Болезни Военный билет Призыв

Определение электромагнитных колебаний. Основные параметры колебательных движений. Гармонический закон колебаний в контуре

Лишь в конце нашей эры человечество дошло до открытия и освоения электричества и пришло к выводу о существовании электромагнитных волн. Первые теорети-чески обосновал существование таких волн великий Герц. А первым, кто открыл эти волны (излучаемые грозовыми разрядами), был наш соотечественник Попов. Он изобрел прибор — грозоотметчик, который фиксировал мощные электромагнитные колебания, излучаемые грозовыми разрядами.

Он же чуть позже и почти одновременно с итальянцем Маркони понял, что электромагнитные волны можно использовать для передачи на большие расстояния полезной информации. В то время как опыты Попова А.С. по передаче информации с помощью электромагнитных вол имели уникальный характер, предприимчивый Маркой организовал целую отрасль промышленности, впервые начавшей выпускать электротехнические средства связи, основанные на передаче и приеме электромагнитных волн

Одно только открытие электромагнитных волн оправдывает затраты на науку за все время существования человечества! Об этом стоит помнить нынешним реформаторам России, поставившим нашу науку, и образование на голодный паек.

Электромагнитная волна — это перемещение меняющихся электрического и магнитного полей, в пространстве со скоростью света. Первые создатели теории элект-ромагнитных колебаний пытались строить аналогии между электромагнитными колебаниями и колебаниями механи-ческими и акустическими. Они полагали, что простран-ство заполнено некоей субстанцией — эфиром. Лиин позже пришло понимание того, что для распространения электромагнитных волн не нужен никакой посредник.

Тем не менее, удачное словечко «эфир» осталось е нашем обиходе. Впрочем, теперь оно скорее характеризует само по себе существование пространства, заполненного электромагнитными волнами, порожденными самыми раз-нообразными источниками — прежде всего радиостанци-ями, передающими речь, музыку, телевизионные изобра-жения, сигналы времени и т. д.

Электромагнитные колебания порождаются электри-ческими сигналами. Любой проводник, к которому подво-дится высокочастотный электрический сигнал, становит-ся антенной, излучающей в пространство (эфир) электромагнитные волны. На этом основана работа радио-передающих устройств.

Тот же проводник, находящийся в пространстве с электромагнитными волнами, становится антенной ра-диоприемника — на нем наводятся ЭДС в виде множества сигналов переменного тока. Если антенна приемника расположена рядом с антенной передатчика (это иногда случается), то наводимая ЭДС может достигать десятков вольт. Но когда радиостанция расположена за сотни и тысячи километров от приемника, она мала — лежит в пределах от нескольких микровольт до десятков милли-вольт. Задача приемника — выбрать из массы сигналов разных радиостанций и источников помех те сигналы, которые вам нужны, усилить их и превратить в звуковые колебания, излучаемые громкоговорителем или головны-ми телефонами.

Мы знаем, что длина электромагнитных волн бывает самой различной. Посмотрев на шкалу электромагнитных волн с указанием длин волн и частот различных излучений, мы различим 7 диапазонов: низкочастотные излучения, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и гамма-излучение.

  • Низкочастотные волны. Источники излучения: токи высокой частоты, генератор переменного тока, электрические машины. Применяются для плавки и закалки металлов, изготовление постоянных магнитов, в электротехнической промышленности.
  • Радиоволны возникают в антеннах радио- и телевизионных станций, мобильных телефонах, радарах и т. д. Применяются в радиосвязи, телевидении, радиолокации.
  • Инфракрасные волны излучают все нагретые тела. Применение: плавка, резка, сварка тугоплавких металлов с помощью лазеров, фотографирование в тумане и темноте, сушка древесины, фруктов и ягод, приборы ночного видения.
  • Видимое излучение. Источники — Солнце, электрическая и люминесцентная лампа, электрическая дуга,лазер. Применяется: освещение, фотоэффект, голография.
  • Ультрафиолетовые излучение. Источники: Солнце, космос, электрическая лампа, лазер. Оно способно убивать болезнетворные бактерии. Применяется для закаливания живых организмов.
  • Рентгеновское излучение.

Электрическая цепь, состоящая из катушки индуктивности и конденсатора (см. рисунок), называется колебательным контуром. В этой цепи могут происходить своеобразные электрические колебания. Пусть, например, в начальный момент времени мы заряжаем пластины конденсатора положительным и отрицательным зарядами, а затем разрешим зарядам двигаться. Если бы катушка отсутствовала, конденсатор начал бы разряжаться, в цепи на короткое время возник электрический ток, и заряды пропали бы. Здесь же происходит следующее. Сначала благодаря самоиндукции катушка препятствует увеличению тока, а затем, когда ток начинает убывать, препятствует его уменьшению, т.е. поддерживает ток. В результате ЭДС самоиндукции заряжает конденсатор с обратной полярностью: та пластина, которая изначально была заряжена положительно, приобретает отрицательный заряд, вторая - положительный. Если при этом не происходит потерь электрической энергии (в случае малого сопротивления элементов контура), то величина этих зарядов будет такая же, как величина первоначальных зарядов пластин конденсатора. В дальнейшем движение процесс перемещения зарядов будет повторяться. Таким образом, движение зарядов в контуре представляет собой колебательный процесс.

Для решения задач ЕГЭ, посвященных электромагнитным колебаниям, нужно запомнить ряд фактов и формул, касающихся колебательного контура. Во-первых, нужно знать формулу для периода колебаний в контуре. Во-вторых, уметь применять к колебательному контуру закон сохранения энергии. И, наконец (хотя такие задачи встречаются редко), уметь использовать зависимости силы тока через катушку и напряжения на конденсаторе от времени

Период электромагнитных колебаний в колебательном контуре определяется соотношением:

где и - заряд на конденсаторе и сила тока в катушке в этот момент времени, и - емкость конденсатора и индуктивность катушки. Если электрическое сопротивление элементов контура мало, то электрическая энергия контура (24.2) остается практически неизменной, несмотря на то, что заряд конденсатора и ток в катушке изменяются с течением времени. Из формулы (24.4) следует, что при электрических колебаниях в контуре происходят превращения энергии: в те моменты времени, когда ток в катушке равен нулю, вся энергия контура сводится к энергии конденсатора. В те моменты времени, когда равен нулю заряд конденсатора, энергия контура сводится к энергии магнитного поля в катушке. Очевидно, в эти моменты времени заряд конденсатора или ток в катушке достигают своих максимальных (амплитудных) значений.

При электромагнитных колебаниях в контуре заряд конденсатора изменяется с течением времени по гармоническому закону:

стандартной для любых гармонических колебаний. Поскольку сила тока в катушке представляет собой производную заряда конденсатора по времени, из формулы (24.4) можно найти зависимость силы тока в катушке от времени

В ЕГЭ по физике часто предлагаются задачи на электромагнитные волны. Необходимый для решения этих задач минимум знаний включает в себя понимание основных свойств электромагнитной волны и знание шкалы электромагнитных волн. Сформулируем кратко эти факты и принципы.

Согласно законам электромагнитного поля переменное магнитное поле порождает поле электрическое, переменное электрическое поле порождает поле магнитное. Поэтому если одно из полей (например, электрическое) начнет меняться, возникнет второе поле (магнитное), которое затем снова порождает первое (электрическое), затем снова второе (магнитное) и т.д. Процесс взаимного превращения друг в друга электрического и магнитного полей, который может распространяться в пространстве, называется электромагнитной волной. Опыт показывает, что направления, в которых колеблются векторы напряженности электрического и индукции магнитного поля в электромагнитной волне перпендикулярны направлению ее распространения. Это означает, что электромагнитные волны являются поперечными. В теории электромагнитного поля Максвелла доказывается, что электромагнитная волна создается (излучается) электрическими зарядами при их движении с ускорением. В частности, источником электромагнитной волны является колебательный контур.

Длина электромагнитной волны , ее частота (или период ) и скорость распространения связаны соотношением, которое справедливо для любой волны (см. также формулу (11.6)):

Электромагнитные волны в вакууме распространяются со скоростью = 3 10 8 м/с, в среде скорость электромагнитных волн меньше, чем в вакууме, причем эта скорость зависит от частоты волны. Такое явление называется дисперсией волн. Электромагнитной волне присущи все свойства волн, распространяющихся в упругих средах: интерференция, дифракция, для нее справедлив принцип Гюйгенса. Единственное, что отличает электромагнитную волну, это то, что для ее распространения не нужна среда - электромагнитная волна может распространяться и в вакууме.

В природе наблюдаются электромагнитные волны с сильно отличающимися друг от друга частотами, и обладающие благодаря этому существенно различными свойствами (несмотря на одинаковую физическую природу). Классификация свойств электромагнитных волн в зависимости от их частоты (или длины волны) называется шкалой электромагнитных волн. Дадим краткий обзор этой шкалы.

Электромагнитные волны с частотой меньшей 10 5 Гц (т.е. с длиной волны, большей нескольких километров) называются низкочастотными электромагнитными волнами. Излучают волны такого диапазона большинство бытовых электрических приборов.

Волны с частотой от 10 5 до 10 12 Гц называются радиоволнами. Этим волнам отвечают длины волн в вакууме от нескольких километров до нескольких миллиметров. Эти волны применяются для радиосвязи, телевидения, радиолокации, сотовых телефонов. Источниками излучения таких волн являются заряженные частицы, движущиеся в электромагнитных полях. Радиоволны излучаются также свободными электронами металла, которые совершают колебания в колебательном контуре.

Область шкалы электромагнитных волн с частотами, лежащими в интервале 10 12 - 4,3 10 14 Гц (и длинами волн от нескольких миллиметров до 760 нм) называется инфракрасным излучением (или инфракрасными лучами). Источником такого излучения служат молекулы нагретого вещества. Человек излучает инфракрасные волны с длиной волны 5 - 10 мкм.

Электромагнитное излучение в интервале частот 4,3 10 14 - 7,7 10 14 Гц (или длин волн 760 - 390 нм) воспринимается человеческим глазом как свет и называется видимым светом. Волны различных частот внутри этого диапазона воспринимаются глазом, как имеющие различный цвет. Волна с самой маленькой частотой из видимого диапазона 4,3 10 14 воспринимается как красная, с самой большой частотой внутри видимого диапазона 7,7 10 14 Гц - как фиолетовая. Видимый свет излучается при переходе электронов в атомах, молекулами твердых тел, нагретых до 1000 °С и более.

Волны с частотой 7,7 10 14 - 10 17 Гц (длина волны от 390 до 1 нм) принято называть ультрафиолетовым излучением. Ультрафиолетовое излучение имеет выраженное биологическое действие: оно способно убивать ряд микроорганизмов, способно вызвать усиление пигментации человеческой кожи (загар), при избыточном облучении в отдельных случаях может способствовать развитию онкологических заболеваний (рак кожи). Ультрафиолетовые лучи содержатся в излучении Солнца, в лабораториях создаются специальными газоразрядными (кварцевыми) лампами.

За областью ультрафиолетового излучения лежит область рентгеновских лучей (частота 10 17 - 10 19 Гц, длина волны от 1 до 0,01 нм). Эти волны излучаются при торможении в веществе заряженных частиц, разогнанных напряжением 1000 В и более. Обладают способностью проходить сквозь толстые слои вещества, непрозрачного для видимого света или ультрафиолетового излучения. Благодаря этому свойству рентгеновские лучи широко используются в медицине для диагностики переломов костей и ряда заболеваний. Рентгеновские лучи оказывают губительное действие на биологические ткани. Благодаря этому свойству их можно использовать для лечения онкологических заболеваний, хотя при избыточном облучении они смертельно опасны для человека, вызывая целый ряд нарушений в организме. Из-за очень малой длины волны волновые свойства рентгеновского излучения (интерференцию и дифракцию) можно обнаружить только на структурах, сравнимых с размерами атомов.

Гамма-излучением (-излучением) называют электромагнитные волны с частотой, большей, чем 10 20 Гц (или длиной волны, меньшей 0,01 нм). Возникают такие волны в ядерных процессах. Особенностью -излучения является его ярко выраженные корпускулярные свойства (т.е. это излучение ведет себя как поток частиц). Поэтому о -излучении часто говорят как о потоке -частиц.

В задаче 24.1.1 для установления соответствия между единицами измерений используем формулу (24.1), из которой следует, что период колебаний в контуре с конденсатором емкостью 1 Ф и индуктивностью 1 Гн равен секунд (ответ 1 ).

Из графика, данного в задаче 24.1.2 , заключаем, что период электромагнитных колебаний в контуре составляет 4 мс (ответ 3 ).

По формуле (24.1) находим период колебаний в контуре, данном в задаче 24.1.3 :
(ответ 4 ). Отметим, что согласно шкале электромагнитных волн такой контур излучает волны длинноволнового радиодиапазона.

Периодом колебания называется время одного полного колебания. Это значит, что если в начальный момент времени конденсатор заряжен максимальным зарядом (задача 24.1.4 ), то через половину периода конденсатор будет также заряжен максимальным зарядом, но с обратной полярностью (та пластина, которая изначально была заряжена положительно, будет заряжена отрицательно). А максимальный в контуре ток будет достигаться между этими двумя моментами, т.е. через четверть периода (ответ 2 ).

Если увеличить индуктивность катушки в четыре раза (задача 24.1.5 ), то согласно формуле (24.1) период колебаний в контуре возрастет в два раза, а частота уменьшится в два раза (ответ 2 ).

Согласно формуле (24.1) при увеличении емкости конденсатора в четыре раза (задача 24.1.6 ) период колебаний в контуре увеличивается в два раза (ответ 1 ).

При замыкании ключа (задача 24.1.7 ) в контуре вместо одного конденсатора будут работать два таких же конденсатора, соединенных параллельно (см. рисунок). А поскольку при параллельном соединении конденсаторов их емкости складываются, то замыкание ключа приводит к двукратному увеличению емкости контура. Поэтому из формулы (24.1) заключаем, что период колебаний увеличивается в раз (ответ 3 ).

Пусть заряд на конденсаторе совершает колебания с циклической частотой (задача 24.1.8 ). Тогда согласно формулам (24.3)-(24.5) с той же частотой будет совершать колебаний ток в катушке. Это значит, что зависимость тока от времени может быть представлена в виде . Отсюда находим зависимость энергии магнитного поля катушки от времени

Из этой формулы следует, что энергия магнитного поля в катушке совершает колебания с удвоенной частотой, и, значит, с периодом, вдвое меньшим периода колебания заряда и тока (ответ 1 ).

В задаче 24.1.9 используем закон сохранения энергии для колебательного контура. Из формулы (24.2) следует, что для амплитудных значений напряжения на конденсаторе и тока в катушке справедливо соотношение

где и - амплитудные значения заряда конденсатора и тока в катушке. Из этой формулы с использованием соотношения (24.1) для периода колебаний в контуре находим амплитудное значение тока

ответ 3 .

Радиоволны - электромагнитные волны с определенными частотами. Поэтому скорость их распространения в вакууме равна скорости распространения любых электромагнитных волн, и в частности, рентгеновских. Эта скорость - скорость света (задача 24.2.1 - ответ 1 ).

Как указывалось ранее, заряженные частицы излучают электромагнитные волны при движении с ускорением. Поэтому волна не излучается только при равномерном и прямолинейном движении (задача 24.2.2 - ответ 1 ).

Электромагнитная волна - это особым образом изменяющиеся в пространстве и времени и поддерживающие друг друга электрическое и магнитное поля. Поэтому правильный ответ в задаче 24.2.3 - 2 .

Из данного в условии задачи 24.2.4 графика следует, что период данной волны - = 4 мкс. Поэтому из формулы (24.6) получаем м (ответ 1 ).

В задаче 24.2.5 по формуле (24.6) находим

(ответ 4 ).

С антенной приемника электромагнитных волн связан колебательный контур. Электрическое поле волны действует на свободные электроны в контуре и заставляет их совершать колебания. Если частота волны совпадает с собственной частотой электромагнитных колебаний, амплитуда колебаний в контуре возрастает (резонанс) и может быть зарегистрирована. Поэтому для приема электромагнитной волны частота собственных колебаний в контуре должна быть близка к частоте этой волны (контур должен быть настроен на частоту волны). Поэтому если контур нужно перенастроить с волны длиной 100 м на волну длиной 25 м (задача 24.2.6 ), собственная частота электромагнитных колебаний в контуре должна быть увеличена в 4 раза. Для этого согласно формулам (24.1), (24.4) емкость конденсатора следует уменьшить в 16 раз (ответ 4 ).

Согласно шкале электромагнитных волн (см. введение к настоящей главе), максимальной длиной из перечисленных в условии задачи 24.2.7 электромагнитных волн обладает излучение антенны радиопередатчика (ответ 4 ).

Среди перечисленных в задаче 24.2.8 электромагнитных волн максимальной частотой обладает рентгеновское излучение (ответ 2 ).

Электромагнитная волна является поперечной. Это значит, что векторы напряженности электрического поля и индукции магнитного поля в волне в любой момент времени направлены перпендикулярно направлению распространения волны. Поэтому при распространении волны в направлении оси (задача 24.2.9 ), вектор напряженности электрического поля направлен перпендикулярно этой оси. Следовательно, обязательно равна нулю его проекция на ось = 0 (ответ 3 ).

Скорость распространения электромагнитной волны - есть индивидуальная характеристика каждой среды. Поэтому при переходе электромагнитной волны из одной среду в другую (или из вакуума в среду) скорость электромагнитной волны изменяется. А что можно сказать о двух других параметрах волны, входящих в формулу (24.6), - длине волны и частоте . Будут ли они изменяться при переходе волны из одной среды в другую (задача 24.2.10 )? Очевидно, что частота волны не изменяется при переходе из одной среды в другую. Действительно, волна это колебательный процесс, в котором переменное электромагнитное поле в одной среде создает и поддерживает поле в другой среде благодаря именно этим изменениям. Поэтому периоды этих периодических процессов (а значит и частоты) в одной и другой среде должны совпадать (ответ 3 ). А поскольку скорость волны в разных средах разная, то из проведенных рассуждений и формулы (24.6) следует, что длина волны при ее переходе из одной среды в другую - изменяется.

Существуют разные виды колебаний в физике, характеризующиеся определенными параметрами. Рассмотрим их основные отличия, классификацию по разным факторам.

Основные определения

Под колебанием подразумевают процесс, в котором через равные промежутки времени основные характеристики движения имеют одинаковые значения.

Периодическими называют такие колебания, при которых значения основных величин повторяются через одинаковые промежутки времени (период колебаний).

Разновидности колебательных процессов

Рассмотрим основные виды колебаний, существующие в фундаментальной физике.

Свободными называют колебания, которые возникают в системе, не подвергающейся внешним переменным воздействиям после начального толчка.

В качестве примера свободных колебаний является математический маятник.

Те виды механических колебаний, которые возникают в системе под действием внешней переменной силы.

Особенности классификации

По физической природе выделяют следующие виды колебательных движений:

  • механические;
  • тепловые;
  • электромагнитные;
  • смешанные.

По варианту взаимодействия с окружающей средой

Виды колебаний по взаимодействию с окружающей средой выделяют несколько групп.

Вынужденные колебания появляются в системе при действии внешнего периодического действия. В качестве примеров такого вида колебаний можно рассмотреть движение рук, листья на деревьях.

Для вынужденных гармонических колебаний возможно появление резонанса, при котором при равных значениях частоты внешнего воздействия и осциллятора при резком возрастании амплитуды.

Собственные это колебания в системе под воздействием внутренних сил после того, когда она будет выведена из равновесного состояния. Простейшим вариантом свободных колебаний является движение груза, который подвешен на нити, либо прикреплен к пружине.

Автоколебаниями называют виды, при которых у системы есть определенный запас потенциальной энергии, идущей на совершение колебаний. Отличительной чертой их является тот факт, что амплитуда характеризуется свойствами самой системы, а не первоначальными условиями.

Для случайных колебаний внешняя нагрузка имеет случайное значение.

Основные параметры колебательных движений

Все виды колебаний имеют определенные характеристики, о которых следует упомянуть отдельно.

Амплитудой называют максимальное отклонение от положения равновесия отклонение колеблющейся величины, измеряется она в метрах.

Период является время одного полного колебания, через который повторяются характеристики системы, вычисляется в секундах.

Частота определяется количеством колебаний за единицу времени, она обратно пропорциональна периоду колебаний.

Фаза колебаний характеризует состояние системы.

Характеристика гармонических колебаний

Такие виды колебаний происходят по закону косинуса или синуса. Фурье удалось установить, что всякое периодическое колебание можно представить в виде суммы гармонических изменений путем разложения определенной функции в

В качестве примера можно рассмотреть маятник, имеющий определенный период и циклическую частоту.

Чем характеризуются такие виды колебаний? Физика считает идеализированной системой, которая состоит из материальной точки, которая подвешена на невесомой нерастяжимой нити, колеблется под воздействием силы тяжести.

Такие виды колебаний обладают определенной величиной энергии, они распространены в природе и технике.

При продолжительном колебательном движении происходит изменение координаты его центра масс, а при переменном токе меняется значение тока и напряжения в цепи.

Выделяют разные виды гармонических колебаний по физической природе: электромагнитные, механические и др.

В качестве вынужденных колебаний выступает тряска транспортного средства, которое передвигается по неровной дороге.

Основные отличия между вынужденными и свободными колебаниями

Эти виды электромагнитных колебаний отличаются по физическим характеристикам. Наличие сопротивления среды и силы трения приводят к затуханию свободных колебаний. В случае вынужденных колебаний потери энергии компенсируются ее дополнительным поступлением от внешнего источника.

Период пружинного маятника связывает массу тела и жесткость пружины. В случае математического маятника он зависит от длины нити.

При известном периоде можно вычислить собственную частоту колебательной системы.

В технике и природе существуют колебания с разными значениями частот. К примеру, маятник, который колеблется в Исаакиевском соборе в Петербурге, имеет частоту 0,05 Гц, а у атомов она составляет несколько миллионов мегагерц.

Через некоторый промежуток времени наблюдается затухание свободных колебаний. Именно поэтому в реальной практике применяют вынужденные колебания. Они востребованы в разнообразных вибрационных машинах. Вибромолот является ударно-вибрационной машиной, которая предназначается для забивки в грунт труб, свай, иных металлических конструкций.

Электромагнитные колебания

Характеристика видов колебаний предполагает анализ основных физических параметров: заряда, напряжения, силы тока. В качестве элементарной системы, которая используется для наблюдения электромагнитных колебаний, является колебательный контур. Он образуется при последовательном соединении катушки и конденсатора.

При замыкании цепи, в ней возникают свободные электромагнитные колебания, связанные с периодическими изменениями электрического заряда на конденсаторе и тока в катушке.

Свободными они являются благодаря тому, что при их совершении нет внешнего воздействия, а используется только энергия, которая запасена в самом контуре.

При отсутствии внешнего воздействия, через определенный промежуток времени, наблюдается затухание электромагнитного колебания. Причиной подобного явления будет постепенная разрядка конденсатора, а также сопротивление, которым в реальности обладает катушка.

Именно поэтому в реальном контуре происходят затухающие колебания. Уменьшение заряда на конденсаторе приводит к снижению значения энергии в сравнении с ее первоначальным показателем. Постепенно она выделится в виде тепла на соединительных проводах и катушке, конденсатор полностью разрядится, а электромагнитное колебание завершится.

Значение колебаний в науке и технике

Любые движения, которые обладают определенной степенью повторяемости, являются колебаниями. Например, математический маятник характеризуется систематическим отклонением в обе стороны от первоначального вертикального положения.

Для пружинного маятника одно полное колебание соответствует его движению вверх-вниз от начального положения.

В электрическом контуре, который обладает емкостью и индуктивностью, наблюдается повторение заряда на пластинах конденсатора. В чем причина колебательных движений? Маятник функционирует благодаря тому, что сила тяжести заставляет его возвращаться в первоначальное положение. В случае пружиной модели подобную функцию осуществляет сила упругости пружины. Проходя положение равновесия, груз имеет определенную скорость, поэтому по инерции движется мимо среднего состояния.

Электрические колебания можно объяснить разностью потенциалов, существующей между обкладками заряженного конденсатора. Даже при его полной разрядке ток не исчезает, осуществляется перезарядка.

В современной технике применяются колебания, которые существенно различаются по своей природе, степени повторяемости, характеру, а также «механизму» появления.

Механические колебания совершают струны музыкальных инструментов, морские волны, маятник. Химические колебания, связанные с изменением концентрации реагирующих веществ, учитывают при проведении различных взаимодействий.

Электромагнитные колебания позволяют создавать различные технические приспособления, например, телефон, ультразвуковые медицинские приборы.

Колебания яркости цефеид представляют особый интерес в астрофизике, их изучением занимаются ученые из разных стран.

Заключение

Все виды колебаний тесно связаны с огромным количеством технических процессов и физических явлений. Велико их практическое значение в самолетостроении, строительстве судов, возведении жилых комплексов, электротехнике, радиоэлектронике, медицине, фундаментальной науке. Примером типичного колебательного процесса в физиологии выступает движение сердечной мышцы. Механические колебания встречаются в органической и неорганической химии, метеорологии, а также во многих иных естественнонаучных областях.

Первые исследования математического маятника были проведены в семнадцатом веке, а к концу девятнадцатого столетия ученым удалось установить природу электромагнитных колебаний. Русский ученый Александр Попов, которого считают «отцом» радиосвязи, проводил свои эксперименты именно на основе теории электромагнитных колебаний, результатах исследований Томсона, Гюйгенса, Рэлея. Ему удалось найти практическое применение электромагнитным колебаниям, использовать их для передачи радиосигнала на большое расстояние.

Академик П. Н. Лебедев на протяжении многих лет проводил эксперименты, связанные с получение электромагнитных колебаний высокой частоты с помощью переменны электрических полей. Благодаря многочисленным экспериментам, связанные с различными видами колебаний, ученым удалось найти области их оптимального использования в современной науке и технике.

Колебание, как категория физических представлений, является одним из основных понятий физики и определяется, в общем виде, как повторяющийся процесс изменения некой физической величины. Если эти изменения повторяющиеся, то это значит, что имеется некий промежуток времени, через который принимает то же самое значение. Этот промежуток времени называют

А собственно, почему колебания? Да потому, что если зафиксировать значение этой величины скажем в момент Т1, то в момент Тх она примет уже другое значение, скажем, увеличится, а еще через время она опять увеличится. Но увеличение не может быть вечным, ведь для повторяющегося процесса, наступит момент, когда эта физическая величина обязана повторится, т.е. опять примет такое же значение, как и в момент Т1, хотя по шкале времени это уже момент Т2.

Что же изменилось? Время. Прошел один временной отрезок, который будет повторяться, как временное расстояние между одинаковыми значениями физической величины. А что же произошло с физической величиной за этот промежуток времени - период? Да ничего страшного, она просто совершила одно колебание - прошла полный цикл своих изменений - от максимального до минимального значения. Если в процессе изменения от Т1 до Т2 время фиксировалось, то разность Т=Т2-Т1 дает численное выражение периода времени.

Хороший пример колебательного процесса - пружинный маятник. Грузик движется вверх - вниз, процесс повторяется, а значение физической величины, например, высота подъема маятника, колеблется между максимальным и минимальным значением.

Описание процесса колебания включает в себя параметры универсальные для колебаний любой природы. Это могут быть механические, электромагнитные колебания и т.д. При этом всегда важно понимать, что колебательный процесс для своего существования обязательно включает два объекта, каждый из которых может принимать и/или отдавать энергию - вот ту самую механическую или электромагнитную, о которых была речь выше. В каждый момент времени один из объектов отдает энергию, а второй принимает. При этом знергия меняет свою сущность на нечто очень похожее, но не то. Так, энергия маятника, переходит в энергию сжатой пружины, и они периодически меняются в процессе колебания, решая вечный вопрос партнерства - кому кого поднимать-опускать, т.е. отдавать или накапливать энергию.

Электромагнитные колебания уже в названии содержат указание на участников альянса - электрическое и а хранителями этих полей служат хорошо известные конденсатор и индуктивность. Соединенные в электрическую цепь, они представляют собой колебательный контур, в котором перекачка энергии совершается точно так же, как в маятнике - электрическая переходит в магнитное поле индуктивности и обратно.

Если система конденсатор-индуктивность предоставлена самой себе и в ней возникли электромагнитные колебания, то их период определяется параметрами системы, т.е. индуктивностью и емкостью - других нет. Говоря просто, чтобы «перелить» энергию из источника, скажем, конденсатора (а еще есть более точный аналог его названия - «емкость»), в индуктивность, нужно потратить время пропорциональное количеству запасенной энергии, т.е.емкости. Фактически величина этой «емкости» и есть параметр, от которого зависит период колебаний. Больше емкость, больше энергии - дольше длится перекачка энергии, дольше период электромагнитных колебаний.

Какие же физические величины входят в набор, определяющий описание во всех его проявлениях, в том числе и при колебательных процессах? Это составляющие поля: заряд, магнитная индукция, напряжение. Следует заметить, что электромагнитные колебания - это широчайший спектр явлений, которые мы, как правило, редко связываем между собой, хотя это та же самая сущность. И чем же они отличаются? Первое отличие любых колебаний между собой - это их период, сущность которого рассматривалась выше. В технике и науке принято говорить об обратной периоду величине, частоте - количестве колебаний в секунду. Системная единица измерения частоты - герц.

Так вот, вся шкала электромагнитных колебаний - последовательность частот электромагнитных излучений, которые распространяются в пространстве.

Условно выделяют следующие участки:

Радиоволны - спектральная зона от 30 кГц до 3000ГГц;

Инфракрасные лучи - участок более длинноволнового, чем свет, излучения;

Видимый свет;

Ультрафиолетовые лучи - участок более коротковолнового, чем свет излучения;

Рентгеновские лучи;

Гамма-лучи.

Весь приведенный диапазон излучений представляет собой электромагнитные излучения единой природы, но разной частоты. Разбивка на участки носит чисто утилитарный характер, который диктуется удобством технических и научных приложений.

Электромагнитными колебаниями называют периодические (или почти периодические) взаимосвязанные изменения зарядов, токов, напряженностей электрического и магнитного полей. Распространение электромагнитных колебаний в пространстве происходит в виде электромагнитных волн. Среди различных физических явлений электромагнитные колебания и волны занимают особое место. Почти вся электротехника, радиотехника и оптика базируется на этих понятиях.

18.1. СВОБОДНЫЕ ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ

Свободными (собственными) электромагнитными колебаниями называют такие, которые совершаются без внешнего воздействия за счет первоначально накопленной энергии.

Рассмотрим закрытый колебательный контур, состоящий из катушки индуктивности L и конденсатора С (рис. 18.1), который ключом К заряжается от источника ε , а затем разряжается на катушку индуктивности. При этом в контуре возникает э.д.с. самоиндукции, которая будет равна напряжению на обкладках конденсатора. Используя формулу (17.14), запишем:

Известно, что (18.2) является дифференциальным уравнением гармонического колебания, его решение [см. (7.6)] имеет вид:


18.2. ПЕРЕМЕННЫЙ ТОК

В широком смысле слова переменный ток - любой ток, изменяющийся со временем. Однако чаще термин «переменный ток» применяют к токам, изменяющимся со временем по гармоническому закону. Переменный ток можно рассматривать как вынужденные электромагнитные колебания.

Представим три разных цепи (рис. 18.4, а-18.6, а), к каждой из которых приложено переменное напряжение:


18.3. ПОЛНОЕ СОПРОТИВЛЕНИЕ В ЦЕПИ ПЕРЕМЕННОГО ТОКА. РЕЗОНАНС НАПРЯЖЕНИЙ

Представим цепь, в которой последовательно соединены резистор, катушка индуктивности и конденсатор (рис. 18.7). Напряжение на зажимах a, b цепи, создаваемое внешним источником, выражается по-прежнему зависимостью (18.22) с амплитудой U max .

В последовательной цепи сила тока на всех участках одинакова, а напряжения различны. Как видно из 14.2, в общем случае сила тока в цепи и напряжение изменяются не в одной фазе, поэтому


При этом условии полное сопротивление Z цепи имеет наименьшее значение, равное R (при данных R, L и С), а сила тока достигает наибольшего значения. Векторная диаграмма для резонанса напряжений в цепи показана на рис. 18.9. Если Lω >1/(Ссо), то tgcp >0 и φ >0, сила тока отстает по фазе от приложенного напряжения (см. рис. 18.8). При Leo <1/(Ссо) имеем tgcp <0 и φ <0. Сила тока опережает по фазе напряжение.

Векторная диаграмма для этого случая дана на рис. 18.10.

18.4. ПОЛНОЕ СОПРОТИВЛЕНИЕ (ИМПЕДАНС) ТКАНЕЙ ОРГАНИЗМА. ФИЗИЧЕСКИЕ ОСНОВЫ РЕОГРАФИИ

Ткани организма проводят не только постоянный, но и переменный ток. В организме нет таких систем, которые были бы подобны катушкам индуктивности, поэтому индуктивность его близка к нулю. Биологические мембраны и, следовательно, весь организм обладают емкостными свойствами, в связи с этим импеданс тканей организма определяется только омическим и емкостным сопротивлениями. Наличие в биологических системах емкостных элементов подтверждается тем, что сила тока опережает по фазе приложенное напряжение. Приведем некоторые значения угла сдвига фаз, полученные при частоте 1 кГц для разных биологических объектов (табл. 18.1).

Таблица 18.1

Омические и емкостные свойства биологических тканей можно моделировать, используя эквивалентные электрические схемы. Рассмотрим некоторые из них (рис. 18.11).

Для схемы, изображенной на рис. 18.11, а, частотная зависимость импеданса может быть получена из (18.36) при L = 0:

Частотная зависимость импеданса позволяет оценить жизнеспособность тканей организма, что важно знать для пересадки (трансплантации) тканей и органов. Проиллюстрируем это графически (рис. 18.12). Здесь 1 - кривая для здоровой, нормальной, ткани, 2 - для мертвой, убитой кипячением в воде. В мертвой ткани разрушены мембраны - «живые конденсаторы», и ткань обладает лишь омическим сопротивлением.

Различие в частотных зависимостях импенданса получается и в случаях здоровой и больной ткани.

Как видно из (18.38), угол сдвига фаз между током и напряжением также может давать информацию о емкостных свойствах ткани.

Импеданс тканей и органов зависит и от их физиологического состояния. Так, при кровенаполнении сосудов импеданс изменяется в зависимости от состояния сердечно-сосудистой деятельности.

Диагностический метод, основанный на регистрации изменения импеданса тканей в процессе сердечной деятельности, называют реографией (импеданс-плетизмография).

С помощью этого метода получают реограммы головного мозга (рео-энцефалограмма), сердца (реокардиограмма), магистральных сосудов, легких, печени и конечностей. Измерения обычно проводят на частоте 30 кГц.

18.5. ЭЛЕКТРИЧЕСКИЙ ИМПУЛЬС И ИМПУЛЬСНЫЙ ТОК

Электрическим импульсом назовем кратковременное изменение электрического напряжения или силы тока.

В технике импульсы подразделяются на две большие группы: видео-и радиоимпульсы.

Видеоимпульсы - это такие электрические импульсы тока или напряжения, которые имеют постоянную составляющую, отличную от нуля. Таким образом, видеоимпульс имеет преимущественно одну полярность. По форме видеоимпульсы бывают (рис. 18.13):

а) прямоугольные;

б) пилообразные;

в) трапецеидальные;


18.6. ПРОХОЖДЕНИЕ ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ ЧЕРЕЗ ЛИНЕЙНУЮ ЦЕПЬ. ДИФФЕРЕНЦИРУЮЩИЕ И ИНТЕГРИРУЮЩИЕ ЦЕПИ

При прохождении переменного тока через электрическую цепь, составленную из резисторов, катушек индуктивности и конденсаторов, сохраняется форма гармонического сигнала: данному внешнему гармоническому сигналу соответствует синусоидальный электрический ток. Таким образом, между силой тока и напряжением существует линейная зависимость и сама цепь называется линейной. Наличие таких элементов в цепи, как электронная лампа, полупроводниковый диод, транзистор, сделало бы цепь нелинейной.

Линейная цепь не искажает форму гармонического напряжения, но изменяет форму импульсного сигнала.

В практической медицине это важно иметь в виду по двум основным причинам.

Во-первых, снимая электрический сигнал для диагностических целей (см. 14.5) с биологического объекта, следует учитывать возможные искажения его формы в измерительной электрической цепи.


18.7. ПОНЯТИЕ О ТЕОРИИ МАКСВЕЛЛА. ТОК СМЕЩЕНИЯ

Обобщая результаты опытов Х.К. Эрстеда по воздействию электрического тока на магнитную стрелку, опытов Фарадея по электромагнитной индукции и других фактов, Максвелл создал в рамках классической физики теорию электромагнитного поля.

В основе теории Максвелла лежат два положения.

1. Всякое переменное электрическое поле порождает вихревое магнитное. Переменное электрическое поле было названо Максвеллом током смещения, так как оно, подобно обычному току, вызывает магнитное поле.

Чтобы найти выражение для силы тока смещения, рассмотрим прохождение переменного тока по цепи, в которую включен конденсатор с диэлектриком (рис. 18.22). Конденсатор не препятствует протеканию тока, что заметно по накалу лампочки. В проводниках это обычный ток проводимости 1 пр, обусловленный изменением заряда на обкладках конденсатора. Можно считать, что ток проводимости продолжается в конденсаторе током смещения 1 см, причем

1 А.А. Эйхенвальд был первым заведующим кафедрой физики Высших женских курсов в Москве, на основе которых был создан ряд московских вузов, в том числе и Российский медицинский университет.

В опыте Эйхенвальда диск из диэлектрика 1 (рис. 18.23) располагается между пластинами двух плоских конденсаторов 2 и 3. Напряженности электрического поля в них направлены противоположно. При вращении диска вокруг оси 4 происходит изменение поляризации диэлектрика в пространстве между конденсаторами. Это порождает магнитное поле, определяемое с помощью специальной индикаторной магнитной стрелки.

Подставляя выражение для силы тока смещения (18.51) в закон полного тока (16.46), получаем первое уравнение Максвелла:

которое связывает скорость изменения магнитного потока сквозь любую поверхность и циркуляцию вектора напряженности электрического поля, возникающего при этом. Циркуляция берется по контуру, на который опирается поверхность.

Из основных приведенных выше положений теории Максвелла следует, что возникновение какого-либо поля, электрического или магнитного, в некоторой точке пространства влечет за собой целую цепь взаимных превращений: переменное электрическое поле порождает магнитное (на рис. 18.24, а показаны Ε и линия напряженности возникшего магнитного поля при условии dE/dt > 0), изменение магнитного поля порождает электрическое (на рис, 18.24, б изображены Η и силовая линия возникшего электрического поля при условии dH/dt > 0) и т.д. Различие в знаке уравнений Максвелла (18.53) и (18.54) обусловливает различное направление стрелок на линиях Η и Ε этих рисунков.

18.8. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ

Взаимное образование электрических и магнитных полей приводит к понятию электромагнитной волны - распространение единого электромагнитного поля в пространстве.

Поясним это. Пусть в точке х 1 диэлектрика (рис. 18.25) возрастает напряженность Е 1 электрического поля. При этом возникает вихревое магнитное поле, напряженность которого Н 2 в точке х 2 направлена от читателя (ср. с рис. 18.24, а). Возрастание Н 2 вызывает вихревое электрическое поле, в точке х 2 вектор напряженности этого поля перпендикулярен оси ОХ (ср. с рис. 18.24, б) и т.д. Если изменения Ε или Н будут поддерживаться в заданной точке за счет энергии некоторого источника, то в пространстве будет непрерывно распространяться электромагнитная волна.

Покажем, что волновой характер распространения электромагнитного поля следует из уравнений Максвелла (18.53) и (18.54). Будем считать среду диэлектриком; следовательно, сила тока проводимости равна нулю. Магнитный поток через некоторую площадь S, расположенную перпендикулярно линиям В , равен:

1 Уравнения Максвелла записаны в частных производных, так как в дальнейшем возникнет необходимость дифференцирования по координате.

Аналогичное уравнение можно получить и для напряженности магнитного поля:


18.9. ШКАЛА ЭЛЕКТРОМАГНИТНЫХ ВОЛН. КЛАССИФИКАЦИЯ ЧАСТОТНЫХ ИНТЕРВАЛОВ, ПРИНЯТАЯ В МЕДИЦИНЕ

Из теории Максвелла вытекает, что различные электромагнитные волны, в том числе и световые, имеют общую природу. В связи с этим целесообразно представить всевозможные электромагнитные волны в виде единой шкалы (рис. 18.27).

Вся шкала условно подразделена на шесть диапазонов: радиоволны (длинные, средние и короткие), инфракрасные, видимые, ультрафиоле-

товые, рентгеновские и гамма-излучение. Эта классификация определяется либо механизмом образования волн, либо возможностью зрительного восприятия их человеком.

Радиоволны обусловлены переменными токами в проводниках и электронными потоками (макроизлучатели). Инфракрасное, видимое и ультрафиолетовое излучения исходят из атомов, молекул и быстрых заряженных частиц (микроизлучатели). Рентгеновское излучение возникает при внутриатомных процессах, γ -излучение имеет ядерное происхождение.

Некоторые диапазоны перекрываются, так как волны одной и той же длины могут образоваться в разных процессах. Так, наиболее коротковолновое ультрафиолетовое излучение перекрывается длинноволновым рентгеновским.

В этом отношении очень характерна пограничная область инфракрасных волн и радиоволн. До 1922 г. между этими диапазонами был пробел. Наиболее коротковолновое излучение этого незаполненного промежутка имело молекулярное атомное происхождение (излучение нагретого тела), а наиболее длинноволновое излучалось макроскопическими вибраторами Герца. Российским физиком А.А. Глаголевой-Аркадьевой 1 было предложено пропускать искру через смесь большого числа мелких металлических опилок в масле. При этом можно было получить различные электромагнитные волны с длиной волны 82 мкм и более. Диапазоны инфракрасных и радиоволн были сомкнуты.

Сейчас никого не удивляет, что даже миллиметровые волны могут генерироваться не только радиотехническими средствами, но и молекулярными переходами. Появился раздел - радиоспектроскопия, который изучает поглощение и излучение радиоволн различными веществами. В медицине принято следующее условное разделение электромагнитных колебаний на частотные диапазоны (табл. 18.2).

Таблица 18.2

1 Александра Андреевна Глаголева-Аркадьева была первым заведующим кафедры физики 2-го Московского медицинского института (ныне Российский медицинский университет).

Окончание табл. 18.2

Часто физиотерапевтическую электронную аппаратуру низкой и звуковой частоты называют низкочастотной. Электронную аппаратуру всех других частот называют обобщающим понятием высокочастотная.