Болезни Военный билет Призыв

Сила воздуха равнодействующая суммарная всех сил. Задачи на движ тела под дейст неск сил. Равнодействующая сила — Гипермаркет знаний

Если на твердое тело действует много сил, то движение тела зависит только от суммы всех этих сил и от суммы их моментов. Это обстоятельство позволяет иногда заменить совокупность всех действующих на тело сил одной силой, которую называют в таком случае равнодействующей. Очевидно, что по величине и направлению равнодействующая сила равна сумме всех сил, а ее точка приложения должна быть выбрана таким образом, чтобы ее момент был равен суммарному моменту всех сил.

Наиболее важный случай такого рода - сложение параллельных сил. Сюда относится, в частности, сложение сил тяжести, действующих на отдельные части твердого тела.

Рассмотрим какое-либо тело и определим полный момент сил тяжести относительно произвольно выбранной горизонтальной оси (ось Z на рис. 5). Сила тяжести, действующая на элемент m i тела, равна m i g, а ее плечо есть координата x i этого элемента. Поэтому суммарный момент всех сил равен

Равнодействующая сила по величине равна полному весу тела и если обозначить координату ее точки приложения через X, то тот же момент N z запишется в виде (24)

Приравняв оба выражения, найдем (25)

Но это есть не что иное, как х-координата центра инерции тела.

Таким образом, мы видим, что всю совокупность действующих на тело сил тяжести можно заменить одной силой, равной полному весу тела и приложенной к его центру инерции. В связи с этим центр инерции тела часто называют также его центром тяжести.

Сведение системы параллельных сил к одной равнодействующей силе, однако, невозможно, если сумма сил равна нулю. Действие такой совокупности сил может быть сведено к действию, как говорят, пары сил: двух сил, равных по величине и противоположных по направлению. Легко сообразить, что сумма N z моментов таких двух сил относительно любой оси Z, перпендикулярной плоскости их действия, одинакова и равна произведению величины F на расстояние h между направлениями действия обеих сил (плечо пары ): N z =Fh .

Действие пары сил, оказываемое ею на движение тела, зависит только от этого, как говорят, момента пары .

Методика проведения эксперимента и описание установки

Задачи работы : экспериментальное исследование закономерностей гироскопического эффекта, опытное определение полного момента инерции гироскопа.

Приборы и принадлежности: гироскоп ФМ-18, электронный блок, штангенциркуль.

Гироскопом называет массивное тело, вращающееся с большой скоростью вокруг неподвижной оси симметрии. В экспериментальной установке, показанной на рис. 6, гироскопом служит металлический диск 1 с горизонтально расположенной осью 2, который приводится во вращение электродвигателем 3. Ось гироскопа опирается на шарнир 4, закреплённый на подставке 5. Горизонтальное положение оси обеспечивается противовесом 6. Смещая противовес вдоль градуированной шкалы 7, можно создавать дополнительный момент силы тяжести, действующий на гироскоп при его вращении.


Установка работает от блока управления. Левое табло показывает частоту вращения маховика гироскопа – после включения индуцирует начальную частоту. Правое табло индуцирует время поворота гироскопа вокруг вертикальной оси на 90 0 .

Установка позволяет наблюдать так называемый гироскопический эффект, заключающийся в том, что попытка повернуть ось гироскопа в определённой плоскости Х приводит на самой деле к повороту в плоскости, перпендикулярной плоскости Х. Допустим, что в первоначальном положения противовес 6 уравновешивает гироскоп так, что полный момент сил, действующих на гироскоп, . В этих условиях согласно закону сохранения момента импульса должно выполняться равенство и ось гироскопа остаётся горизонтальной и неподвижной.

Попытаемся теперь повернуть ось гироскопа в вертикальной плоскости по часовой стрелке. Для этого сдвинем противовес от положения равновесия на некоторое расстояние (см. рис. 7). При этом на гироскоп будет действовать момент силы тяжести N, направленный вдоль оси Oу и по величине равный (26)

Согласно уравнению динамики вращательного движения твердого тела

Поэтому момент силы вызовет за время изменение момента импульса , равное (28)

Важно отметить, что вектор направлен, как вектор , по оси Oy, т.е. перпендикулярно первоначальному направлению вектора . В результате вектор момента импульса гироскопа займет в пространстве новое положение

что соответствует повороту оси гироскопа в горизонтальной плоскости на некоторый угол . При постоянно действующем моменте силы гироскопический эффект приведет к равномерному горизонтальному вращению оси гироскопа с относительно малой угловой скоростью

Установим связь между и другими параметрами гироскопа. Из рис. 2 следует, что

Для малых углов , тогда, подставляя (29) в (30), получаем.

ОПРЕДЕЛЕНИЕ

Сила – это векторная величина, являющаяся мерой действия на данное тело других тел или полей, в результате которого происходит изменение состояния данного тела. Под изменением состояния в данном случае понимают изменение или деформацию.

Понятие силы относится к двум телам. Всегда можно указать тело, на которое действует сила, и тело, со стороны которого она действует.

Сила характеризуется:

  • модулем;
  • направлением;
  • точкой приложения.

Модуль и направление силы не зависят от выбора .

Единица измерения силы в системе Си – 1 Ньютон .

В природе нет материальных тел, находящихся вне воздействия на них других тел, а, следовательно, все тела находятся под воздействием внешних или внутренних сил.

На тело одновременно может действовать несколько сил. В этом случае справедлив принцип независимости действия: действие каждой силы не зависит от присутствия или отсутствия других сил; совместное действие нескольких сил равно сумме независимых действий отдельных сил.

Равнодействующая сила

Для описания движения тела в этом случае пользуются понятием равнодействующей силы.

ОПРЕДЕЛЕНИЕ

Равнодействующая сила – это сила, действие которой заменяет действие всех сил, приложенных к телу. Или, другими словами, равнодействующая всех сил, приложенных к телу, равна векторной сумме этих сил (рис.1).

Рис.1. Определение равнодействующей сил

Так как движение тела всегда рассматривается в какой-либо системе координат, удобно рассматривать не саму силу, а ее проекции на координатные оси (рис.2, а). В зависимости от направления силы ее проекции могут быть как положительными (рис.2,б), так и отрицательными (рис.2,в).

Рис.2. Проекции силы на координатные оси: а) на плоскости; б) на прямой (проекция положительна);
в) на прямой (проекция отрицательна)

Рис.3. Примеры, иллюстрирующие векторное сложение сил

Мы часто наблюдаем примеры, иллюстрирующие векторное сложение сил: лампа висит на двух тросах (рис.3, а) – в этом случае равновесие достигается за счет того, что равнодействующая сил натяжения компенсируется весом лампы; брусок соскальзывает по наклонной плоскости (рис.3, б) – движение возникает за счет равнодействующей сил трения, тяжести и реакции опоры. Знаменитые строки из басни И.А. Крылова «а воз и ныне там!» — также иллюстрация равенства нулю равнодействующей трех сил (рис.3, в).

Примеры решения задач

ПРИМЕР 1

Задание На тело действуют две силы и . Определить модуль и направление равнодействующей этих сил, если: а) силы направлены в одну сторону; б) силы направлены в противоположные стороны; в) силы направлены перпендикулярно друг к другу.
Решение а) силы направлены в одну сторону;

Равнодействующая сил:

б) силы направлены в противоположные стороны;

Равнодействующая сил:

Спроектируем это равенство на координатную ось :

в) силы направлены перпендикулярно друг к другу;

Равнодействующая сил:

В данной статье рассказано о том, как найти модуль равнодействующей сил, действующих на тело. Репетитор по математике и физике объяснит вам, как найти суммарный вектор равнодействующей сил по правилу параллелограмма, треугольника и многоугольника. Материал разобран на примере решения задачи из ЕГЭ по физике.

Как найти модуль равнодействующей силы

Напомним, что сложить векторы геометрически можно с помощью одного из трех правил: правила параллелограмма, правила треугольника или правила многоугольника. Разберём каждое из этих правил в отдельности.

1. Правило параллелограмма. На рисунке по правилу параллелограмма складываются векторы и . Суммарный вектор есть вектор :

Если векторы и не отложены от одной точки, нужно заменить один из векторов равным и отложить его от начала второго вектора, после чего воспользоваться правилом параллелограмма. Например, на рисунке вектор заменен на равный ему вектор , и :

2. Правило треугольника. На рисунке по правилу треугольника складываются векторы и . В сумме получается вектор :

Если вектор отложен не от конца вектора , нужно заменить его равным и отложенным от конца вектора , после чего воспользоваться правилом треугольника. Например, на рисунке вектор заменен равным ему вектором , и :

3. Правило многоугольника. Для того, чтобы сложить несколько векторов по правилу параллелограмма, необходимо от произвольной точки отложить вектор, равный первому складываемому вектору, от его конца отложить вектор, равный второму складываемому вектору, и так далее. Суммарным будет вектор, проведенный из точки в конец последнего отложенного вектора. На рисунке :

Задача на нахождение модуля равнодействующей силы

Разберем задачу на нахождение равнодействующей сил на конкретном примере из демонстрационного варианта ЕГЭ по физике 2016 года.

Для нахождения вектора равнодействующей сил найдём геометрическую (векторную) сумму всех изображенных сил, используя правило многоугольника. Упрощенно говоря (не вполне корректно с математической точки зрения) , каждый последующий вектор нужно отложить от конца предыдущего. Тогда суммарный вектор будет исходить из точки, из который отложен первоначальный вектор, и приходить в точку, где заканчивается последний вектор:

Требуется найти модуль равнодействующей сил, то есть длину получившегося вектора. Для этого рассмотрим вспомогательный прямоугольный треугольник :

Требуется найти гипотенузу этого треугольника. «По клеточкам» находим длину катетов: Н, Н. Тогда по теореме Пифагора для этого треугольника получаем: Н. То есть искомый модуль равнодействующей сил равен Н.

Итак, сегодня мы разобрали, как находить модуль равнодействующей силы. Задачи на нахождение модуля равнодействующей силы встречаются в вариантах ЕГЭ по физике. Для решения этих задач необходимо знать определение равнодействующей сил, а также уметь складывать векторы по правилу параллелограмма, треугольника или многоугольника. Стоит немного потренироваться, и вы научитесь решать эти задачи легко и быстро. Удачи вам в подготовке к ЕГЭ по физике!


Сергей Валерьевич

Нахождение равнодействующей силы

Для того, чтобы найти равнодействующую силу, необходимо: во-первых, верно обозначить все силы , действующие на тело (при этом если тело движется равноускоренно, значит в направлении ускорения действующая сила длиннее противоположной. Если тело движется равномерно или покоится длина векторов сил одинаковая); затем изобразить координатные оси , выбрать их направления; на третьем шаге необходимо определить проекции векторов на оси; на четвертом записать 2 закон Ньютона для всех тел.

Запомните: направление равнодействующей силы всегда совпадает по направлению с вектором ускорения тела.

Примеры

На движущееся равномерно по горизонтальной поверхности тело, действуют сила тяжести, сила реакции опоры, сила трения и сила, под действием которой тело движется.

Обозначим силы, выберем координатные оси

Найдем проекции

Записываем уравнения

Тело, которое прижимают к вертикальной стенке, равноускоренно движется вниз. На тело действуют сила тяжести, сила трения, реакция опоры и сила, с которой прижимают тело. Вектор ускорения направлен вертикально вниз. Равнодействующая сила направлена вертикально вниз.

Тело равноускоренно движется по клину, наклон которого альфа. На тело действуют сила тяжести, сила реакции опоры, сила трения.

Велосипедист наклоняется в сторону поворота. Сила тяжести и сила реакции опоры со стороны земли дают равнодействующую силу, сообщающую центростремительное ускорение, необходимое для движения по окружности

Выполняя поворот, тело наклоняется в сторону по­ворота и образует угол a к вертикали:

На тело действуют сила тяжести, сила реакции опоры и сила трения, причем со стороны дороги на тело действует сила, которая в сумме с силой тяжести сообщает телу центростреми­тельное ускорение. По второму закону Ньютона:В проекциях на координатные оси:Значит,

Через неподвижный блок перекинута невесомая нерастяжимая нить, которая может скользить по блоку без трения. К нити привязаны грузы массамии

На оба груза действуют сила тяжести и сила натяжения нити. Равнодействующие этих сил сообщают телам ускорение а. По второму за­кону Ньютона для каждого тела: Выберем осии, связанные с направлением движения каждого из тел. В проекциях на оси уравнения для каждого из тел имеют вид:Сила давления на ось блоканаправлена вверх и равна сумме сил натяже­ния, которые действуют на плечи блока:

На горизонтальной плоскости на­ходятся тела с массамии, связанные невесомой нерастяжи­мой нитью. К первому телу при­ложили горизонтальную силуКоэффициент трения обоих тел о поверхность одинаков и равен.

На первое тело действуют сила тяжести, сила реакции опоры, сила тяги, сила натяжения нити и сила трения. Направления сил указаны на рисунке. По второму закону Ньютона:На второе тело действуют сила тяжести, сила реакции опоры, сила натяже­ния нити и сила трения. По второму закону Ньютона:Спроектируем уравнения (1) и (2) на оси:первая система вторая система Из второй системы уравнений:Тогда силы трения:
Первая система будет иметь вид:

Хорошо, если в школе ученик старается понять учителя, не пропускает занятия, дома выполняет все задания. Тогда ему проще в жизни применить свои знания, не приходится в далеко не школьном возрасте снова возвращаться к предметам. Физика для многих – непростая наука. А для работы просто необходимая дисциплина. В частности она изучает такие физические величины, как силы, которые действуют на тело. Нас интересует равнодействующая всех сил, давайте дальше подробно рассмотрим, как её найти.

Эта сила, впрочем, как и любая другая – векторная величина, имеет исходную точку, направление, измеряется в Ньютонах. В ИСО (Инерциальной Системе Отсчета) равнодействующая направлена в ту же сторону, что и ускорение. Модуль силы эквивалентен геометрической сумме всех других сил, которые действуют на тело. По второму закону Ньютона: Fp=ma, где а – ускорение, m – масса равно-ускоренно двигающегося тела. Когда предмет не движется, интересующая нас сила приравнивается к нулю. К примеру, на наклонной поверхности лежит линейка. Благодаря , силе трения на неё не влияет ускорение. Сумма всех трех сил равна 0. Линейка находится в покое. Рассчитаем значение Fр для предмета, который толкают в одном направлении с F1=15 Н, F2=25 H. Рисунок будет выглядеть так:

Отсюда: Fр = F1 + F2 = 15 + 25 = 40 H, силы, применяемые к телу, имеют одно и то же направление, равнодействующая равняется их сумме.

Если к предмету приложить силы, направленные в противоположных направлениях, то Fp – равнодействующая будет приравниваться к их разности. Пример: один учащийся забирает ручку у другого. Первый прикладывает силу F1=0,1 H, второй – 0,3 Н, Fp = 0,3 – 0,1 = 0,2 H. Как решить простейшие задачи, вы можете посмотреть здесь: . Мы проанализировали только простые примеры решения заданий по физике. В задачах посложнее потребуются знания из геометрии. Там, чтобы найти вектор силы, надо помнить теоремы, уметь найти гипотенузу, треугольника по заданному и углу, знать, что такое синус, косинус угла, как найти диагонали прямоугольника. Скачайте у нас на портале . Итак, для решения сложных задачек на равнодействующую силу первым делом напишите “Дано”, все величины переведите в положенные единицы измерения: кН в Ньютоны, граммы в килограммы и т.д. Нарисуйте рисунок, укажите, какие силы влияют на объекты, верно начертите направления векторов. Следующим шагом составьте уравнения, решайте их, вспоминая все правила из математики, теоремы (как выше говорилось) из геометрии.

Решив поступать в университет, где понадобится результат ЕГЭ по физике, как можно чаще делайте задачи разного уровня сложности. Для облегчения на черновике чертите рисунки, обсчитывайте все варианты решения. Учитесь правильно мыслить, не стесняйтесь обращаться к преподавателю с вопросами. Не забывайте о Законах Ньютона, их часто используют для нахождения значений. Практикуя такой подход, в будущем вы справитесь с заданием любой сложности.