Болезни Военный билет Призыв

Для углеводородов характерны реакции нуклеофильного присоединения. Реакции нуклеофильного присоединения (реакция-AdN). Генерирование электрофильной частицы

Реакции нуклеофильного присоединения (реакция-AdN)

Двойная связь в карбонильной группе сильно поляризована из-за большого различия в электроотрицательности кислорода и углерода. Электронная плотность смещена к атому кислорода и углеродный атом карбонильной группы проявляет электрофильные свойства. Поэтому для карбонильных соединений характерны реакции присоединения нуклеофилов к электронодефицитному атому углерода.

Лимитирующей стадией реакции является атака нуклеофильной частицы электрофильного углеродного атома карбонильной группы, с образованием связи за счет электронов нуклеофила. Одновременно происходит гетеролитический разрыв р-связи С=О, что приводит к образованию алкоксид-иона. При этом карбонильный углерод переходит в состояние sp 3 гибридизации.

Алкоксид-ион является сильным основанием и поэтому быстро протонируется с образованием нейтрального конечного продукта присоединения.

Если в реакцию вступает азотистый нуклеофил (амины, гидроксиламин, и т.д.), то образовавшийся нейтральный продукт присоединения подвергается дегидратации с образованием двойной связи между карбонильным углеродом и нуклеофильным агентом.

Нуклеофильное присоединение к карбонильной группе - процесс обратимый, за исключением реакций идущих с образованием спиртов и с присоединением металлоорганических соединений.

Альдегиды более реакционноспособны в реакциях присоединения нуклеофильных реагентов по сравнению с кетонами. Это связано с отсутствием стерических препятствий у альдегидов для атаки нуклеофильного агента. А в кетонах две алкильные группы создают пространственные затруднения для атаки нуклеофила и образования тетраэдрического продукта присоединения. Так же на низкую реакционную способность кетонов оказывает их более высокая термодинамическая стабильность по сравнению с альдегидами (теплота образования кетона ниже теплоты образования соответствующего альдегида).

протонированная форма

Основность альдегидов и кетонов невысока, однако она играет заметную роль в реакциях нуклеофильного присоединения, поскольку в протонированной форме электрофильность атома углерода значительно выше. Поэтому типичные для альдегидов и кетонов реакции AdN могут катализироваться кислотами.

2.2. Реакции нуклеофильного присоединения

Взаимодействие альдегидов и кетонов с нуклеофильными агентами осуществляется по следующему общему механизму:

Нуклеофил Z–Н (очень часто при нуклеофильном центре имеется атом водорода) присоединяется к электрофильному атому углерода карбонильной группы за счет неподеленной пары электронов нуклеофильного центра, образуя продукт, в котором на бывшем карбонильном кислороде находится отрицательный заряд, а бывший нуклеофильный центр заряжается положительно. Этот биполярный ион стабилизируется переносом протона от положительно заряженного атома Z (кислота Бренстеда) к отрицательно заряженному атому кислорода (основание). Образовавшийся при этом продукт часто претерпевает дальнейшие превращения, например, отщепление воды.

В качестве нуклеофилов могут выступать различные соединения, в которых в качестве нуклеофильных центров выступают атомы кислорода (О-нуклеофилы), серы (S-нуклеофилы), азота (N- нуклеофилы), углерода (С-нуклеофилы).

Реакционная способность альдегидов и кетонов в реакциях нуклеофильного присоединения зависит от электрофильности кар-

http://mitht.ru/e-library

бонильной группы: чем больше частичный положительный заряд на атоме углерода, тем легче происходит присоединение нук-

леофила . Поскольку в молекулах альдегидов при карбонильном атоме углерода содержится только один углеводородный остаток, проявляющий электронодонорные свойства, а в молекулах кетонов таких остатков два, то естественно предположить, что в общем случае в реакциях нуклеофильного присоединения альдегиды более реакционноспособны, чем кетоны . Электроноакцепторные заместители, особенно вблизи карбонильной группы, увеличивают электрофильность карбонильного углерода и, следовательно, повышают реакционную способность. Определенное значение имеет и стерический фактор: поскольку при присоединении атом углерода карбонильной группы изменяет гибридизацию (sp2 → sp3 ), то чем объемнее заместители при карбонильном атоме углерода, тем бóльшие пространственные затруднения возникают при этом переходе. Например, в ряду: формальдегид, уксусный альдегид, ацетон, трет -бутилметилкетон реакционная способность уменьшается.

(CH3 )3 C

а) Реакции с О-нуклеофилами

Гидратация

При взаимодействии альдегидов и кетонов с водой в обратимом процессе образуется гидрат – геминальный диол, который в большинстве случаев является очень нестабильным соединением, поэтому данное равновесие сильно смещено влево.

Однако для некоторых карбонильных соединений это равновесие может быть смещено вправо. Так, в водном растворе формальдегид практически полностью находится в гидратной форме (в отличие, например, от ацетона, в водном растворе которого гидратной формы чрезвычайно мало), а трихлоруксусный альдегид (хлораль) при взаимодействии с водой превращается в очень устойчивый даже в кристаллическом виде хлоральгидрат.

CH2 =O H 2 O CH2 (OH)58 2

http://mitht.ru/e-library

Cl3 CCH=O + H2 O Cl3 CCH(OH)2

хлораль хлоральгидрат

Взаимодействие со спиртами (реакция ацетализации)

Продукт присоединения к молекуле альдегида или кетона одной молекулы спирта – так называемый полуацеталь – неустойчив. При взаимодействии же альдегида или кетона с 2 эквивалентами спирта в кислой среде, то образуется устойчивый продукт –

ацеталь.

Приведем механизм последней реакции на примере взаимодействия уксусного альдегида с метиловым спиртом (1:2) в присутствии сильной кислоты Бренстеда.

Протонирование карбонильной группы уксусного альдегида приводит к образованию катиона, в котором положительный заряд делокализован. По сравнению с уксусным альдегидом этот катион более электрофилен, и нуклеофильное присоединение молекулы метанола к нему происходит значительно легче. Продукт присоединения (катион оксония) является сильной кислотой, и при отщеплении от него протона образуется полуацеталь (1-метоксиэтанол).

CH3 CH=O H

CH3 CH=O

HO CH3

CH3 CH OH

CH3 CH OH

CH3 CH OH

H O CH3

OCH3

http://mitht.ru/e-library

Далее через протонированную форму этого полуацеталя происходит отщепление воды с образованием карбокатиона, к которому присоединяется следующая молекула метанола. При депротонировании продукта присоединения образуется диметилацеталь уксусного альдегида (1,1-диметоксиэтан).

HO CH3

CH3 CH OH

CH3 CH O H

CH3 CH

OCH3

OCH3

OCH3

CH3 CH

OCH3

CH3 CH OCH3

OCH3

OCH3

Весь описанный процесс реакции, которую называют ацетализацией, обратим, поэтому эффективно провести взаимодействие альдегида или кетона со спиртом до ацеталя можно только, смещая равновесие вправо, например, удаляя образующуюся воду из сферы реакции. Обратная реакция представляет собой кислотный гидролиз ацеталя. Следовательно, в кислой водной среде ацетали неустойчивы, поскольку подвергаются гидролизу.

OCH3 + H2 O

CH3 CH=O + 2 CH3 OH

OCH3

В щелочной же среде ацетали устойчивы, поскольку гидролиз

в этих условиях произойти не может.

б) Реакции с S-нуклеофилами

Атом серы в аналогах спиртов – тиолах (меркаптанах) – является более сильным нуклеофилом, поэтому меркаптаны легче присоединяются к альдегидам и кетонам. При этом образуются продукты, аналогичные полуацеталям и ацеталям, например, при взаимодействии бензальдегида с двумя эквивалентами метантиола (метилмеркаптана) в кислой среде образуется диметилтиоацеталь бензальдегида.

2CH3 SH

CH(SCH3 )2

Давайте подумаем, что может произойти с этой молекулой в водном растворе. Сперва дадим этой молекуле верное название. Самая длинная цепь состоит из трех атомов, корень названия - «проп». Итак, три атома в самой длинной цепи, значит «проп». Все связи одинарные, значит это пропан. Подпишу: пропан. Из трех атомов углерода основной цепи второй соединен с метильной группой и, кроме того, с атомом брома. Это означает «2-бром». Я запишу: «2-бром-2-метил». Хотя нет, так не пойдет. Неаккуратно вышло, мне нужно больше места. Итак, это вещество будет называться следующим образом. Давайте запишем: 2-бром-2-метилпропан. Как это вещество реагирует с водой? В этом случае вода является нуклеофилом. Здесь есть эти электронные пары. Кроме того, у атома кислорода высокая электроотрицательность. Нуклеофильные свойства не так сильны, как у гидроксид-аниона, который был в реакциях Sn2, но они все же есть. Это слабый нуклеофил. Вода - это слабый нуклеофил. Ее тянет к положительно заряженным ядрам атомов, ведь у атома кислорода есть частичный отрицательный заряд из-за его электроотрицательности. А здесь - частичный положительный заряд. Пусть это и не полноценный заряд, а всего лишь частичный, все равно это означает желание отдать электрон. Это слабый нуклеофил. Слабый нуклеофил. Будет еще несколько роликов об этом типе реакций и я объясню, когда идут реакции этого типа, а когда - реакции типа Sn2. Но, давайте вернемся к нашему примеру. В молекуле есть атом брома. У него высокая электроотрицательность и он становится стабильным, получая отрицательный заряд. Наличие заряда ухудшает стабильность. Но у него при этом будет 8 валентных электронов. Медленно и постепенно атом брома оттягивает на себя электронную плотность от углерода. Он подтягивает электроны к себе, благодаря своей электроотрицательности. Посмотрите на его валентные электроны. Один из них образует связь с атомом углерода. А вот и второй электрон этой связи. Плюс еще 6 валентных электронов. 1, 2, 3, 4, 5, 6, 7. 7 валентных электронов. Представьте, что бром оттягивает на себя электрон атома углерода. Давайте я покажу для наглядности. Этот электрон окажется здесь. Он притянется на это место. Повторюсь, это медленный процесс, но он возможен. И, так как процесс медленный, возникает равновесие. В ходе этой внутримолекулярной реакции возникает равновесие. Что же тут получится? Атом углерода, метильная группа позади него, метильная группа впереди и также еще одна группа сверху. А бром отщепился. Нарисую его здесь. Связь разорвана. Вот его исходные валентные электроны: 1, 2, 3, 4, 5, 6, 7. Еще один электрон принадлежал атому углерода, но бром забрал его с собой. В результате, естественно, возник отрицательный заряд. Углерод, лишившись электрона, получает положительный заряд. Теперь добавим сюда атом кислорода. Хотя, нет, не кислород, добавим молекулу воды. Вот молекула воды. Нарисую молекулу воды. Пусть она и слабый нуклеофил, но углерод очень нуждается в электроне. Это третичный карбокатион, который довольно устойчив. Иначе ничего бы не получилось. Если бы этот атом был первичным или вообще не был бы связан с другими, превращение в карбокатион было бы крайне сложным. Однако он третичный и устойчивый, разве что заряд все портит. Ему нужен электрон. И этот электрон он позаимствует у молекулы воды. Вода отдаст один электрон, например, вот этот, поделившись с атомом углерода. Нуклеофил притягивается к положительно заряженному ядру углерода. И, что же дальше? На этой стадии реакция существенно ускоряется. Слева довольно стабильная ситуация, потому и равновесие. Но теперь реакция ускоряется и стрелка идет в одну сторону. Вот так. Получается что-то такое. Вот исходный атом углерода с заместителями. Вот метильная группа позади и еще одна впереди него. В дело вступает вода. Вот кислород и два водорода. У атома кислорода есть свои электроны, которые я покажу разным цветом. Вот электроны. Один из электронов этой пары отдан углероду. Теперь он находится здесь. Возникает связь. Электронная пара образовала связь. Вода имела нейтральный заряд, но, отдав один из своих электронов, она приобретает положительный заряд, при этом превращаясь в катион. Заряд положительный. И в этот момент другая молекула воды или даже бром могут забрать один из атомов водорода. При этом электрон вернется к кислороду. Лучше я нарисую это. Например, есть другая молекула воды. Их много. Вот другая молекула воды. Изображу ее здесь. Эта молекула вступает в реакцию. Все происходит одновременно. Кислород отдает один из электронов атому водорода. Одновременно с этим электрон от водорода возвращается к прежнему владельцу. Так кислород возвращает электрон. Что получится в результате? Вновь рисуем исходную молекулу. Давайте изобразим исходную молекулу. Метильная группа сзади, метильная группа спереди и еще одна сверху. И, конечно, не забываем про кислород с одним атомом водорода, потому что связь со вторым разорвана. А вот бромид-анион и его 8 валентных электронов. И еще ион гидроксония. Этот атом кислорода отдал электрон водороду, образовав связь с этим атомом. Валентные электроны этого атома кислорода будут выглядеть так. Эти два: раз, два. Еще один электрон участвует в связи с углеродом. Покажу другим цветом. Этот электрон оказывается вот здесь. Еще один тоже в составе связи, вот этой. Сейчас объясню. В составе связи с атомом водорода. Это связь с атомом водорода, но это не водородная связь. Надеюсь вы поняли. Один из валентных электронов теперь в составе связи. Вот еще один валентный электрон. Вот этот электрон связи с атомом водорода. Теперь он здесь. И еще один вернулся от атома водорода, вот он. У него вновь 6 валентных электронов. Пересчитаем: 1, 2, 3, 4, 5, 6. Вот так взаимодействует 2-бром-2-метилпропан со слабым нуклеофилом. Я еще расскажу о разных нуклеофилах. Что же получилось в результате? Самая длинная цепь - 3 атома. Корнем названия по-прежнему будет «проп». О гидроксильной группе мы еще не говорили, но само ее наличие означает, что перед нами спирт. В названиях спиртов используется суффикс «анол». Теперь запишем это название - пропанол. Пропанол. Необходимо указать, при каком атоме располагается гидроксильная группа. Это пропанол-2. Хорошо. Пропанол-2. Не забываем также про наличие метильной группы. Это 2-метилпропанол-2. Механизм протекания этой реакции называется Sn1. Думаю, вы понимаете, почему Sn1, а не Sn2. Я это запишу. Реакция Sn1. S означает «замещение». Подпишу опять. n означает «нуклеофильное», как мы уже знаем. Нуклеофильное. В реакции участвовал слабый нуклеофил, а именно вода. Цифра 1 означает, что самая медленная. То есть лимитирующая, стадия этого механизма идет с участием всего лишь одного из реагентов. На самой первой лимитирующей стадии, бром отнимает электрон у углерода. Вода в этом не участвует. Скорость реакции Sn2 определяют оба реагента, а здесь только один. Поэтому и называется Sn1. До встречи! Subtitles by the Amara.org community

Химия альдегидов и кетонов определяется наличием карбонильной группы. Эта группа, во-первых, является местом нуклеофильной атаки и, во-вторых, увеличивает кислотность атомов водорода, связанных с -углеродным атомом. Оба эти эффекта вполне согласуются со строением карбонильной группы, и по сути дела оба обусловлены способностью кислорода принимать отрицательный заряд.

(В этой главе рассмотрены лишь простейшие типы реакций нуклеофильного присоединения. В гл. 27 будут обсуждены также реакции -водородных атомов.)

Карбонильная группа содержит двойную углерод-кислородную связь; поскольку подвижные -электроны сильно оттянуты к кислороду, углерод карбонильной группы является электронодефицитным центром, а кислород карбонильной группы - электроноизбыточным. Поскольку эта часть молекулы плоская, она относительно доступна для атаки сверху или снизу от этой плоскости в направлении, перпендикулярном к нему. Не удивительно, что эта доступная поляризованная группа очень реакционноспособна.

Какого рода реагенты будут атаковать такую группу? Поскольку важнейшая стадия в этих реакциях - образование связи с электронодефецитным (кислым) карбонильным углеродом, то карбонильная группа более всего склонна к взаимодействию с электроноизбыточными нуклеофильными реагентами, т. е. с основаниями. Типичными реакциями альдегидов и кетонов будут реакции нуклеофильного присоединения.

Как и следовало ожидать, наиболее верную картину реакционной способности карбонильной группы можно получить, если рассмотреть переходное состояние для присоединения нуклеофила. В реагенте атом углерода тригонален. В переходном состоянии атом углерода начинает принимать тетраэдрическую конфигурацию, которую он будет иметь в продукте; таким образом, связанные с ним группы несколько сближаются. Поэтому можно ожидать проявления некоторых пространственных затруднений, т. е. большие группы будут в большей степени препятствовать этому сближению, чем группы меньшего размера. Но переходное состояние в этой реакции будет относительно менее затрудненным, чем переходное состояние для, скажем, -реакции, в котором углерод связан с пятью атомами. Именно эта относительная незатрудненность и имеется в виду, когда говорят, что карбонильная группа доступна для атаки.

В переходном состоянии кислород начинает приобретать электроны и отрицательный заряд, который он будет иметь в конечном продукте. Именно тенденция кислорода приобретать электроны, точнее его способность нести отрицательный заряд, и является действительной причиной реакционноспособнасти карбонильной группы по отношению к нуклеофилам, (Полярность карбонильной группы не является причиной реакционноспособности, а лишь еще одним проявлением электроотрицательности кислорода.)

Альдегиды, как правило, легче вступают в реакцию нуклеофильного присоединения, чем кетоны. Это различие в реакционной способности согласуется с характером промежуточного состояния реакции и, по-видимому, объясняется совместным действием электронных и пространственных факторов. Кетон содержит вторую алкильную или арильную группу, а альдегид - атом водорода. Вторая арильная или алкильная группа кетона больше, чем атом водорода в альдегиде, и поэтому она в большей степени будет препятствовать увеличению пространственной затрудненности в переходном состоянии. Алкильная группа подает электроны и тем самым дестабилизует переходное состояние за счет усиления отрицательного заряда на кислороде.

Можно было ожидать, что арильная группа с ее электронооттягивающим индуктивным эффектом (задача 18.7, стр. 572) будет стабилизовать переходное состояние и тем самым ускорять реакцию; однако, по-видимому, этот эффект еще в большей степени стабилизует исходный кетон вследствие резонанса (вклад структуры I) и в результате дезактивирует кетон в рассматриваемой реакции.

Для альдегидов и кетонов наиболее характерны реакции нуклеофильного присоединения A N .

Общее описание механизма нуклеофильного присоединения A N

Легкость нуклеофильной атаки по атому углерода карбонильной группы альдегида или кетона зависит от величины частичного

положительного заряда на атоме углерода, его пространственной доступности и кислотно-основных свойств среды.

С учетом электронных эффектов групп, связанных с карбонильным атомом углерода, величина частичного положительного заряда δ+ на нем в альдегидах и кетонах убывает в следующем ряду:

Пространственная доступность карбонильного атома углерода уменьшается при замене водорода более объемистыми органиче- скими радикалами, поэтому альдегиды более реакционноспособны, чем кетоны.

Общая схема реакций нуклеофильного присоединения A N к карбонильной группе включает нуклеофильную атаку по карбонильному атому углерода, за которой следует присоединение электрофила к атому кислорода.

В кислой среде активность карбонильной группы, как правило, увеличивается, поскольку вследствие протонирования атома кислорода на атоме углерода возникает положительный заряд. Кислотный катализ используют обычно тогда, когда атакующий нуклеофил обладает низкой активностью.

По приведенному выше механизму осуществляется ряд важных реакций альдегидов и кетонов.

Многие свойственные альдегидам и кетонам реакции протекают в условиях организма, эти реакции представлены в последующих разделах учебника. В настоящей главе будут рассмотрены наиболее важные реакции альдегидов и кетонов, которые в обзорном виде приведены на схеме 5.2.

Присоединение спиртов. Спирты при взаимодействии с альдегидами легко образуют полуацетали. Полуацетали обычно не выделяют из-за их неустойчивости. При избытке спирта в кислой среде полуацетали превращаются в ацетали.

Применение кислотного катализатора при превращении полуацеталя в ацеталь становится понятным из приведенного ниже механизма реакции. Центральное место в нем занимает образование карбо- катиона (I), стабилизированного за счет участия неподеленной пары электронов соседнего атома кислорода (+M-эффект группы С 2 Н 5 О).

Реакции образования полуацеталей и ацеталей обратимы, поэтому ацетали и полуацетали легко гидролизуются избытком воды в кислой среде. В щелочной среде полуацетали устойчивы, так как алкоксидион является более трудно уходящей группой, чем гидроксид-ион.

Образование ацеталей часто используется как временная защита альдегидной группы.

Присоединение воды. Присоединение воды к карбонильной группе - гидратация - обратимая реакция. Степень гидратации альдегида или кетона в водном растворе зависит от строения субстрата.

Продукт гидратации, как правило, в свободном виде выделить с помощью перегонки не удается, так как он разлагается на исходные компоненты. Формальдегид в водном растворе гидратирован более чем на 99,9%, ацетальдегид - приблизительно наполовину, ацетон практически не гидратирован.

Формальдегид (муравьиный альдегид) обладает способностью свертывать белки. Его 40% водный раствор, называемый формалином, применяется в медицине как дезинфицирующее средство и консервант анатомических препаратов.

Трихлороуксусный альдегид (хлораль) гидратирован полностью. Электроноакцепторная трихлорометильная группа настолько стабилизирует хлоральгидрат, что это кристаллическое вещество отщепляет воду только при перегонке в присутствии дегидратирующих веществ - серной кислоты и др.

В основе фармакологического эффекта хлоральгидрата СС1зСН(ОН)2 лежит специфическое действие на организм альдегидной группы, обусловливающее дезинфицирующие свойства. Атомы галогена усиливают ее действие, а гидратация карбонильной группы снижает токсичность вещества в целом.

Присоединение аминов и их производных. Амины и другие азотсодержащие соединения общей формулы NH2X (X = R, NHR) реагируют с альдегидами и кетонами в две стадии. Сначала образуются продукты нуклеофильного присоединения, которые затем вследствие неустойчивости отщепляют воду. В связи с этим данный процесс в целом классифицируют как реакцию присоединения-отщепления.

В случае первичных аминов получаются замещенные имины (их называют также основаниями Шиффа).

Имины - промежуточные продукты многих ферментативных процессов. Получение иминов проходит через стадию образования аминоспиртов, которые бывают относительно устойчивы, например при взаимодействии формальдегида с α-аминокислотами (см. 12.1.4).

Имины являются промежуточными продуктами получения аминов из альдегидов и кетонов путем восстановительного аминирования. Этот общий способ заключается в восстановлении смеси карбонильного соединения с аммиаком (или амином). Процесс протекает по схеме присоединения-отщепления с образованием имина, который затем восстанавливается в амин.

При взаимодействии альдегидов и кетонов с производными гидразина получаются гидразоны. Эту реакцию можно использовать для выделения альдегидов и кетонов из смесей и их хроматографической идентификации.

Основания Шиффа и другие подобные соединения легко гидролизуются водными растворами минеральных кислот с образованием исходных продуктов.

В большинстве случаев для реакций альдегидов и кетонов с азотистыми основаниями необходим кислотный катализ, ускоряющий дегидратацию продукта присоединения. Однако если слишком повысить кислотность среды, то реакция замедлится в результате превращения азотистого основания в нереакционноспособную сопряженную кислоту XNH3+.

Реакции полимеризации. Эти реакции свойственны в основном альдегидам. При нагревании с минеральными кислотами полимеры альдегидов распадаются на исходные продукты.

Образование полимеров можно рассматривать как результат нуклеофильной атаки атомом кислорода одной молекулы альдегида карбонильного атома углерода другой молекулы. Так, при стоянии формалина выпадает в виде белого осадка полимер формальдегида - параформ.