Болезни Военный билет Призыв

Бесконечная убывающая геометрическая прогрессия и ее сумма. Формула для суммы. Числовые последовательности vi

Математика – это то, посредством чего люди управляют природой и собой.

Советский математик, академик А.Н. Колмогоров

Геометрическая прогрессия.

Наряду с задачами на арифметические прогрессии также распространенными на вступительных испытаниях по математике являются задачи, связанные с понятием геометрической прогрессии. Для успешного решения таких задач необходимо знать свойства геометрической прогрессии и иметь хорошие навыки их использования.

Настоящая статья посвящена изложению основных свойств геометрической прогрессии. Здесь также приводятся примеры решения типовых задач , позаимствованных из заданий вступительных испытаний по математике.

Предварительно отметим основные свойства геометрической прогрессии и напомним наиболее важные формулы и утверждения , связанные с этим понятием.

Определение. Числовая последовательность называется геометрической прогрессией, если каждое ее число, начиная со второго, равно предыдущему, умноженному на одно и то же число . Число называется знаменателем геометрической прогрессии.

Для геометрической прогрессии справедливы формулы

, (1)

где . Формула (1) называется формулой общего члена геометрической прогрессии, а формула (2) представляет собой основное свойство геометрической прогрессии: каждый член прогрессии совпадает со средним геометрическим своих соседних членов и .

Отметим , что именно из-за этого свойства рассматриваемая прогрессия называется «геометрической».

Приведенные выше формулы (1) и (2) обобщаются следующим образом:

, (3)

Для вычисления суммы первых членов геометрической прогрессии применяется формула

Если обозначить , то

где . Так как , то формула (6) является обобщением формулы (5).

В том случае , когда и , геометрическая прогрессия является бесконечно убывающей. Для вычисления суммы всех членов бесконечно убывающей геометрической прогрессии используется формула

. (7)

Например , с помощью формулы (7) можно показать , что

где . Данные равенства получены из формулы (7) при условии, что , (первое равенство) и , (второе равенство).

Теорема. Если , то

Доказательство. Если , то ,

Теорема доказана.

Перейдем к рассмотрению примеров решения задач на тему «Геометрическая прогрессия».

Пример 1. Дано: , и . Найти .

Решение. Если применить формулу (5), то

Ответ: .

Пример 2. Пусть и . Найти .

Решение. Так как и , то воспользуемся формулами (5), (6) и получим систему уравнений

Если второе уравнение системы (9) разделить на первое , то или . Отсюда следует и . Рассмотрим два случая.

1. Если , то из первого уравнения системы (9) имеем .

2. Если , то .

Пример 3. Пусть , и . Найти .

Решение. Из формулы (2) следует, что или . Так как , то или .

По условию . Однако , поэтому . Поскольку и , то здесь имеем систему уравнений

Если второе уравнение системы разделить на первое, то или .

Так как , то уравнение имеет единственный подходящий корень . В таком случае из первого уравнения системы вытекает .

Принимая во внимание формулу (7), получаем.

Ответ: .

Пример 4. Дано: и . Найти .

Решение. Так как , то .

Поскольку , то или

Согласно формуле (2) имеем . В этой связи из равенства (10) получаем или .

Однако по условию , поэтому .

Пример 5. Известно, что . Найти .

Решение. Согласно теореме имеем два равенства

Так как , то или . Поскольку , то .

Ответ: .

Пример 6. Дано: и . Найти .

Решение. Принимая во внимание формулу (5), получаем

Так как , то . Поскольку , и , то .

Пример 7. Пусть и . Найти .

Решение. Согласно формуле (1) можно записать

Следовательно, имеем или . Известно, что и , поэтому и .

Ответ: .

Пример 8. Найти знаменатель бесконечной убывающей геометрической прогрессии , если

и .

Решение. Из формулы (7) следует и . Отсюда и из условия задачи получаем систему уравнений

Если первое уравнение системы возвести в квадрат , а затем полученное уравнение разделить на второе уравнение , то получим

Или .

Ответ: .

Пример 9. Найти все значения , при которых последовательность , , является геометрической прогрессией.

Решение. Пусть , и . Согласно формуле (2), которая задает основное свойство геометрической прогрессии, можно записать или .

Отсюда получаем квадратное уравнение , корнями которого являются и .

Выполним проверку: если , то , и ; если , то , и .

В первом случае имеем и , а во втором – и .

Ответ: , .

Пример 10. Решить уравнение

, (11)

где и .

Решение. Левая часть уравнения (11) представляет собой сумму бесконечной убывающей геометрической прогрессии, в которой и , при условии: и .

Из формулы (7) следует , что . В этой связи уравнение (11) принимает вид или . Подходящим корнем квадратного уравнения является

Ответ: .

Пример 11. П оследовательность положительных чисел образует арифметическую прогрессию , а – геометрическую прогрессию , причем здесь . Найти .

Решение. Так как арифметическая последовательность , то (основное свойство арифметической прогрессии). Поскольку , то или . Отсюда следует , что геометрическая прогрессия имеет вид . Согласно формуле (2) , далее запишем , что .

Так как и , то . В таком случае выражение принимает вид или . По условию , поэтому из уравнения получаем единственное решение рассматриваемой задачи , т.е. .

Ответ: .

Пример 12. Вычислить сумму

. (12)

Решение. Умножим на 5 обе части равенства (12) и получим

Если из полученного выражения вычесть (12) , то

или .

Для вычисления подставим в формулу (7) значения , и получим . Так как , то .

Ответ: .

Приведенные здесь примеры решения задач будут полезны абитуриентам при подготовке к вступительным испытаниям. Для более глубокого изучения методов решения задач , связанных с геометрической прогрессией , можно использовать учебные пособия из списка рекомендуемой литературы.

1. Сборник задач по математике для поступающих во втузы / Под ред. М.И. Сканави. – М.: Мир и Образование, 2013. – 608 с.

2. Супрун В.П. Математика для старшеклассников: дополнительные разделы школьной программы. – М.: Ленанд / URSS , 2014. – 216 с.

3. Медынский М.М. Полный курс элементарной математики в задачах и упражнениях. Книга 2: Числовые последовательности и прогрессии. – М.: Эдитус , 2015. – 208 с.

Остались вопросы?

Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Некоторые задачи физики и математики могут быть решены с использованием свойств числовых рядов. Две самых простых числовых последовательности, которые изучаются в школах, это алгебраическая и геометрическая. В данной статье рассмотрим подробнее вопрос, как найти сумму бесконечной прогрессии геометрической убывающей.

Прогрессия геометрическая

Под этими словами понимают такой ряд действительных чисел, элементы a i которого удовлетворяют выражению:

Здесь i - номер элемента в ряду, r - постоянное число, которое называется знаменателем.

Это определение показывает, что, зная любой член прогрессии и его знаменатель, можно восстановить весь ряд чисел. Например, если известен 10-й элемент, то разделив его на r, получим 9-й элемент, затем, разделив еще раз, получим 8-й и так далее. Эти простые рассуждения позволяют записать выражение, которое справедливо для рассматриваемого ряда чисел:

Примером прогрессии со знаменателем 2 может быть такой ряд:

1, 2, 4, 8, 16, 32, ...

Если же знаменатель будет равен -2, тогда получается совершенно другой ряд:

1, -2, 4, -8, 16, -32, ...

Прогрессия геометрическая является гораздо более быстрой, чем алгебраическая, то есть ее члены быстро растут и быстро уменьшаются.

Сумма i членов прогрессии

Для решения практических задач часто приходиться вычислять сумму нескольких элементов рассматриваемой числовой последовательности. Для этого случая справедлива следующая формула:

S i = a 1 *(r i -1)/(r-1)

Видно, что для вычисления суммы i членов необходимо знать всего два числа: a 1 и r, что является логичным, поскольку они однозначно определяют всю последовательность.

Убывающая последовательность и сумма ее членов

Теперь рассмотрим частный случай. Будем считать, что модуль знаменателя r не превышает единицы, то есть -1

Убывающую геометрическую прогрессию интересно рассмотреть, потому что бесконечная сумма ее членов стремится к конечному действительному числу.

Получим формулу суммы Это легко сделать, если выписать выражение для S i , приведенного в предыдущем пункте. Имеем:

S i = a 1 *(r i -1)/(r-1)

Рассмотрим случай, когда i->∞. Поскольку модуль знаменателя меньше 1, то возведение его в бесконечную степень даст ноль. Это можно проверить на примере r=0,5:

0,5 2 = 0,25; 0,5 3 = 0,125; ...., 0,5 20 = 0,0000009.

В итоге сумма членов бесконечной геометрической прогрессии убывающей примет форму:

Эта формула часто используется на практике, например, для вычисления площадей фигур. Ее также применяют при решении парадокса Зенона Элейского с черепахой и Ахиллесом.

Очевидно, что рассмотрение суммы бесконечной прогрессии геометрической возрастающей (r>1), приведет к результату S ∞ = +∞.

Задача на нахождение первого члена прогрессии

Покажем, как следует применять приведенные выше формулы на примере решения задачи. Известно, что сумма бесконечной геометрической прогрессии равна 11. При этом 7-й ее член в 6 раз меньше третьего члена. Чему равен первый элемент для этого числового ряда?

Для начала выпишем два выражения для определения 7-го и 3-го элементов. Получаем:

Разделив первое выражение на второе, и выражая знаменатель, имеем:

a 7 /a 3 = r 4 => r = 4 √(a 7 /a 3)

Поскольку отношение седьмого и третьего членов дано в условии задачи, можно его подставить и найти r:

r = 4 √(a 7 /a 3) = 4 √(1/6) ≈ 0,63894

Мы рассчитали r с точностью пяти значащих цифр после запятой. Поскольку полученное значение меньше единицы, значит, прогрессия является убывающей, что оправдывает использование формулы для ее бесконечной суммы. Запишем выражение для первого члена через сумму S ∞ :

Подставляем в эту формулу известные значения и получаем ответ:

a 1 = 11*(1-0,63894) = 3,97166.

Знаменитый парадокс Зенона с быстрым Ахиллесом и медленной черепахой

Зенон Элейский - известный греческий философ, живший в V веке до н. э. До настоящего времени дошли ряд его апогей или парадоксов, в которых формулируется проблема бесконечно большого и бесконечно малого в математике.

Одним из известных парадоксов Зенона являются соревнования Ахиллеса и черепахи. Зенон полагал, что если Ахиллес предоставит некоторое преимущество черепахе в расстоянии, то он никогда не сможет ее догнать. Например, пусть Ахиллес бежит в 10 раз быстрее, чем ползет животное, которое для примера находится на расстоянии 100 метров впереди него. Когда воин пробежит 100 метров, то черепаха отползет на 10. Пробежав вновь 10 метров, Ахиллес увидит, что черепаха отползла еще на 1 метр. Рассуждать так можно до бесконечности, расстояние будет между соревнующимися действительно уменьшаться, но черепаха будет всегда находиться впереди.

Привел Зенона к выводу, что движения не существует, и все окружающие перемещения объектов - это иллюзия. Конечно же, древнегреческий философ ошибался.

Решение парадокса кроется в том, что бесконечная сумма постоянно уменьшающихся отрезков, стремится к конечному числу. В приведенном выше случае для расстояния, которое пробежал Ахиллес, получим:

100 + 10 + 1 + 0,1 + 0,01 + ...

Применяя формулу суммы бесконечной прогрессии геометрической, получим:

S ∞ = 100 /(1-0,1) ≈ 111,111 метров

Этот результат показывает, что Ахиллес догонит черепаху, когда она проползет всего 11,111 метров.

Древние греки не умели работать с бесконечными величинами в математике. Однако этот парадокс можно разрешить, если обратить внимание не на бесконечное число промежутков, которые должен преодолеть Ахиллес, а на конечное число шагов бегуна, необходимых для достижения цели.

Геометрическая прогрессия не менее важная в математике по сравнению с арифметической. Геометрической прогрессией называют такую последовательность чисел b1, b2,..., b[n] каждый следующий член которой, получается умножением предыдущего на постоянное число. Это число, которое также характеризует скорость роста или убывания прогрессии называют знаменателем геометрической прогрессии и обозначают

Для полного задания геометрической прогрессии кроме знаменателя необходимо знать или определить первый ее член. Для положительного значения знаменателя прогрессия является монотонной последовательностью, причем если это последовательность чисел является монотонно убывающей и при монотонно возрастающей. Случай, когда знаменатель равен единице на практике не рассматривается, поскольку имеем последовательность одинаковых чисел, а их суммирование не вызывает практического интереса

Общий член геометрической прогрессии вычисляют по формуле

Сумма n первых членов геометрической прогрессии определяют по формуле

Рассмотрим решения классических задач на геометрическую прогрессию. Начнем для понимания с простейших.

Пример 1. Первый член геометрической прогрессии равен 27, а ее знаменатель равен 1/3. Найти шесть первых членов геометрической прогрессии.

Решение: Запишем условие задачи в виде

Для вычислений используем формулу n-го члена геометрической прогрессии

На ее основе находим неизвестные члены прогрессии

Как можно убедиться, вычисления членов геометрической прогрессии несложные. Сама прогрессия будет выглядеть следующим образом

Пример 2. Даны три первых члена геометрической прогрессии : 6; -12; 24. Найти знаменатель и седьмой ее член.

Решение: Вычисляем знаменатель геомитрической прогрессии исходя из его определения

Получили знакопеременную геометрическую прогрессию знаменатель которой равен -2. Седьмой член вычисляем по формуле

На этом задача решена.

Пример 3. Геометрическая прогрессия задана двумя ее членами . Найти десятый член прогрессии.

Решение:

Запишем заданные значения через формулы

По правилам нужно было бы найти знаменатель, а затем искать нужное значение, но для десятого члена имеем

Такую же формулу можно получить на основе нехитрых манипуляций с входными данными. Разделим шестой член ряда на другой, в результате получим

Если полученное значение умножить на шестой член, получим десятый

Таким образом, для подобных задач с помощью несложных преобразований в быстрый способ можно отыскать правильное решение.

Пример 4. Геометрическая прогрессия задано рекуррентными формулами

Найти знаменатель геометрической прогрессии и сумму первых шести членов.

Решение:

Запишем заданные данные в виде системы уравнений

Выразим знаменатель разделив второе уравнение на первое

Найдем первый член прогрессии из первого уравнения

Вычислим следующие пять членов для нахождения суммы геометрической прогрессии

Геометрическая прогрессия - это числовая последовательность, первый член которой отличен от нуля, а каждый следующий член, равен предыдущему члену, умноженному на одно и то же не равное нулю число.

Понятие геометрической прогрессии

Геометрическая прогрессия обозначается b1,b2,b3, …, bn, … .

Отношение любого члена геометрической погрешности к её предыдущему члену равно одному и тому же числу, то есть b2/b1 = b3/b2 = b4/b3 = … = bn/b(n-1) = b(n+1)/bn = … . Это следует непосредственно из определения арифметической прогрессии. Это число называют знаменателем геометрической прогрессии. Обычно знаменатель геометрической прогрессии обозначают буквой q.

Сумма бесконечной геометрической прогрессии при |q|<1

Одним из способов задания геометрической прогрессии является задание её первого члена b1 и знаменателя геометрической погрешности q. Например, b1=4, q=-2. Эти два условия задают геометрическую прогрессию 4, -8, 16, -32, … .

Если q>0 (q не равно 1), то прогрессия является монотонной последовательностью. Например, последовательность, 2, 4,8,16,32, … является монотонно возрастающей последовательностью (b1=2, q=2).

Если в геометрической погрешности знаменатель q=1, то все члены геометрической прогрессии будут равны между собой. В таких случаях говорят, что прогрессия является постоянной последовательностью.

Для того, чтобы числовая последовательность (bn) являлась геометрической прогрессией необходимо, чтобы каждый её член, начиная со второго, являлся средним геометрическим соседних членов. То есть необходимо выполнение следующего уравнения
(b(n+1))^2 = bn * b(n+2),для любого n>0, где n принадлежит множеству натуральных чисел N.

Теперь положим (Xn) - геометрическая прогрессия. Знаменатель геометрической прогрессии q, причем |q|∞).
Если теперь за S обозначить сумму бесконечно геометрической прогрессии, тогда будет иметь место следующая формула:
S=x1/(1-q).

Рассмотрим простой пример:

Найти сумму бесконечной геометрической прогрессии 2, -2/3, 2/9, - 2/27, … .

Для нахождения S воспользуемся формулой суммы бесконечно арифметической прогрессии. |-1/3| < 1. x1 = 2. S=2/(1-(-1/3)) = 3/2.

Рассмотрим некоторый ряд.

7 28 112 448 1792...

Совершенно ясно видно, что значение любого его элемента больше предыдущего ровно в четыре раза. Значит, данный ряд является прогрессией.

Геометрической прогрессиейименуется бесконечная последовательность чисел, главной особенностью которой является то, что следующее число получается из предыдущего посредством умножения на какое-то определенное число. Это выражается следующей формулой.

a z +1 =a z ·q, где z - номер выбранного элемента.

Соответственно, z ∈ N.

Период, когда в школе изучается геометрическая прогрессия - 9 класс. Примеры помогут разобраться в понятии:

0.25 0.125 0.0625...

Исходя из этой формулы, знаменатель прогрессии возможно найти следующим образом:

Ни q, ни b z не могут равняться нулю. Так же каждый из элементов прогрессии не должен равняться нулю.

Соответственно, чтобы узнать следующее число ряда, нужно умножить последнее на q.

Чтобы задать данную прогрессию, необходимо указать первый ее элемент и знаменатель. После этого возможно нахождение любого из последующих членов и их суммы.

Разновидности

В зависимости от q и a 1, данная прогрессия разделяется на несколько видов:

  • Если и a 1 , и q больше единицы, то такая последовательность - возрастающая с каждым следующим элементом геометрическая прогрессия. Пример таковой представлен далее.

Пример: a 1 =3, q=2 - оба параметра больше единицы.

Тогда числовая последовательность может быть записана так:

3 6 12 24 48 ...

  • Если |q| меньше единицы, то есть, умножение на него эквивалентно делению, то прогрессия с подобными условиями - убывающая геометрическая прогрессия. Пример таковой представлен далее.

Пример: a 1 =6, q=1/3 - a 1 больше единицы, q - меньше.

Тогда числовую последовательность можно записать таким образом:

6 2 2/3 ... - любой элемент больше элемента, следующего за ним, в 3 раза.

  • Знакопеременная. Если q<0, то знаки у чисел последовательности постоянно чередуются вне зависимости от a 1 , а элементы ни возрастают, ни убывают.

Пример: a 1 = -3 , q = -2 - оба параметра меньше нуля.

Тогда числовую последовательность можно записать так:

3, 6, -12, 24,...

Формулы

Для удобного использования геометрических прогрессий существует множество формул:

  • Формула z-го члена. Позволяет рассчитать элемент, стоящий под конкретным номером без расчета предыдущих чисел.

Пример: q = 3, a 1 = 4. Требуется посчитать четвертый элемент прогрессии.

Решение: a 4 = 4 · 3 4-1 = 4 · 3 3 = 4 · 27 = 108.

  • Сумма первых элементов, чье количество равно z . Позволяет рассчитать сумму всех элементов последовательности до a z включительно.

Так как (1- q ) стоит в знаменателе, то (1 - q) ≠ 0, следовательно, q не равно 1.

Замечание: если бы q=1, то прогрессия представляла бы собой ряд из бесконечно повторяющегося числа.

Сумма геометрической прогрессии, примеры: a 1 = 2, q = -2. Посчитать S 5 .

Решение: S 5 = 22 - расчет по формуле.

  • Сумма, если | q | < 1 и если z стремится к бесконечности.

Пример: a 1 = 2 , q = 0.5. Найти сумму.

Решение: S z = 2 · = 4

S z = 2 + 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 3.9375 4

Некоторые свойства:

  • Характеристическое свойство. Если следующее условие выполняется для любого z , то заданный числовой ряд - геометрическая прогрессия:

a z 2 = a z -1 · a z+1

  • Так же квадрат любого числа геометрической прогрессии находится при помощи сложения квадратов двух других любых чисел в заданном ряду, если они равноудалены от этого элемента.

a z 2 = a z - t 2 + a z + t 2 , где t - расстояние между этими числами.

  • Элементы различаются в q раз.
  • Логарифмы элементов прогрессии так же образуют прогрессию, но уже арифметическую, то есть каждый из них больше предыдущего на определенное число.

Примеры некоторых классических задач

Чтобы лучше понять, что такое геометрическая прогрессия, примеры с решением для 9 класса могут помочь.

  • Условия: a 1 = 3, a 3 = 48. Найти q .

Решение: каждый последующий элемент больше предыдущего в q раз. Необходимо выразить одни элементы через другие с помощью знаменателя.

Следовательно, a 3 = q 2 · a 1

При подстановке q = 4

  • Условия: a 2 = 6, a 3 = 12. Рассчитать S 6 .

Решение: Для этого достаточно найти q, первый элемент и подставить в формулу.

a 3 = q · a 2 , следовательно, q = 2

a 2 = q · a 1 , поэтому a 1 = 3

S 6 = 189

  • · a 1 = 10, q = -2. Найти четвертый элемент прогрессии.

Решение: для этого достаточно выразить четвертый элемент через первый и через знаменатель.

a 4 = q 3 · a 1 = -80

Пример применения:

  • Клиент банка совершил вклад на сумму 10000 рублей, по условиям которого каждый год клиенту к основной сумме будут прибавляться 6% от нее же. Сколько средств будет на счету через 4 года?

Решение: Изначальная сумма равна 10 тысячам рублей. Значит, через год после вложения на счету будет сумма, равная 10000 + 10000· 0.06 = 10000 · 1.06

Соответственно, сумма на счете еще через один год будет выражаться следующим образом:

(10000 · 1.06) · 0.06 + 10000 · 1.06 = 1.06 · 1.06 · 10000

То есть с каждым годом сумма увеличивается в 1.06 раз. Значит, чтобы найти количество средств на счете через 4 года, достаточно найти четвертый элемент прогрессии, которая задана первым элементом, равным 10 тысячам, и знаменателем, равным 1.06.

S = 1.06·1.06·1.06·1.06·10000 = 12625

Примеры задач на вычисление суммы:

В различных задачах используется геометрическая прогрессия. Пример на нахождение суммы может быть задан следующим образом:

a 1 = 4, q = 2, рассчитать S 5 .

Решение: все необходимые для расчета данные известны, нужно просто подставить их в формулу.

S 5 = 124

  • a 2 = 6, a 3 = 18. Рассчитать сумму первых шести элементов.

Решение:

В геом. прогрессии каждый следующий элемент больше предыдущего в q раз, то есть для вычисления суммы необходимо знать элемент a 1 и знаменатель q .

a 2 · q = a 3

q = 3

Аналогичным образом требуется найти a 1 , зная a 2 и q .

a 1 · q = a 2

a 1 = 2

S 6 = 728.