Болезни Военный билет Призыв

Спектральная плотность потока энергии излучения. I. Основные понятия теории излучения. Интенсивность в произвольном направлении

Излучаемые электромагнитные волны несут с собой энергию.

Рассмотрим поверхность площадью S, через которую электромагнитные волны переносят энергию. На рисунке 7.5 изображена такая площадка.

Прямые линии указывают направления распространения электромагнитных волн. Это лучи - линии, перпендикулярные поверхностям, во всех точках которых колебания происходят в одинаковых фазах. Такие поверхности называются волновыми поверхностями (см. § 46). I называют отношение электромагнитной энергии ΔW, проходящей за время Δt через перпендикулярную лучам поверхность площадью S, к произведению площади S на время Δt:

Фактически это мощность электромагнитного излучения (энергия в единицу времени), проходящего через единицу площади поверхности. Плотность потока излучения в СИ выражают в ваттах на квадратный метр (Вт/м 2). Иногда эту величину называют интенсивностью волны.

Выразим I через плотность электромагнитной энергии и скорость ее распространения с . Выберем поверхность площадью S, перпендикулярную лучам, и построим на ней как на основании цилиндр с образующей cΔt (рис. 7.6). Объем цилиндра ΔV = ScΔt. Энергия электромагнитного поля внутри цилиндра равна произведению плотности энергии на объем: ΔW = wcΔtS. Вся эта энергия за время Δt пройдет через правое основание цилиндра. Поэтому из формулы (7.1) получаем

т. е. равна произведению плотности электромагнитной энергии на скорость ее распространения.

Найдем зависимость плотности потока излучения от расстояния до источника. Для этого надо ввести еще одно новое понятие.

Точечный источник излучения. Источники излучения электромагнитных волн могут быть весьма разнообразными. Простейшим является точечный источник .

Источник излучения считается точечным, если его размеры много меньше расстояния, на котором оценивается его действие. Кроме того, предполагается, что такой источник посылает электромагнитные волны по всем направлениям с одинаковой интенсивностью. Точечный источник - такая же идеализация реальных источников, как и другие модели, принятые в физике: материальная точка, идеальный газ и т. д.

Звезды излучают свет, т. е. электромагнитные волны. Так как расстояния до звезд в огромное число раз превышают их размеры, то именно звезды представляют собой лучшее реальное воплощение точечных источников.

Энергия, которую переносят электромагнитные волны, с течением времени распределяется по все большей и большей поверхности. Поэтому энергия, передаваемая через поверхность единичной площадки за единицу времени, т. е. плотность потока излучения, уменьшается по мере удаления от источника.

Поместим точечный источник в центр сферы радиусом R. Площадь поверхности сферы S = 4πR 2 . Если считать, что источник по всем направлениям за время Δt излучает суммарную энергию ΔW, то

Плотность потока излучения от точечного источника убывает обратно пропорционально квадрату расстояния до источника.

Зависимость плотности потока излучения от частоты. Излучение электромагнитных волн происходит при ускоренном движении заряженных частиц (см. § 48). Напряженность электрического поля Е и магнитная индукция В электромагнитной волны пропорциональны ускорению а излучающих частиц. Ускорение при гармонических колебаниях пропорционально квадрату частоты. Поэтому напряженность электрического поля и магнитная индукция также пропорциональны квадрату частоты:

Е ∼ а ∼ ω 2 , В ∼ а ∼ ω 2 . (7.4)

Плотность энергии электрического поля пропорциональна квадрату напряженности поля. Энергия магнитного поля, как это можно показать, пропорциональна квадрату магнитной индукции. Полная плотность энергии электромагнитного поля равна сумме плотностей энергий электрического и магнитного полей. С учетом формулы (7.2) плотность потока излучения

I ∼ w ∼ (Е 2 + В 2). (7.5)

Так как согласно выражениям (7.4) Е ∼ ω 2 и В ∼ ω 2 , то

I ∼ ω 4 . (7.6)

Плотность потока излучения пропорциональна четвертой степени частоты.

При увеличении частоты колебаний заряженных частиц в 2 раза излучаемая энергия возрастает в 16 раз! В антеннах радиостанций поэтому возбуждают колебания больших частот: от десятков тысяч до десятков миллионов герц.

Электромагнитные волны переносят энергию. Плотность потока излучения (интенсивность волны) равна произведению плотности энергии на скорость ее распространения. Интенсивность волны пропорциональна четвертой степени частоты и убывает обратно пропорционально квадрату расстояния от источника.

Вопросы к параграфу

1. Какую величину называют плотностью потока электромагнитного излучения?

2. Какой источник излучения называется точечным?

3. Почему переменный ток в осветительной сети практически не излучает электромагнитных волн?

Величину П. и. измеряют по его действию на неселективный приёмник излучения. П о л н ы й п о т о к излучения можно измерить по его тепловому действию при поглощении излучения приёмником в виде абсолютно чёрного тела.

Р е д у ц и р о в а н н ы й П. и.- мощность, оцениваемая по действию, вызванному излучением на спектрально-избирательный приёмник. Редуцированный П. и. может выражаться в спец. единицах. Различают: Ф - поток, действующий на глаз; ф о т о а к т и н и ч н ы й - на фотоматериалы и т. п. Осн. единица энергетич. П. и.- Вт, светового потока - лм. Соотношение между этими единицами наз. механическим эквивалентом света.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ПОТОК ИЗЛУЧЕНИЯ

Отношение энергии, переносимой эл.-магн. излучением через к.-л. поверхность, ко времени , значительно превышающему период эл.-магн. колебаний. П. и.- синоним понятия мощность излучения; характеризует энергию излучения, распространяющегося внутри нек-рого телесного угла через к.-л. поверхность в единицу времени. П. и. измеряется в Вт и оценивается по действию излучения на неселективный спектрально-избират. приёмник. В метрологии таким приёмником, как правило, служит с приёмным элементом в виде чернёной полости, коэф. поглощения к-рой близок к единице и с достаточной для практич. целей точностью не зависит от длины l. Для характеристики действия оптич. излучения на селективный приёмник (глаз человека, биол. объект и т. п.) пользуются понятием редуцированного П. и., примером к-рого является световой поток, характеризующий излучения на глаз человека и измеряемый в люменах (лм). Отношение П. и. к.-л. монохроматич. излучения к содержащемуся в нём световому потоку наз. механическим эквивалентом света; 1 Вт излучения с l = 555 нм соответствует световой поток, равный 683 лм.

Лит.: ГОСТ 26148-84. Фотометрия. Термины и определе-ления; Гуревич М. М., Фотометрия, 2 изд., Л., 1983.

М. А. Бухштаб.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ПОТОК ИЗЛУЧЕНИЯ" в других словарях:

    Размерность ML2T 3 Единицы измерения СИ Вт СГС … Википедия

    поток излучения - (Фe[P]) Мощность излучения, определяемая отношением энергии, переносимой излучением, ко времени переноса, значительно превышающему период электромагнитных колебаний. [ГОСТ 7601 78] поток излучения (Фe, P) [ГОСТ 7601 78] [ГОСТ 26148 84] поток… … Справочник технического переводчика

    - (лучистый поток мощность излучения), полная энергия, переносимая светом в единицу времени через данную поверхность. Понятие поток излучения (применимо к промежуткам времени, значительно превышающим периоды световых колебаний … Большой Энциклопедический словарь

    ПОТОК ИЗЛУЧЕНИЯ - число частиц или квантов, проникающих внутрь элементарной сферы в единицу времени. Обычно П. и. относят к 1 секунде и соответственно определяют его единицу: секунда в минус первой степени. Если рассматривают не количество частиц или квантов, а… … Российская энциклопедия по охране труда

    - (лучистый поток, мощность излучения), полная энергия, переносимая светом в единицу времени через данную поверхность. Понятие поток излучения применимо к промежуткам времени, значительно превышающим периоды световых колебаний. * * * ПОТОК… … Энциклопедический словарь

    поток излучения - , лучистый поток, мощность излучения полная энергия, переносимая оптическим излучением (всех его частот) в единицу времени через данную поверхность. Для поглощающей поверхности поток излучения сумма поглощенной и отраженной энергии … Энциклопедический словарь по металлургии

    поток излучения - spinduliuotės srautas statusas T sritis Standartizacija ir metrologija apibrėžtis Energijos kiekis, kurį elektromagnetinė banga perneša per vienetinį laiko tarpą per tam tikrą paviršių. atitikmenys: angl. flux of radiation; radiant flux; radiant… …

    поток излучения - spinduliuotės srautas statusas T sritis Standartizacija ir metrologija apibrėžtis Išskiriamos, perduodamos arba gaunamos spinduliuotės galia. Matavimo vienetas – vatas (W). atitikmenys: angl. flux of radiation; radiant flux; radiant power;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    поток излучения - spinduliuotės srautas statusas T sritis Standartizacija ir metrologija apibrėžtis Išspinduliuotų, perduodamų arba priimamų elektromagnetinių bangų galia. atitikmenys: angl. flux of radiation; radiant flux; radiant power; radiation flux vok.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    поток излучения - spinduliuotės srautas statusas T sritis fizika atitikmenys: angl. flux of radiation; radiant flux; radiation flux vok. Strahlungsfluß, m rus. лучистый поток, m; поток излучения, m pranc. flux de radiation, m; flux de rayonnement, m … Fizikos terminų žodynas

Книги

  • Поток энергии Солнца и его изменения , . В книге рассмотрены и обобщены современные данные о потоке излучения Солнца в различных областях спектра по измерениям с Земли и с космических аппаратов. Большое внимание уделено погрешностям…
  • Энергетический спектр частиц с энергией более 10 эВ и поток электромагнитных вспышек в приземном слое , В. Ф. Сокуров. В монографии прямым методом измерен энергетический спектр частиц с энергиями 10, 5-1017 эВ по потоку черенковских вспышек с плотностью излучения 17-1480 фотон см 2 эВ Получен излом в спектре…

Как мы уже знаем, волна характеризуется переносом энергии. Следовательно, электромагнитные волны тоже несут с собой энергию. Рассмотрим некоторую поверхность площадью S. Положим, что через нее электромагнитные волны переносят энергию.

На следующем рисунке представлена такая поверхность.

Плотность потока электромагнитного излучения

Линиями обозначены направления распространения электромагнитных волн. Линии, перпендикулярные поверхности, во всех точках которых колебания происходят в одинаковых фазах, называются лучами. А эти поверхности называются волновыми поверхностями.

Плотность потока электромагнитного излучения – это отношение электромагнитной энергии ∆W, проходящей через перпендикулярную лучам поверхность площадью S, за время ∆t, к произведению S на ∆t.

I = ∆W/(S*∆t)

Единицей измерения плотности магнитного потока в систему СИ являются ватты на квадратный метр (Вт/м^2). Выразим плотность потока через скорость его распространения и плотность электромагнитной энергии.

Возьмем поверхность S, перпендикулярную лучам. Построим на ней цилиндр с основанием c*∆t.

Здесь c – скорость распространения электромагнитной волны. Объем цилиндра вычисляется по формуле:

∆V = S*c*∆t.

Энергия электромагнитного поля сосредоточенного внутри цилиндра будет вычисляться по следующей формуле:

Здесь ω - плотность электромагнитной энергии. Эта энергия за время ∆t пройдет через правое основание цилиндра. Получаем следующую формулу:

I = (ω*c*S*∆t)/(S*∆t) = ω*c.

Энергия по мере удаления от источника будет уменьшаться. Будет верна следующая закономерность, зависимости плотности тока от расстояния до источника. Плотность потока излучения направленного от точечного источника будет убывать обратно пропорционально квадрату расстояния до источника.

I = ∆W/(S*∆t) = (∆W/(4*pi∆t))*(1/R^2).

Электромагнитные волны излучаются при ускоренном движении заряженных частиц. При этом напряженность электрического поля и вектор магнитной индукции электромагнитной волны будут прямо пропорциональны ускорению частиц.

Если рассматривать гармонические колебания, то ускорение будет прямо пропорционально квадрату циклической частоты. Полная плотность энергии электромагнитного поля будет равняться сумме плотности энергии электрического поля и энергии магнитного поля.

Согласно формуле I = ω*c, плотность потока пропорциональна полной плотности энергии электромагнитного поля.

Учитывая всё вышесказанное, имеем.

СГС Примечания Поток излучения \Phi_e - физическая величина , одна из энергетических фотометрических величин . Характеризует мощность , переносимую оптическим излучением через какую-либо поверхность. Равен отношению энергии, переносимой излучением через поверхность, ко времени переноса. Подразумевается, что длительность переноса выбирается так, чтобы она значительно превышала период электромагнитных колебаний . В качестве обозначения используется \Phi_e или P .

Таким образом, для \Phi_e выполняется:

\Phi_e=\frac{dQ_e}{dt}, Вт .

где dQ_e - энергия излучения , переносимая через поверхность за время dt.

Среди световых величин аналогом понятия «Поток излучения» является термин «световой поток ». Различие между этими величинами такое же, как и различие между энергетическими и световыми величинами вообще.

Спектральная плотность потока излучения

Если излучение немонохроматично, то во многих случаях оказывается полезным использовать такую величину, как спектральная плотность потока излучения. Спектральная плотность потока излучения представляет собой поток излучения, приходящийся на малый единичный интервал спектра . Точки спектра при этом могут задаваться их длинами волн, частотами, энергиями квантов излучения, волновыми числами или любым другим способом. Если переменной, определяющей положение точек спектра, является некоторая величина x, то соответствующая ей спектральная плотность потока излучения обозначается как \Phi_{e,x} и определяется как отношение величины d \Phi _e(x), приходящейся на малый спектральный интервал, заключённый между x и x+dx, к ширине этого интервала:

\Phi_{e,x}(x)=\frac{d\Phi_e(x)}{dx}.

Соответственно, в случае использования длин волн для спектральной плотности потока излучения будет выполняться:

\Phi_{e,\lambda}(\lambda)=\frac{d\Phi_e(\lambda)}{d\lambda},

а при использовании частоты -

\Phi_{e,\nu}(\nu)=\frac{d\Phi_e(\nu)}{d\nu}.

Следует иметь в виду, что значения спектральной плотности потока излучения в одной и той же точке спектра, получаемые при использовании различных спектральных координат, друг с другом не совпадают. То есть, например, \Phi_{e,\nu}(\nu)\ne\Phi_{e,\lambda}(\lambda). Нетрудно показать, что с учетом

\Phi_{e,\nu}(\nu)=\frac{d\Phi_e(\nu)}{d\nu}=\frac{d\lambda}{d\nu}\frac{d\Phi_e(\lambda)}{d\lambda} и \lambda=\frac{c}{\nu}

правильное соотношение приобретает вид:

\Phi_{e,\nu}(\nu)=\frac{\lambda^2}{c}\Phi_{e,\lambda}(\lambda).

См. также

Напишите отзыв о статье "Поток излучения"

Примечания

Отрывок, характеризующий Поток излучения

В русском войске по мере отступления все более и более разгорается дух озлобления против врага: отступая назад, оно сосредоточивается и нарастает. Под Бородиным происходит столкновение. Ни то, ни другое войско не распадаются, но русское войско непосредственно после столкновения отступает так же необходимо, как необходимо откатывается шар, столкнувшись с другим, с большей стремительностью несущимся на него шаром; и так же необходимо (хотя и потерявший всю свою силу в столкновении) стремительно разбежавшийся шар нашествия прокатывается еще некоторое пространство.
Русские отступают за сто двадцать верст – за Москву, французы доходят до Москвы и там останавливаются. В продолжение пяти недель после этого нет ни одного сражения. Французы не двигаются. Подобно смертельно раненному зверю, который, истекая кровью, зализывает свои раны, они пять недель остаются в Москве, ничего не предпринимая, и вдруг, без всякой новой причины, бегут назад: бросаются на Калужскую дорогу (и после победы, так как опять поле сражения осталось за ними под Малоярославцем), не вступая ни в одно серьезное сражение, бегут еще быстрее назад в Смоленск, за Смоленск, за Вильну, за Березину и далее.
В вечер 26 го августа и Кутузов, и вся русская армия были уверены, что Бородинское сражение выиграно. Кутузов так и писал государю. Кутузов приказал готовиться на новый бой, чтобы добить неприятеля не потому, чтобы он хотел кого нибудь обманывать, но потому, что он знал, что враг побежден, так же как знал это каждый из участников сражения.
Но в тот же вечер и на другой день стали, одно за другим, приходить известия о потерях неслыханных, о потере половины армии, и новое сражение оказалось физически невозможным.
Нельзя было давать сражения, когда еще не собраны были сведения, не убраны раненые, не пополнены снаряды, не сочтены убитые, не назначены новые начальники на места убитых, не наелись и не выспались люди.
А вместе с тем сейчас же после сражения, на другое утро, французское войско (по той стремительной силе движения, увеличенного теперь как бы в обратном отношении квадратов расстояний) уже надвигалось само собой на русское войско. Кутузов хотел атаковать на другой день, и вся армия хотела этого. Но для того чтобы атаковать, недостаточно желания сделать это; нужно, чтоб была возможность это сделать, а возможности этой не было. Нельзя было не отступить на один переход, потом точно так же нельзя было не отступить на другой и на третий переход, и наконец 1 го сентября, – когда армия подошла к Москве, – несмотря на всю силу поднявшегося чувства в рядах войск, сила вещей требовала того, чтобы войска эти шли за Москву. И войска отступили ещо на один, на последний переход и отдали Москву неприятелю.
Для тех людей, которые привыкли думать, что планы войн и сражений составляются полководцами таким же образом, как каждый из нас, сидя в своем кабинете над картой, делает соображения о том, как и как бы он распорядился в таком то и таком то сражении, представляются вопросы, почему Кутузов при отступлении не поступил так то и так то, почему он не занял позиции прежде Филей, почему он не отступил сразу на Калужскую дорогу, оставил Москву, и т. д. Люди, привыкшие так думать, забывают или не знают тех неизбежных условий, в которых всегда происходит деятельность всякого главнокомандующего. Деятельность полководца не имеет ни малейшего подобия с тою деятельностью, которую мы воображаем себе, сидя свободно в кабинете, разбирая какую нибудь кампанию на карте с известным количеством войска, с той и с другой стороны, и в известной местности, и начиная наши соображения с какого нибудь известного момента. Главнокомандующий никогда не бывает в тех условиях начала какого нибудь события, в которых мы всегда рассматриваем событие. Главнокомандующий всегда находится в средине движущегося ряда событий, и так, что никогда, ни в какую минуту, он не бывает в состоянии обдумать все значение совершающегося события. Событие незаметно, мгновение за мгновением, вырезается в свое значение, и в каждый момент этого последовательного, непрерывного вырезывания события главнокомандующий находится в центре сложнейшей игры, интриг, забот, зависимости, власти, проектов, советов, угроз, обманов, находится постоянно в необходимости отвечать на бесчисленное количество предлагаемых ему, всегда противоречащих один другому, вопросов.

Электромагнитные волны переносят энергию из одних участков пространства в другие. Перенос энергии осуществляется вдоль лучей — воображаемых линий, указывающих направление распространения волны. Важнейшей энергетической характеристикой электромагнитных волн служит плотность потока излучения. Представим себе площадку площадью S, расположенную перпендикулярно лучам. Допустим, что за время t волна переносит через эту площадку энергию W. Иначе говоря, плотность потока излучения — это энергия, переносимая через единичную площадку (перпендикулярную лучам) в единицу времени; или, что то же самое — это мощность излучения, переносимая через единичную площадку. Единицей измерения плотности потока излучения служит Вт/м2. Плотность потока излучения связана простым соотношением с плотностью энергии элек¬тромагнитного поля. Фиксируем площадку S, перпендикулярную лучам, и небольшой промежуток времени t. Сквозь площадку пройдёт энергия: W = ISt. Эта энергия будет сосредоточена в цилиндре с площадью основания S и высотой ct, где c — скорость электромагнитной волны.Объём данного цилиндра равен: V = Sct. Поэтому если w — плотность энергии электромагнитного поля, то для энергии W получим также: W = wV = wSct. Приравнивая правые части формул и и сокращая на St, получим соотношение: I = wc. Плотность потока излучения характеризует, в частности, степень воздействия электромаг¬нитного излучения на его приёмники; когда говорят об интенсивности электромагнитных волн, имеют в виду именно плотность потока излучения. Интересным является вопрос о том, как интенсивность излучения зависит от его частоты. Пусть электромагнитная волна излучается зарядом, совершающим гармонические колебания вдоль оси X по закону x = x0 sin iet. Циклическая частота ш колебаний заряда будет в то же время циклической частотой излучаемой электромагнитной волны. Для скорости и ускорения заряда имеем: v = X = x0ш cos шt и а = v = -x0ш2 sin шt. Как видим, а ~ ш2. Напряжённость электрического поля и индукция магнитного поля в электро¬магнитной волне пропорциональны ускорению заряда: E ~ а и B ~ а. Стало быть, E ~ ш2 и B ~ ш2. Плотность энергии электромагнитного поля есть сумма плотности энергии электрического поля и плотности энергии магнитного поля: w = wэл + wMarH. Плотность энергии электрического поля, как мы знаем, пропорциональна квадрату напряжённости поля: w^ ~ E2. Аналогично можно показать, что wMarH ~ B2. Следовательно, w^ ~ ш4 и wMarH ~ ш4, так что w ~ ш4. Согласно формуле плотность потока излучения пропорциональна плотности энергии: I ~ w. Поэтому I ~ шА. Мы получили важный результат: интенсивность электромагнитного излучения пропорциональна четвёртой степени его частоты. Другой важный результат заключается в том, что интенсивность излучения убывает с увеличением расстояния до источника. Это понятно: ведь источник излучает в разных направ¬лениях, и по мере удаления от источника излучённая энергия распределяется по всё большей и большей площади. Количественную зависимость плотности потока излучения от расстояния до источника легко получить для так называемого точечного источника излучения. Точечный источник излучения — это источник, размерами которого в условиях данной ситуации можно пренебречь. Кроме того, считается, что точечный источник одинаково излучает во всех направлениях. Конечно, точечный источник является идеализацией, но в некоторых задачах эта идеализа¬ция отлично работает. Например, при исследовании излучения звёзд их вполне можно считать точечными источниками — ведь расстояния до звёзд настолько громадны, что их собственные размеры можно не принимать во внимание. На расстоянии r от источника излучённая энергия равномерно распределяется по поверхно¬сти сферы радиуса г. Площадь сферы, напомним, S = 4nr2. Если мощность излучения нашего источника равна P, то за время t через поверхность сферы проходит энергия W = Pt. С помощью формулы получаем тогда: = Pt = P 4 nr2t 4 nr2 Таким образом, интенсивность излучения точечного источника обратно пропорциональна расстоянию до него. Виды электромагнитных излучений Спектр электромагнитных волн необычайно широк: длина волны может измеряться тысячами километров, а может быть меньше пикометра. Тем не менее, весь этот спектр можно разделить на несколько характерных диапазонов длин волн; внутри каждого диапазона электромагнитные волны обладают более-менее схожими свойствами и способами излучения.