил , что Солнце излучает коротковолновое ультрафиолетовое излучение. Молекулы кислорода под его действием распадаются на отдельные атомы и образуют молекулы озона. Озон в верхних слоях атмосферы покрывает планету защитным экраном .

Предположение ученого подтвердилось тогда, когда человек сумел подняться в верхние слои атмосферы. Высота Солнца над горизонтом и количество ультрафиолетовых лучей, поступающих на земную поверхность, находятся в прямой зависимости. При изменении освещенности на $20$ % в $20$ раз уменьшится количество ультрафиолетовых лучей, дошедших до поверхности. Проведенные эксперименты показали, что на каждые $100$ м подъема на $3$-$4$ % увеличивается интенсивность ультрафиолетового излучения. В экваториальной области планеты, когда Солнце находится в зените, поверхность земли достигают лучи длиной $290$…$289$ нм. На земную поверхность за Полярным кругом поступают лучи с длиной волны $350$…$380$ нм.

Источники ультрафиолетового излучения

Ультрафиолетовое излучение имеет свои источники:

  1. Природные источники;
  2. Источники, созданные человеком;
  3. Лазерные источники.

Природным источником ультрафиолетовых лучей является единственный их концентратор и излучатель – это наше Солнце . Самая близкая к нам звезда излучает мощнейший заряд волн, способных пройти через озоновый слой и достичь земной поверхности. Многочисленные исследования позволили ученым выдвинуть теорию о том, что только с появлением озонового слоя на планете смогла зародиться жизнь. Именно этот слой защищает всё живое от вредного избыточного проникновения ультрафиолетового излучения. Способность к существованию белковых молекул, нуклеиновых кислот и АТФ стала возможна именно в этот период. Озоновый слой выполняет очень важную функцию, взаимодействуя с основной массой УФ-А, УФ-В, УФ-С, он обезвреживает их и не пропускает к поверхности Земли. Поступающее на поверхность земли ультрафиолетовое излучение имеет диапазон, который колеблется в пределах от $200$ до $400$ нм.

Концентрация ультрафиолета на Земле зависит от целого ряда факторов:

  1. Наличия озоновых дыр;
  2. Положения территории (высота) над уровнем моря;
  3. Высота самого Солнца;
  4. Способности атмосферы рассеивать лучи;
  5. Отражающей способности подстилающей поверхности;
  6. Состояния облачных паров.

Искусственные источники ультрафиолета, как правило, создаются человеком. Это могут быть сконструированные людьми приборы, устройства, технические средства. Создаются они для получения нужного спектра света с заданными параметрами длины волны. Цель их создания заключается в том, чтобы полученное ультрафиолетовое излучение можно было с пользой применить в разных областях деятельности.

К источникам искусственного происхождения относятся:

  1. Обладающие способностью активировать синтез витамина D в коже человека эритемные лампы . Они не только предохраняют от заболеваний рахитом, но и лечат это заболевание;
  2. Специальные аппараты для соляриев , предупреждающие зимнюю депрессию и дающие красивый естественный загар;
  3. Применяющиеся в помещениях для борьбы с насекомыми лампы-аттрактанты . Для человека они не представляют опасности;
  4. Ртутно-кварцевые устройства;
  5. Эксилампы;
  6. Люминесцентные устройства;
  7. Ксеноновые лампы;
  8. Газоразрядные устройства;
  9. Высокотемпературная плазма;
  10. Синхротронное излучение в ускорителях.

К искусственным источникам ультрафиолета относятся лазеры , работа которых основана на генерации инертных и не инертных газов. Это может быть азот, аргон, неон, ксенон, органические сцинтилляторы, кристаллы. В настоящее время существует лазер , работающий на свободных электронах . В нем получают длину ультрафиолетового излучения равную той, которая наблюдается в вакуумных условиях. Лазерный ультрафиолет используется в биотехнологических, микробиологических исследованиях, масс-спектрометрии и др.

Применение ультрафиолетового излучения

Ультрафиолетовое излучение имеет такие характеристики, которые позволяют его применять в разных сферах.

Характеристики УФ-излучения:

  1. Высокий уровень химической активности;
  2. Бактерицидное воздействие;
  3. Способность вызывать люминесценцию, т.е. свечение различных веществ разными оттенками.

Исходя из этого, ультрафиолетовое излучение может широко использоваться, например, в спектрометрических анализах, астрономии, медицине, в обеззараживании питьевой воды, аналитическом исследовании минералов, для уничтожения насекомых, бактерий и вирусов. Каждая область использует свой тип УФ со своим спектром и длиной волны.

Спектрометрия специализируется на идентификации соединений и их состава по способности поглощать УФ-свет определенной длины волны. По результатам спектрометрии спектры для каждого вещества можно классифицировать, т.к. они являются уникальными. Уничтожение насекомых основано на том, что их глаза улавливают коротковолновые спектры, невидимые для человека. Насекомые летят на этот источник и подвергаются уничтожению. Специальные установки в соляриях подвергают тело человека воздействию УФ-А . В результате в коже происходит активизация выработки меланина, что придает ей более темный и ровный цвет. Здесь, конечно, важно защитить чувствительные зоны и глаза.

Медицина . Применение ультрафиолета в этой области тоже связано с уничтожением живых организмов – бактерий и вирусов.

Медицинские показания лечения ультрафиолетом:

  1. Травма тканей, костей;
  2. Воспалительные процессы;
  3. Ожоги, обморожения, кожные заболевания;
  4. Острые респираторные заболевания, туберкулез, астма;
  5. Инфекционные заболевания, невралгии;
  6. Заболевания уха, горла, носа;
  7. Рахиты и трофические язвы желудка;
  8. Атеросклероз, почечная недостаточность и др.

Это далеко не весь перечень заболеваний, для лечения которых используется ультрафиолет.

Замечание 2

Таким образом , ультрафиолет помогает медикам спасать миллионы человеческих жизней и возвращать им здоровье. Используется ультрафиолет и для обеззараживания помещений, стерилизации медицинских инструментов и рабочих поверхностей.

Аналитическая работа с минералами . Ультрафиолет вызывает у веществ люминесценцию и это дает возможность использовать его для анализа качественного состава минералов и ценных горных пород. Очень интересные результаты дают драгоценные, полудрагоценные и поделочные камни. При облучении их катодными волнами, они дают удивительные и неповторимые оттенки. Голубой цвет топаза, например, при облучении высвечивается ярко-зеленым, изумруд – красным, жемчуг переливается многоцветьем. Зрелище потрясающее, фантастическое.

Теоретически вопрос «Чем инфракрасные лучи отличаются от ультрафиолетовых? » мог бы заинтересовать любого человека. Ведь и те, и другие лучи входят в состав солнечного спектра – а воздействию Солнца мы подвергаемся ежедневно. На практике же его чаще всего задают себе те, кто собирается приобрести устройства, известные как инфракрасные обогреватели, и хотел бы убедиться в том, что подобные приборы абсолютно безопасны для здоровья человека.

Чем инфракрасные лучи отличаются от ультрафиолетовых с точки зрения физики

Как известно, кроме семи видимых цветов спектра за его пределами имеются и невидимые глазу излучения. Помимо инфракрасных и ультрафиолетовых, к ним относятся рентгеновские лучи, гамма-лучи и микроволны.

Инфракрасные и УФ-лучи сходны в одном: и те, и другие относятся к той части спектра, который не видим невооруженному глазу человека. Но этим и ограничивается их сходство.

Инфракрасное излучение

Инфракрасные лучи были обнаружены за пределами красной границы, между длинноволновым и коротковолновым участками этой части спектра. Стоит отметить, что почти половина солнечной радиации – это именно инфракрасное излучение. Основная характеристика этих не видимых глазу лучей – сильная тепловая энергия: ее непрерывно излучают все нагретые тела.
Излучение этого вида подразделяется на три области по такому параметру, как длина волны:

  • от 0,75 до 1,5 мкм – ближняя область;
  • от 1,5 до 5,6 мкм – средняя;
  • от 5,6 до 100 мкм – дальняя.

Нужно понимать, что инфракрасное излучение является не продуктом всевозможных современных технических устройств, к примеру, ИК-обогревателей. Это фактор природной окружающей среды, который постоянно действует на человека. Наше тело непрерывно поглощает и отдает инфракрасные лучи.

Ультрафиолетовое излучение


Существование лучей за фиолетовой границей спектра было доказано в 1801 году. Диапазон ультрафиолетовых лучей, испускаемых Солнцем, составляет от 400 до 20 нм, однако до земной поверхности доходят только незначительная часть коротковолнового спектра – до 290 нм.
Ученые считают, что ультрафиолету принадлежит значительная роль в образовании первых на Земле органических соединений. Однако воздействие этого излучения носит и отрицательный характер, приводя к распаду органических веществ.
При ответе на вопрос, чем инфракрасное излучение отличается от ультрафиолетового , необходимо обязательно рассмотреть воздействие на организм человека. И здесь основное отличие заключается в том, что эффект инфракрасных лучей ограничивается преимущественно тепловым действием, в то время как ультрафиолетовые лучи способны оказывать еще и фотохимическое воздействие.
УФ-излучение активно поглощается нуклеиновыми кислотами, следствием чего являются изменения важнейших показателей жизнедеятельности клеток – способности к росту и делению. Именно повреждение ДНК является главным компонентом механизма воздействия на организмы ультрафиолетовых лучей.
Основной орган нашего тела, на который действует ультрафиолетовое излучение – это кожа. Известно, что благодаря УФ-лучам запускается процесс образования витамина Д, который необходим для нормального усвоения кальция, а также синтезируются серотонин и мелатонин – важные гормоны, оказывающие влияние на суточные ритмы и настроение человека.

Воздействие ИК и УФ-излучения на кожу

Когда человек подвергается воздействию солнечных лучей, на поверхность его тела оказывают влияние и инфракрасные, ультрафиолетовые лучи. Но результат этого воздействия будет различным:

  • ИК-лучи вызывают прилив крови к поверхностным слоям кожи, повышение ее температуры и покраснение (калорическая эритема). Этот эффект исчезает сразу же, как только действие облучения прекращается.
  • Воздействие УФ-излучения имеет скрытый период и может проявляться через несколько часов после облучения. Длительность ультрафиолетовой эритемы составляет от 10 часов до 3-4 дней. Кожа краснеет, может шелушиться, затем окраска ее становится более темной (загар).


Доказано, что избыточное воздействие ультрафиолета может привести к возникновению злокачественных заболеваний кожи. В то же время в определенных дозах УФ-излучение полезно для организма, что позволяет применять его для профилактики и лечения, а также для уничтожения бактерий в воздухе помещений.

Безопасно ли инфракрасное излучение?

Опасения людей по отношению к такому виду устройств, как инфракрасные обогреватели, вполне понятно. В современном обществе уже сформировалась устойчивая тенденция с изрядной долей опасения относиться ко многим видам излучения: радиация, рентгеновские лучи и др.
Рядовым потребителям, которые собираются приобрести устройства, основанные на использовании инфракрасного излучения, важнее всего знать следующее: инфракрасные лучи совершенно безопасны для здоровья человека. Именно это стоит подчеркнуть, рассматривая вопрос, чем инфракрасные лучи отличаются от ультрафиолетовых .
Исследованиями доказано: длинноволновое ИК-излучение не только полезно для нашего тела – оно ему совершенно необходимо. При недостатке ИК-лучей страдает иммунитет организма, а также проявляется эффект его ускоренного старения.


Положительное воздействие инфракрасного излучения уже не вызывает сомнений и проявляется в различных аспектах.

Ультрафиолетовое излучение в медицине используется в оптическом диапазоне 180-380 нм (интегральный спектр), который подразделяется на коротковолновую область (С или КУФ) - 180-280 нм, средневолновую (В) - 280-315 нм и длинноволновую (А) - 315-380 нм (ДУФ).

Физическое и физиологическое действие ультрафиолетового излучения

Проникает в биологические ткани на глубину 0,1-1 мм, поглощается молекулами нуклеиновых кислот, белков и липидов, обладает энергией фотонов достаточной для разрыва ковалентных связей, электронного возбуждения, диссоциации и ионизации молекул (фотоэлектрический эффект), что приводит к образованию свободных радикалов, ионов, перекисей (фотохимический эффект), т.е. происходит последовательное превращение энергии электромагнитных волн в энергию химическую.

Механизм действия УФ-излучения - биофизический, гуморальный и нервно-рефлекторный :

Изменение в электронной структуре атомов и молекул, ионной конъюктуры, электрических свойств клеток;
- инактивация, денатурация и коагуляция белка;
- фотолизис - распад сложных белковых структур - выделение гистамина, ацетилхолина, биогенных аминов;
- фотооксидация - усиление окислительных реакций в тканях;
- фотосинтез - репаративный синтез в нуклеиновых кислотах, устранение повреждений в ДНК;
- фотоизомеризация - внутренняя перегруппировка атомов в молекуле, вещества приобретают новые химические и биологические свойства (провитамин - Д2 , Д3),
- фоточувствительность;
- эритема, при КУФ развивается 1,5-2 час, при ДУФ - 4-24 час;
- пигментация;
- терморегуляция.

Ультрафиолетовое излучение оказывает действие на функциональное состояние различных органов и систем человека :

Кожа;
- центральная и периферическая нервная система;
- вегетативная нервная система;
- сердечно-сосудистая система;
- система крови;
- гипоталямус-гипофиз-надпочечники;
- эндокринная система;
- все виды обмена веществ, минеральный обмен;
- органы дыхания, дыхательный центр.

Лечебное действие ультрафиолетового излучения

Реакция со стороны органов и систем находится в зависимости от длины волны, дозы и методики воздействия У Ф-излучения.

Местное облучение :

Противовоспалительное (А, В, С);
- бактерицидное (С);
- болеутоляющее (А, В, С);
- эпителизирущее, регенерирующее (А, В)

Общее облучение :

Стимулирующее реакции иммунитета (А, В, С);
- десенсибилизирующее (А, В, С);
- регулирование витаминного баланса «Д», «С» и обменных процессов (А, В).

Показания к УФО-терапии :

Острый, подострый и хронический воспалительный процесс;
- травма мягких тканей и костей;
- рана;
- кожные заболевания;
- ожог и отморожение;
- трофическая язва;
- рахит;
- заболевания опорно-двигательного аппарата, суставов, ревматизм;
- инфекционные заболевания - грипп, коклюш, рожистое воспаление;
- болевой синдром, невралгия, неврит;
- бронхиальная астма;
- ЛОР-болезни - тонзиллит, отит, аллергический ринит, фарингит, ларингит;
- компенсация солнечной недостаточности, повышение стойкости и выносливости организма.

Показания к ультрафиолетовому облучению в стоматологии

Заболевания слизистой оболочки полости рта;
- заболевания пародонта;
- заболевания зубов - некариозные заболевания, кариес, пульпит, периодонтит;
- воспалительные заболевания челюстно-лицевой области;
- заболевания ВНЧС;
- лицевые боли.

Противопоказания к УФО-терапии :

Злокачественные новообразования,
- предрасположенность к кровотечению,
- активный туберкулез,
- функциональная недостаточность почек,
- гипеpтоническая болезнь III стадии,
- тяжелые формы атеросклероза.
- тиреотоксикоз.

Приборы ультрафиолетового излучения :

Интегральные источники с использованием ламп ДРТ (дуговые ртутные трубчатые) различной мощности:

ОРК-21М (ДРТ-375) - местное и общее облучение
- ОКН-11М (ДРТ-230)- местное облучение
- Маячные ОКБ-ЗО (ДРТ-1000) и ОКМ-9 (ДРТ-375) - групповое и общее облучение
- ОН-7 и УГН-1 (ДРТ-230). ОУН-250 и ОУН-500 (ДРТ-400) - местное облучение
- ОУП-2 (ДРТ-120) - отоларингология, офтальмология, стоматология.

Селективные коротковолновые (180-280 нм) используют дуговые бактерицидные лампы (ДБ) в режиме тлеющего электрического разряда в смеси паров ртути с аргоном. Лампы трех типов: ДБ-15, ДБ-30-1, ДБ-60.

Выпускаются облучатели:

Настенные (ОБН)
- потолочные (ОБП)
- на штативе (ОБШ) и передвижные (ОБП)
- местные (БОД) с лампой ДРБ-8, БОП-4, ОКУФ-5М
- для облучения крови (АУФОК) - МД-73М "Изольда" (с лампой низкого давления ЛБ-8).

Селективные длинноволновые (310-320 нм) используют люминисцентные эритемные лампы (ЛЭ), мощностью 15-30 Вт из увеоливого стекла с внутренним покрытием люминофором:

Облучатели настенные типа (ОЭ)
- подвесные отраженного распределения (ОЭО)
- передвижные (ОЭП).

Облучатели маячного типа (ЭОКС-2000) с дуговой ксеноновой лампой (ДКС ТБ-2000).

Облучатель ультрафиолетовый на штативе (ОУШ1) с люминисцентной лампой (ЛЭ153), большой маячный ультрафиолетовый облучатель (ОМУ), облучатель ультрафиолетовый настольный (ОУН-2).

Газоразрядная лампа низкого давления ЛУФ-153 в установках УУД-1, УДД-2Л для Puva и терапии, в облучателе УФ для конечностей ОУК-1, для головы ОУГ-1 и в облучателях ЭОД-10, ЭГД-5. За рубежом выпускаются установки для общих и локальных облучений: Puva, Psolylux, Psorymox, Valdman.

Техника и методика УФО терапии

Общее облучение

Проводят по одной из схем:

Основная (с 1/4 до 3 биодоз, прибавляя по 1/4)
- замедленная (с 1/8 до 2 биодоз, прибавляя по 1/8)
- ускоренная (с 1/2 до 4 биодоз. прибавляя по 1/2).

Местное облучение

Облучение места поражения, полями, рефлексогенных зон, этапное или по зонам, внеочаговое. фракционное.

Особенности облучения эритемными дозами:

Один участок кожи можно облучать не более 5 раз, а слизистую - не более 6-8 раз. Повторное облучение одного и того же участка кожи возможно только после угасания эритемы. Последующую дозу облучения увеличивают на 1/2-1 биодозу. При лечении УФ-лучами используют светозащитные очки для больного и медперсонала.

Дозирование

Дозирование УФ-облучения проводят путем определения биодозы, биодоза - минимальное количество УФ-излучения, достаточное для получения на коже самой слабой пороговой эритемы за наименьшее время, с фиксированным расстоянием от облучателя (20 - 100 см). Определение биодозы проводится биодозиметром БД-2.

Различают дозы ультрафиолетового облучения:

Субэритемные (меньше 1 биодозы)
- эритемные малые (1-2 биодозы)
- средние (3-4 биодозы)
- большие (5-6 биодоз)
- гиперэритемные (7-8 биодоз)
- массивные (свыше 8 биодоз).

В целях дезинфекции воздуха:

Непрямое излучение в течение 20-60 мин, в присутствии людей,
- прямое излучение в течение 30-40 мин, в отсутствие людей.

Ультрафиолетовое излучение (УФИ) - электромагнитное излучение оптического диапазона, которое условно подразделяется на коротковолновое (УФИ С - с длиной волны 200-280 нм), средневолновое (УФИ В - с длиной волны 280-320 нм) и длинноволновое (УФИ А - с длиной волны 320-400 нм).

УФИ генерируют как естественные, так и искусственные источники. Основной естественный источник УФИ - Солнце. До поверхности Земли доходит УФИ в диапазоне 280-400 нм, так как более короткие волны поглощаются в верхних слоях стратосферы.

Искусственные источники УФИ широко применяются в промышленности, медицине и др.

Фактически любой материал, нагретый до температуры, превышающей 2500 еК, генерирует УФИ. Источниками УФИ является сварка кислородно-ацетиленовыми, кислородно-водородными, плазменными горелками.

Источники биологически эффективного УФИ можно подразделить на газоразрядные и флюоресцентные. К газоразрядным относятся ртутные лампы низкого давления с максимумом излучения на длине волны 253,7 нм, т.е. соответствующие максимуму бактерицидной эффективности, и высокого давления с длинами волн 254, 297, 303, 313 нм. Последние широко используются в фотохимических реакторах, в печатном деле, для фототерапии кожных заболеваний. Ксеноновые лампы применяются для тех же целей, что и ртутные. Оптические спектры импульсных ламп зависят от используемого в них газа - ксенон, криптон, аргон, неон и др.

В люминесцентных лампах спектр зависит от использованного ртутного люминофора.

Избыточному воздействию УФИ могут подвергаться работники промышленных предприятий и медицинских учреждений, где используются выше перечисленные источники, а также люди, работающие на открытом воздухе за счет солнечной радиации (сельскохозяйственные, строительные, железнодорожные рабочие, рыбаки и др.).

Установлено, что как недостаток, так и избыток УФИ отрицательно сказываются на состоянии здоровья человека. При недостаточности УФИ у детей развивается рахит вследствие нехватки витамина Д и нарушения фосфорно-кальциевого обмена, снижается активность защитных систем организма, в первую очередь - иммунной, что делает его более уязвимым к воздействию неблагоприятных факторов.

Критическими органами к восприятию УФИ являются кожа и глаза. Острые поражения глаз, так называемые электроофтальмии (фотоофтальмии), представляют собой острые конъюнктивиты. Заболеванию предшествует латентный период, продолжительность которого около 12 часов. С хроническими поражениями глаз связывают хронический конъюнктивит, блефарит, катаракту хрусталика.

Поражения кожи протекают в форме острых дерматитов с эритемой, иногда отеком, вплоть до образования пузырей. Наряду с местной реакцией могут отмечаться общетоксические явления. В дальнейшем наблюдаются гиперпигментация и шелушение. Хронические изменения кожных покровов, вызванных УФИ, выражаются в старении кожи, развитии кератоза, атрофии эпидермиса, возможны злокачественные новообразования.

В последнее время интерес к укреплению здоровья населения путем профилактического ультрафиолетового облучения значительно возрос. Действительно, ультрафиолетовое голодание, наблюдаемое обычно в зимнее время года и особенно у жителей Севера России, ведет к значительному снижению защитных сил организма и повышению уровня заболеваемости. В первую очередь страдают дети.

Наша страна является родоначальницей движения за компенсацию ультрафиолетовой недостаточности у населения с исполь- зованием искусственных источников ультрафиолетовой радиации, спектр которых приближается к естественному. Опыт использования искусственных источников ультрафиолетовой радиации требует соответствующей коррекции в отношении дозы и методов использования.

Территория России с юга на север простирается от 40 до 80? с.ш. и условно делится на пять климатических районов страны. Оценим естественный ультрафиолетовый климат двух крайних и одного среднего географических районов. Это районы Севера (70? с.ш. - Мурманск, Норильск, Дудинка и др.), Средней полосы (55? с.ш. - Москва и др.) и Юга (40? с.ш. - Сочи и др.) нашей страны.

Напомним, что по биологическому действию спектр ультрафиолетового излучения Солнца делится на две области: «А» - излучение с длиной волны 400-315 нм, и «В» - излучение с длиной волны менее 315 нм (до 280 нм). Однако практически земной поверхности лучи короче 290 нм не достигают. Ультрафиолетовое излучение с длиной волны менее 280 нм, которое имеется только в спектре искусственных источников, относится к области «C» ультрафиолетовой радиации. У человека отсутствуют рецепторы, которые срочно (с малым латентным периодом) реагируют на ультрафиолетовую радиацию. Особенностью естественного УФ-излучения является его способность вызывать (с относительно длинным латентным периодом) эритему, являющуюся специфической реакцией организма на действие УФ-радиации солнечного спектра. В наибольшей степени образовывать эритему способна УФ-радиация с длиной волны максимум 296,7 нм (табл. 10.1).

Таблица 10.1. Эритемная эффективность монохроматического УФ-излучения

Как видно из табл. 10.1, излучение с длиной волны 285 нм в 10 раз, а лучи с длиной волны 290 нм и 310 нм в 3 раза менее активно образуют эритему, чем излучение с длиной волны 297 нм.

Приход суточной УФ-радиации солнца для указанных выше районов страны в летний период (табл. 10.2) относительно высок 35- 52 эр-ч/м -2 (1 эр-ч/м -2 = 6000 мкВт-мин/см 2). Однако в другие периоды года имеется существенное различие, и зимой, особенно на Севере, естественная радиация солнца отсутствует.

Таблица 10.2. Среднее распределение эритемной радиации области (эр-ч/м -2)

Северная широта

Месяц

III

VI

IX

XII

18,2

26,7

46,5

Величина суммарной радиации в различных широтах отражает суточный приход излучения. Однако при учете количества излуче- ния, поступающего в среднем не за 24, а лишь за 1 час, выявляется следующая картина. Так, в июне на широте 70? с.ш. за сутки поступает 35 эр-ч/м -2 . Солнце при этом все 24 часа не уходит с небосвода, следовательно, в час эритемная радиация будет составлять 1,5 эр-ч/м -2 . В этот же период года на широте 40? Солнце излучает 77 эр-ч/м -2 и сияет 15 часов, следовательно, часовая эритемная облученность составит 5,13 эр-ч/м -2 , т.е. величину в 3 раза большую, чем на широте 70?. Для определения режима облучения целесообразно проводить оценку прихода суммарной УФ солнечной радиации не за 24, а за 15 часов, т.е. за период бодрствования человека, так как в конечном итоге нас интересует количество естественной радиации, влияющей на человека, а не количество энергии Солнца, падающей на поверхность Земли вообще.

Важной особенностью действия на человека естественной УФрадиации является способность предупреждать так называемую D-витаминную недостаточность. В отличие от обычных витаминов, витамин D фактически не содержится в естественных продуктах питания (исключение составляют печень некоторых рыб, особенно трески и палтуса, а также яичный желток и молоко). Этот витамин синтезируется в коже под воздействием УФ радиации.

Недостаточное воздействие УФ-излучения без одновременного действия видимой радиации на организм человека приводит к разно- образным проявлениям D-авитаминоза.

В процессе D-витаминной недостаточности в первую очередь нарушаются трофика центральной нервной системе и клеточное дыхание, как субстрат нервной трофики. Это нарушение, ведущее к ослаблению окислительно-восстановительных процессов, следует, очевидно, считать основным, в то время как все остальные многообразные проявления будут вторичными. Наиболее чувствительны к отсутствию УФ-радиации маленькие дети, у которых в результате D-авитаминоза может развиться рахит и, как следствие рахита, - близорукость.

Способностью предупреждать и излечивать рахит в наибольшей степени обладает УФ-излучение области В.

Процесс синтеза витамина D под воздействием УФ-излучения довольно сложен.

В нашей стране витамин D был получен синтетическим путем в 1952 г. Исходным сырьем для синтеза послужил холестерин. В процессе превращения холестерина в провитамин образовывалась двойная связь в кольце В стерина путем последовательного бромирования. Полученный бензонат 7-дегидрохолестерина омыляется в Г-дегидрохолестерин, который уже под воздействием УФ-излучения превращается в витамин. Сложные процессы перехода провитамина в витамин зависят от спектрального состава УФ-радиации. Так, лучи с длиной волны максимум 310 нм способны превращать эргостерин в люмистерин, который переходит в техистерин, и, наконец, под действием лучей с длиной волны 280-313 нм техистерин превращается в витамин D.

Витамин D в организме осуществляет регуляцию содержания кальция и фосфора в крови. При недостаточности этого витамина нарушается фосфорно-кальциевый обмен, тесно связанный с процессами окостенения скелета, кислотно-щелочным равновесием, свертываемостью крови и т.д.

При рахите нарушается условно-рефлекторная деятельность, при этом образование условных рефлексов происходит медленнее, чем у здоровых людей, и они быстро исчезают, т.е. возбудимость коры головного мозга у детей, страдающих рахитом, значительно понижена. При этом клетки коры функционируют слабо и легко истощаются. Кроме того, наблюдается расстройство тормозной функции больших полушарий.

Торможение в течение длительного времени может широко распространяться по коре мозга.

Совершенно ясно, что необходимо проводить соответствующие профилактические мероприятия, т.е. использовать полноценный УФ-климат.

Тип источника

Мощность, Вт

Облученность в энергетических единицах на расстоянии 1 м

УФ-радиация область А

УФ-радиация область В

УФ-радиация область С

мкВт/см 2

%

мкВт/см 2

%

мкВт/см 2

%

ПРК-7 (ДРК-7)

1000

ЛЭР-40

28,6

22,6

Однако следует заметить, что спектральный состав искусственного радиационного климата, имеющий место в условиях фотария с лампой типа ПРК, значительно отличается от естественного наличием коротковолновой УФ-радиации.

С выпуском в нашей стране эритемных люминесцентных ламп небольшой мощности стало возможным использование искусст- венных источников УФ-радиации в условиях фотария и в системе общего освещения.

Доза профилактического УФ-облучения. Несколько слов из истории. Профилактическое облучение шахтеров было начато в 30-х годах ХХ столетия. В то время не было соответствующего опыта и необходимой теоретической базы в отношении выбора дозы именно

профилактического облучения. Было решено использовать опыт лечебный, применяемый в физиотерапевтической практике при лечении разного рода заболеваний. Заимствованы были не только источники УФ-радиации, но и схема облучения. Биологический эффект облучения лампами ПРК, в спектре которых имеется бактерицидное излучение, был весьма сомнителен. Так, нами установлено, что соотношение биологической активности областей «В» и «С», участвующих в образовании эритемы, составляет 1:8. Первые методические указания по эксплуатации фотариев были разработаны преимущественно физиотерапевтами. В дальнейшем вопросами профилактического облучения занимались гигиенисты, биологи. В 50-х годах прошлого столетия проблема профилактического облучения приобрела гигиеническую направленность. Были проведены многочисленные исследования в разных городах и климатических районах России, которые позволили по-новому подойти к дозе профилактического УФ-облучения.

Установление профилактической дозы УФ-радиации является весьма трудной задачей, ибо следует решать и учитывать ряд связанных между собой факторов, таких как:

Источник УФ-радиации;

Способ его использования;

Площадь облучаемой поверхности;

Сезон начала облучения;

Фоточувствительность кожи (биодоза);

Интенсивность облучения (облученность);

Время облучения.

В работе использовались эритемные лампы, в спектре которых отсутствует бактерицидное УФ-излучение. Эритемная биодоза

Таблица 10.4. Взаимосвязь физических и приведенных единиц для

выражения дозы УФ-радиации области В (280-350 нм)

мкВт/см 2

мЭр-ч/м 2

мкЭр-ч/см 2

мЭр-мин/м 2

мкВт/см 2

0,0314

мЭр-ч/м 2

мкЭр-ч/м 2

0,157

мЭр-мин/м 2

0,0157

выражена в физических (мкВт/см 2) или приведенных (мкЭр/см 2) величинах, соотношения которых представлены в табл. 10.4.

Следует особо подчеркнуть, что облученность эритемного потока УФ излучения оценивать в эффективных (или приведенных) еди- ницах - эрах (Эр - эритемный поток излучения с длиной волны 296,7 нм мощностью 1 Вт) можно лишь при излучении области «В».

Для выражения облученности участка «В» УФ-спектра в эрах следует его облученность, выраженную в физических единицах (Вт), умножить на коэффициент эритемной чувствительности кожи. Коэффициент эритемной чувствительности кожи для лучей с длиной волны 296,7 нм принят в 1935 г. Международной комиссией по освещению за единицу.

Используя лампы ЛЭР, мы приступили к нахождению оптимальной профилактической дозы УФ-радиации и оценке «метода облучения», под которым имеется в виду главным образом длительность ежедневного облучения, продолжающегося от минуты до нескольких часов.

В свою очередь длительность профилактического облучения зависит от способа использования искусственных излучателей (исполь- зования излучателей в системе общего освещения или в условиях фотария) и от фоточувствительности кожи (от значения эритемной биодозы).

Разумеется, что при разных способах применения искусственных излучателей облучению подвергаются разные по площади поверхности тела. Так, при использовании люминесцентных ламп в системе общего освещения облучаются лишь открытые части тела - лицо, руки, шея, волосистая часть головы, а в фотарии - практически все тело.

УФ-облученность в помещении при использовании эритемных ламп небольшая, отсюда длительность облучения составляет 6-8 ч, тогда как в фотарии, где облученность достигает значительной величины, действие радиации не превышает 5-6 мин.

При нахождении оптимальной дозы профилактического облучения следует руководствоваться тем, что начальная дозы профилактического облучения должна быть ниже биодозы, т.е. субэритемной. В противном случае возможен ожог кожи. Профилактическая доза УФ-составляющей должна выражаться в абсолютных величинах.

Постановка вопроса о выражении профилактической дозы в абсолютных физических (приведенных) величинах отнюдь не

означает отказа от необходимости определения индивидуальной чувствительности кожи к УФ-радиации. Определение биодозы перед началом облучения необходимо, но лишь для того, чтобы выяснить, не меньше ли она рекомендуемой профилактической дозы. Практически при определении биодозы (по Горбачеву) можно использовать биодизиметр, имеющий не 8 или 10 отверстий, как это имеет место в лечебной практике, а значительно меньше или даже одно, которое может быть облучено дозой, равной профилактической. Если облучаемый участок кожи покраснел, т.е. биодоза меньше профилактической, то начальная доза облучения должна быть уменьшена, а облучение проводится возрастающими дозами при начальной дозе равной биодозе.

Сравнительный анализ таких физиологических показателей, как эритемная биодоза, фагоцитарная активность лейкоцитов крови, ломкость капилляров, активность щелочной фосфотазы свидетельствовал о том, что дополнительное искусственное облучение УФ-радиацией эритемными лампами, проводимое зимой, вызывая весьма положительное действие, не способствует в полной мере поддержанию изучаемых физиологических реакций на том уровне, который наблюдается осенью после длительного воздействия природной УФ-радиации.

Анализ уровней физиологических показателей облучающихся дозой УФ-радиации при разном методе облучения, обусловленном способом использования искусственных излучателей, позволил сделать заключение, что биологический эффект воздействия УФ-радиации не зависит от примененных методов облучения.

Динамика чувствительности кожи к УФ-радиации известным образом отражает процессы, происходящие в организме в результате длительного отсутствия природной УФ-радиации.

При профилактическом УФ-облучении необходимо учитывать климатические особенности местности, где проживают облучаемые (для определения сроков облучения), среднее значение их эритемной биодозы (для выбора начальной дозы облучения) и то, что профилактическая доза облучения, нормируемая в абсолютных величинах, не должна быть ниже 2000 мкВт-мин/см 2 (60-62 мЭр-ч/м 2).

Профилактические мероприятия по предупреждению острого конъюнктивита при воздействии УФИ сводятся к применению светозащитных очков или щитков при электросварочных и других работах с источниками УФИ. Для защиты кожи от УФИ используются

защитная одежда, противосолнечные экраны (навесы), специальные кремы.

Основная роль в профилактике неблагоприятного воздействия УФИ на организм принадлежит гигиеническим нормативам. В настоящее время действуют «Санитарные нормы ультрафиолетового излучения в производственных помещениях» СН? 4557-88. Нормируемой величиной является облученность, Вт/м1. Указанные нормативы регламентируют допустимые величины УФИ для кожи с учетом длительности облучения в течение рабочей смены и площади облучаемой поверхности кожи.