Болезни Военный билет Призыв

Нейронные сети глубинного обучения. Глубинное обучение для автоматической обработки текстов. Онлайн-курсы по глубинному обучению

С появления термина «глубокое обучение» прошло уже больше 20 лет, но широко заговорили о нем только недавно. Кратко объясняем, почему так получилось, что такое deep learning, чем оно отличается от машинного обучения и почему вам надо об этом знать.

  • Что это такое?

    Глубокое обучение - это ветвь развития машинного обучения, где используется модель, вдохновленная устройством мозга - взаимодействием нейронов.

    Сам термин появился еще в 1980-х, но до 2012 года для реализации этой технологии не хватало мощностей и на нее почти никто не обращал внимание. После серии статей известных ученых, публикаций в научных изданиях технология быстро стала популярной и получила внимание крупных медиа, - первым из мировых СМИ об этом написал The New York Times. Одним из поводов для материала стала научная работа специалистов из университетов Торонто Алекса Крижевского, Ильи Сатскевера и Джеффа Хинтона. Они описали и проанализировали результаты конкурса распознавания изображений ImageNet, где с большим отрывом победила их нейросеть, обученная с помощью deep learning, - система определила 85% объектов. С тех пор в конкурсе побеждала только глубокая нейросеть

  • Погодите, а что такое машинное обучение?

    Это подобласть искусственного интеллекта и термин - им описывают методы построения алгоритмов, которые учатся на своем опыте, без написания специальной программы. То есть человеку в этом случае не надо объяснять машине, как решить задачу, она находит ответ сама, из данных, которые ей предоставлены. К примеру, если мы хотим, чтобы алгоритм определял лица, мы должны показать ему десять тысяч разных лиц, отметить, где именно находится лицо, и тогда программа научится определять его самостоятельно.

    Обучаться машина может как с помощью учителя, когда он помечает для машины правильные ответы, так и без него. Но результаты лучше при обучении с учителем. Каждый раз, когда происходит обработка данных, система становится точнее.

  • А глубокое обучение как работает?

    Оно имитирует абстрактное мышление человека и умеет обобщать. Например, нейросеть, обученная машинным способом, плохо распознает рукописные буквы - и чтобы она не путалась в различных вариантах написания, все они должны быть в нее загружены.

    Глубокое обучение же используется в случае работы с многослойными искусственными нейронными сетями и сможет справиться с этой задачей.

    «Есть три термина, которые в последнее время часто используют почти взаимозаменяемо: искусственный интеллект, машинное обучение и глубокое обучение. Однако на самом деле это „вложенные“ термины: искусственный интеллект - это всё что угодно, что может помочь компьютеру выполнять человеческие задачи; машинное обучение - это раздел ИИ, в котором программы не просто решают задачи, а обучаются на основе имеющегося у них опыта, а глубокое обучение - это раздел машинного обучения, изучающий глубокие нейронные сети.

    Проще говоря: 1. если вы написали программу, играющую в шахматы, - это искусственный интеллект; 2. если она при этом обучается на базе партий гроссмейстеров или играя против самой себя - это машинное обучение; 3. а если обучается у неё при этом не что-нибудь, а глубокая нейронная сеть, - это глубокое обучение» .

  • Как работает глубокое обучение?

    Возьмем простой пример - мы покажем нейросети фотографии, на которых изображены мальчик и девочка. На первом слое нейроны реагируют на простые визуальные образы - например перепады яркости. На втором - более сложные: углы, окружности. К третьему слою нейроны способны реагировать на надписи и человеческие лица. К каждому следующему слою определяемые образы будут сложнее. Нейронная сеть сама определяет, какие визуальные элементы ей интересны для решения этой задачи, и ранжирует их по степени важности, чтобы в дальнейшем лучше понимать, что изображено на фотографии.

  • И что с помощью него уже разработали?

    Больше всего проектов с глубоким обучением применяется в распознавании фотографии или аудио, диагностике заболеваний. Например, оно уже используется в переводах Google с изображения: технология Deep Learning позволяет определить, есть ли на картинке буквы, а затем переводит их. Другой проект, который работает с фото, - система распознавания лиц под названием DeepFace. Она умеет распознавать человеческие лица с точностью 97,25% - примерно с той же точностью, что и человек.

    В 2016 году Google выпустил WaveNet - систему, которая может имитировать человеческую речь. Для этого компания загрузила в систему миллионы минут записанных голосовых запросов, которые использовались в проекте OK Google, и после изучения, нейросеть смогла сама составить предложения с правильными ударениями, акцентом и без нелогичных пауз.

    При этом глубокое обучение может семантически сегментировать изображение или видео - то есть не просто обозначать, что на картинке есть объект, но и идеально выделить его контуры. Эта технология используется в беспилотных автомобилях, которые определяют, есть ли помехи на дороге, разметку и считывают информацию с дорожных знаков, чтобы избежать аварий. Нейросеть также используют в медицине - чтобы определять диабетическую ретинопатию по фотографиям глаз пациентов например. Министерство здравоохранения США уже разрешило использовать эту технологию в государственных клиниках.

  • А почему глубинное обучение не начали внедрять раньше?

    Раньше это было затратно, сложно и долго - нужны были мощные графические процессоры, видеокарты и объемы памяти. Бум глубинного обучения как раз связан с широким распространением графических процессоров, которые ускоряют и удешевляют вычисления, практически неограниченные возможности хранения данных и развитие технологии «больших данных».

  • Это прорывная технология, она все поменяет?

    Об этом сложно сказать точно, мнения разнятся. С одной стороны, Google, Facebook и другие крупные компании уже вложили миллиарды долларов и настроены оптимистично. По их мнению, нейросети с глубинным обучением способны поменять технологическое устройство мира. Один из главных специалистов по машинному обучению - Эндрю Ынг - говорит: «Если человек может выполнить задачу в уме за секунду, скорее всего, в ближайшее время эта задача будет автоматизирована». Ынг называет машинное обучение «новым электричеством» - это техническая революция, и компании, которые ее проигнорируют, очень быстро обнаружат себя безнадежно отставшими от конкурентов.

    С другой стороны, есть и скептики: они считают, что глубокое обучение - это модное слово или ребрендинг нейронных сетей. К примеру, старший преподаватель факультета компьютерных наук ВШЭ Сергей Бартунов считает, что этот алгоритм - лишь один из вариантов (и при этом не лучший) обучения нейросети, который быстро подхватили массовые издания и о которых теперь знают все.

    Сергей Николенко, соавтор книги «Глубокое обучение»: «История искусственного интеллекта уже знала две „зимы“, когда за волной хайпа и завышенных ожиданий следовало разочарование. Оба раза, кстати, это было связано с нейронными сетями. Сначала в конце 1950-х решили, что перцептрон Розенблатта тут же приведёт к машинному переводу и осознающим себя компьютерам; но, конечно, не получилось из-за ограниченности железа, данных и отсутствия подходящих моделей.

    А в конце 1980-х ту же ошибку совершили, когда разобрались, как обучать любые архитектуры нейронных сетей. Показалось, что вот он, золотой ключик, открывающий любые двери. Это уже был не такой уж наивный вывод: действительно, если взять нейронную сеть из конца 1980-х, механически сделать её больше (увеличить число нейронов) и обучить на современных наборах данных и современном „железе“, она будет очень даже неплохо работать! Но ни данных, ни „железа“ в то время не хватало, и революцию глубокого обучения пришлось отложить до конца нулевых годов.

    Сейчас мы живём на третьей волне хайпа искусственного интеллекта. Закончится ли она третьей „зимой“ или созданием сильного ИИ - покажет только время».

  • Из статьи вы узнаете, что такое глубинное обучение. Также статья содержит множество ресурсов, которые вы сможете использовать для освоения этой области.

    В современном мире, начиная со здравоохранения и заканчивая мануфактурным производством, повсеместно используется глубинное обучение. Компании обращаются к этой технологии для решения сложных проблем, таких как распознавание речи и объектов, машинный перевод и так далее.

    Одним из самых впечатляющих достижений этого года был AlphaGo, обыгравший лучшего в мире игрока в го. Кроме как в го, машины обошли людей и в других играх: шашки, шахматы, реверси, и джеопарди.

    Возможно, победа в настольной игре кажется неприменимой в решении реальных проблем, однако это совсем не так. Го был создан так, чтобы в нем не мог победить искусственный интеллект. Для этого ему необходимо было бы научиться одной важной для этой игры вещи – человеческой интуиции. Теперь с помощью данной разработки возможно решить множество проблем, недоступных компьютеру раньше.

    Очевидно, глубинное обучение еще далеко от совершенства, но оно уже близко к тому, чтобы приносить коммерческую пользу. Например, эти самоуправляемые машины. Известные компании вроде Google, Tesla и Uber уже пробуют внедрить автономные автомобили на улицы города.

    Ford предсказывает значительное увеличение доли беспилотных транспортных средств уже к 2021 году. Правительство США также успело разработать для них свод правил безопасности.

    Что такое глубинное обучение?

    Чтобы ответить на этот вопрос, нужно понять, как оно взаимодействует с машинным обучением, нейросетями и искусственным интеллектом. Для этого используем метод визуализации с помощью концентрических кругов:

    Внешний круг – это искусственный интеллект в целом (например, компьютеры). Чуть дальше – машинное обучение, а совсем в центре – глубинное обучение и искусственные нейросети.

    Грубо говоря, глубинное обучение – просто более удобное название для искусственных нейросетей. «Глубинное» в этом словосочетании обозначает степень сложности (глубины) нейросети, которая зачастую может быть весьма поверхностной.

    Создатели первой нейросети вдохновлялись структурой коры головного мозга. Базовый уровень сети, перцептрон , является по сути математическим аналогом биологического нейрона. И, как и в головном мозге, в нейросети могут появляться пересечённые друг с другом перцептроны.

    Первый слой нейросети называется входным. Каждый узел этого слоя получает на вход какую-либо информацию и передает ее на последующие узлы в других слоях. Чаще всего между узлами одного слоя нет связей, а последний узел цепочки выводит результат работы нейросети.

    Узлы посередине называются скрытыми, поскольку не имеют соединений с внешним миром, как узлы вывода и ввода. Они вызываются только в случае активации предыдущих слоев.

    Глубинное обучение – это по сути техника обучения нейросети, которая использует множество слоев для решения сложных проблем (например, распознавания речи) с помощью шаблонов. В восьмидесятых годах большинство нейросетей были однослойными в силу высокой стоимости и ограниченности возможностей данных.

    Если рассматривать машинное обучение как ответвление или вариант работы искусственного интеллекта, то глубинное обучение – это специализированный тип такого ответвления.

    Машинное обучение использует компьютерный интеллект, который не дает ответа сразу. Вместо этого код будет запускаться на тестовых данных и, исходя из правильности их результатов, корректировать свой ход. Для успешности этого процесса обычно используются разнообразные техники, специальное программное обеспечение и информатика, описывающая статические методы и линейную алгебру.

    Методы глубинного обучения

    Методы глубинного обучения делятся на два основных типа:

    • Обучение с учителем
    • Обучение без учителя

    Первый способ использует специально отобранные данные, чтобы добиться желаемого результата. Он требует довольно много человеческого вмешательства, ведь данные приходится выбирать вручную. Однако он удобен для классификации и регрессии.

    Представьте, что вы владелец компании и хотите определить влияние премий на продолжительность контрактов с вашими подчиненными. При наличии заранее собранных данных, метод обучения с учителем был бы незаменим и очень эффективен.

    Второй же способ не подразумевает заранее заготовленных ответов и алгоритмов работы. Он направлен на выявление в данных скрытых шаблонов. Обычно его используют для кластеризации и ассоциативных задач, например для группировки клиентов по поведению. «С этим также выбирают» на Amazon – вариант ассоциативной задачи.

    В то время как метод обучения с учителем довольно часто вполне удобен, его более сложный вариант все же лучше. Глубинное обучение зарекомендовало себя как нейросеть, не нуждающаяся в надзоре человека.

    Важность глубинного обучения

    Компьютеры уже давно используют технологии распознавания определенных черт на изображении. Однако результаты были далеки от успеха. Компьютерное зрение оказало на глубинное обучение невероятное влияние. Именно эти две техники в данный момент решают все задачи на распознавание.

    В частности, в распознавании лиц на фотографиях с помощью глубинного обучения преуспел Facebook. Это не простое улучшение технологии, а поворотный момент, изменяющий все более ранние представления: «Человек может с вероятностью в 97.53% определить, один ли человек представлен на двух разных фотографиях. Программа, разработанная командой Facebook, может делать это с вероятностью в 97.25% вне зависимости от освещения или того, смотрит ли человек прямо в камеру или повернут к ней боком».

    Распознавание речи тоже претерпело значительные изменения. Команда Baidu – одного из лидирующих поисковиков Китая – разработала систему распознавания речи, сумевшую опередить человека в скорости и точности написания текста на мобильных устройствах. На английском и мандаринском.

    Что особенно занимательно – написание общей нейросети для двух абсолютно разных языков не потребовало особенного труда: «Так исторически сложилось, что люди видели Китайский и Английский, как два совершенно разных языка, поэтому и подход к каждому из них требовался различный», — говорит начальник исследовательского центра Baidu, Andrew Ng. «Алгоритмы обучения сейчас настолько обобщены, что вы можете просто обучаться».

    Google использует глубинное обучение для управления энергией в дата-центрах компании. Они смогли сократить затраты ресурсов для охлаждения на 40%. Это около 15% повышения эффективности энергопотребления и миллионы долларов экономии.

    Микросервисы глубинного изучения

    Вот краткий обзор сервисов, связанных с глубинным обучением.

    Illustration Tagger. Дополненный Illustration2Vec, этот сервис позволяет отмечать изображения с рейтингом «защищенный», «сомнительный», «опасный», «копирайт» или «общий» для того, чтобы заранее понять содержание картинки.

    • Дополнение для Theano от Google
    • Редактируется на Python и Numpy
    • Зачастую применяется для решения определенного спектра проблем
    • Не общего назначения. Основной упор на машинное зрение
    • Редактируется на C++
    • Есть интерфейс на Python

    Онлайн-курсы по глубинному обучению

    Google и Udacity объединились для создания бесплатного курса по глубинному обучению , части Курса Машинного Обучения Udacity. Эту программу ведут опытные разработчики, желающие развить такую область, как машинное обучение и, в частности, глубинное обучение.

    Другой популярный вариант – курс машинного обучения от Andrew Ng при поддержке Coursera и Стенфорда.

    1. Машинное обучение – Стенфорд от Andrew Ng на Coursera (2010-2014)
    2. Машинное обучение – Caltech от Yaser Abu-Mostafa (2012-2014)
    3. Машинное обучение – Carnegie Mellon от Tom Mitchell (Весна 2011)
    4. Нейросети для машинного обучения – Geoffrey Hinton на Coursera (2012)
    5. Класс по нейросетям – Hugo Larochelle из Université de Sherbrooke (2013

    Книги по глубинному обучению

    В то время как ресурсы из предыдущей секции опираются на довольно обширную базу знаний, книга «Grokking Deep Learning», наоборот, рассчитана на новичков. Как говорят авторы: «Если вы закончили 11 классов и примерно понимаете, как писать на Python, мы научим вас глубинному обучению».

    Популярной альтернативной этой книге является книга с говорящим названием Deep Learning Book. Она особенно хороша тем, что описывает всю ту математику, что будет необходима вам для погружения в эту область.

    1. «Глубинное обучение» от Yoshua Bengio, Ian Goodfellow и Aaron Courville (2015)
    2. «Нейросети и глубинное обучение» от Michael Nielsen (2014)
    3. «Глубинное обучение» от Microsoft Research (2013)
    4. «Туториалы по глубинному обучению» от лаборатории LISA, Университета Монреаля (2015)
    5. «neuraltalk» от Andrej Karpathy
    6. «Введение в генетические алгоритмы»
    7. «Современный подход к искусственному интеллекту»
    8. «Обзор на глубинное обучение и нейросети»

    Видеоролики и лекции

    Deep Learning Simplified – чудесный YouTube-канал. Вот их первое видео:

    И частях, это руководство предназначено для всех, кто интересуется машинным обучением, но не знает, с чего начать. Содержание статей рассчитано на широкую аудиторию и будет достаточно поверхностным. Но разве это кого-то волнует? Чем больше людей заинтересуются машинным обучением, тем лучше.

    Распознавание объектов с помощью глубокого обучения

    Возможно, вы уже видели этот знаменитый комикс xkcd . Шутка в том, что любой 3-летний ребенок может распознать фотографию птицы, но заставить это сделать компьютер заняло у самых лучших компьютерных специалистов более 50 лет.В последние несколько лет мы наконец-то нашли хороший подход к распознаванию объектов с использованием глубоких сверточных нейронных сетей . Это звучит как куча выдуманных слов из фантастического романа Уильяма Гибсона, но все станет понятным, когда мы разберем их по очереди.Итак, давайте же сделаем это – напишем программу, распознающую птиц!

    Начнем с простого

    Прежде чем научиться распознавать изображения птиц, давайте узнаем, как распознать что-то гораздо более простое – рукописную цифру «8».

    Глубинное обучение меняет парадигму работы с текстами, однако вызывает скепсис у компьютерных лингвистов и специалистов в области анализа данных. Нейронные сети - мощный, но тривиальный инструмент машинного обучения.

    03.05.2017 Дмитрий Ильвовский, Екатерина Черняк

    Нейронные сети позволяют находить скрытые связи и закономерности в текстах, но эти связи не могут быть представлены в явном виде. Нейронные сети - пусть и мощный, но достаточно тривиальный инструмент, вызывающий скептицизм у компаний, разрабатывающих промышленные решения в области анализа данных, и у ведущих компьютерных лингвистов.

    Всеобщее увлечение нейросетевыми технологиями и глубинным обучением не обошло стороной и компьютерную лингвистику - автоматическую обработку текстов на естественном языке. На недавних конференциях ассоциации компьютерной лингвистики ACL, главном научном форуме в этой области, подавляющее большинство докладов было посвящено применению нейронных сетей как для решения уже известных задач, так и для исследования новых, которые не решались с помощью стандартных средств машинного обучения. Повышенное внимание лингвистов к нейронным сетям обусловлено несколькими причинами. Применение нейронных сетей, во-первых, существенным образом повышает качество решения некоторых стандартных задач классификации текстов и последовательностей, во-вторых, снижает трудоемкость при работе непосредственно с текстами, в-третьих, позволяет решать новые задачи (например, создавать чат-боты). В то же время нейронные сети нельзя считать полностью самостоятельным механизмом решения лингвистических проблем.

    Первые работы по глубинному обучению (deep learning) относятся к середине XX века. В начале 1940-х годов Уоррен Маккаллок и Уолтер Питтс предложили формальную модель человеческого мозга - искусственную нейронную сеть, а чуть позже Фрэнк Розенблатт обобщил их работы и создал модель нейронной сети на компьютере. Первые работы по обучению нейронных сетей с использованием алгоритма обратного распространения ошибки относятся к 1960-м годам (алгоритм вычисляет ошибку предсказания и минимизирует ее с помощью методов стохастической оптимизации). Однако оказалось, что, несмотря на красоту и изящество идеи имитации мозга, обучение «традиционных» нейронных сетей занимает много времени, а результаты классификации на небольших наборах данных сопоставимы с результатами, полученными более простыми методами, например машинами опорных векторов (Support Vector Machine, SVM). В итоге нейронные сети были на 40 лет забыты, но сегодня снова стали востребованы при работе с большими объемами неструктурированных данных, изображений и текстов.

    С формальной точки зрения нейронная сеть представляет собой направленный граф заданной архитектуры, вершины или узлы которого называются нейронами . На первом уровне графа находятся входные узлы, на последнем - выходные узлы, число которых зависит от задачи. Например, для классификации на два класса на выходной уровень сети можно поместить один или два нейрона, для классификации на k классов - k нейронов. Все остальные уровни в графе нейронной сети принято называть скрытыми слоями. Все нейроны, находящиеся на одном уровне, связаны ребрами со всеми нейронами следующего уровня, каждое ребро обладает весом. Каждому нейрону ставится в соответствие функция активации, моделирующая работу биологических нейронов: они «молчат», когда входной сигнал слаб, а когда его значение превышает некий порог, срабатывают и передают входное значение дальше по сети. Задача обучения нейронной сети на примерах (то есть на парах «объект - правильный ответ») заключается в поиске весов ребер, наилучшим образом предсказывающих правильные ответы. Ясно, что именно архитектура - топология строения графа нейронной сети - является ее важнейшим параметром. Хотя формального определения для «глубинных сетей» пока нет, принято считать глубинными все нейронные сети, состоящие из большого числа слоев или имеющие «нестандартные» слои (например, содержащие только избранные связи или использующие рекурсию с другими слоями).

    Примером наиболее успешного применения нейронных сетей пока является анализ изображений, однако нейросетевые технологии коренным образом изменили и работу с текстовыми данными. Если раньше каждый элемент текста (буква, слово или предложение) нужно было описывать с помощью множества признаков различной природы (морфологических, синтаксических, семантических и т. д.), то теперь во многих задачах необходимость в сложных описаниях пропадает. Теоретики и практики нейросетевых технологий часто говорят об «обучении представлению» (representation learning) - в сыром тексте, разбитом только на слова и предложения, нейронная сеть способна найти зависимости и закономерности и самостоятельно составить признаковое пространство. К сожалению, в таком пространстве человек ничего не поймет - во время обучения нейронная сеть ставит каждому элементу текста в соответствие один плотный вектор, состоящих из неких чисел, представляющих обнаруженные «глубинные» взаимосвязи. Акцент при работе с текстом смещается от конструирования подмножества признаков и поиска внешних баз знаний к выбору источников данных и разметке текстов для последующего обучения нейронной сети, для которого требуется существенно больше данных по сравнению со стандартными методами. Именно из-за необходимости использовать большие объемы данных и из-за слабой интерпретируемости и непредсказуемости нейронные сети не востребованы в реальных приложениях промышленного масштаба, в отличие от других, хорошо зарекомендовавших себя алгоритмов обучения, таких как случайный лес и машины опорных векторов. Тем не менее нейронные сети используются в целом ряде задач автоматической обработки текстов (рис. 1).

    Одно из самых популярных применений нейронных сетей - построение векторов слов, относящихся к области дистрибутивной семантики: считается, что значение слова можно понять по значению его контекста, по окружающим словам. Действительно, если нам незнакомо какое-то слово в тексте на известном языке, то в большинстве случаев можно угадать его значение. Математической моделью значения слова служат вектора слов: строки в большой матрице «слово-контекст», построенной по достаточно большому корпусу текстов. В качестве «контекстов» для конкретного слова могут выступать соседние слова, слова, входящие с данным в одну синтаксическую или семантическую конструкцию, и т. д. В клетках такой матрицы могут быть записаны частоты (сколько раз слово встретилось в данном контексте), но чаще используют коэффициент положительной попарной взаимной информации (Positive Pointwise Mutual Information, PPMI), показывающий, насколько неслучайным было появление слова в том или ином контексте. Такие матрицы вполне успешно могут быть использованы для кластеризации слов или для поиска слов, близких по смыслу к искомому слову.

    В 2013 году Томаш Миколов опубликовал работу , в которой предлагал использовать нейронные сети для обучения векторам слов, но для меньшей размерности: по кортежам (слово, контексты) обучалась нейронная сеть простейшей архитектуры, на выходе каждому слову в соответствие ставился вектор из 300 элементов. Оказалось, что такие вектора лучше передают семантическую близость слов. Например, на них можно определить арифметические операции сложения и вычитания смыслов и получить следующие уравнения: «Париж – Франция + Россия = Москва»; «король – мужчина + женщина = королева». Или найти лишнее слово в ряду «яблоко, груша, вишня, котенок». В работе были представлены две архитектуры, skip-gram и CBOW (Continuous Bag of Words), под общим названием word2vec. Как позже было показано в , word2vec - это не что иное, как факторизация матрицы «слово-контекст» с весами PPMI. Сейчас принято относить word2vec к дистрибутивной семантике, а не к глубинному обучению , однако исходным толчком для создания этой модели послужило применение нейронной сети. Кроме того, оказалось, что вектора word2vec служат удобным представлением смысла слова, которое можно подавать на вход глубинным нейронным сетям, используемым для классификации текстов.

    Задача классификации текстов - одна из самых актуальных для маркетологов, особенно когда речь идет об анализе мнений или отношения потребителя к какому-то товару или услуге, поэтому исследователи постоянно работают над повышением качества ее решения. Однако анализ мнений является задачей классификации скорее предложений, а не текстов - в положительном отзыве пользователь может написать одно-два отрицательно окрашенных предложения, и их тоже важно уметь определять и анализировать. Известная трудность в классификации предложений заключается в переменной длине входа - поскольку предложения в текстах бывают произвольной длины, непонятно, как подать их на вход нейронной сети. Один из подходов заимствован из области анализа изображений и заключается в использовании сверточных нейронных сетей (convolutional neural network, CNN) (рис. 2).

    На вход сверточной нейронной сети подается предложение, в котором каждое слово уже представлено вектором (вектор векторов). Как правило, для представления слов векторами используются заранее обученные модели word2vec. Сверточная нейронная сеть состоит из двух слоев: «глубинного» слоя свертки и обычного скрытого слоя. Слой свертки, в свою очередь, состоит из фильтров и слоя «субдискретизации». Фильтр - это нейрон, вход которого формируется при помощи окон, передвигающихся по тексту и выбирающих последовательно некоторое количество слов (например, окно длины «три» выберет первые три слова, слова со второго по четвертое, с третьего по пятое и т. д.). На выходе фильтра формируется один вектор, агрегирующий все вектора слов, в него входящих. Затем на слое субдискретизации формируется один вектор, соответствующий всему предложению, который вычисляется как покомпонентный максимум из всех выходных векторов фильтров. Сверточные нейронные сети просты в обучении и реализации. Для их обучения используется стандартный алгоритм обратного распространения ошибки, а за счет того, что веса фильтров равномерно распределены (вес i-го слова из окна одинаков для любого фильтра), число параметров у сверточной нейронной сети невелико. С точки зрения компьютерной лингвистики сверточные нейронные сети - мощный инструмент для классификации, за которым, впрочем, не стоит никакой языковой интуиции, что существенно затрудняет анализ ошибок алгоритма.

    Классификация последовательностей - это задачи, в которых каждому слову нужно поставить в соответствие одну метку: морфологический разбор (каждому слову ставится в соответствие часть речи), извлечение именованных сущностей (определение того, является ли каждое слово частью имени человека, географического названия и пр.) и т. д. При классификации последовательностей используются методы, позволяющие учитывать контекст слова: если предыдущее слово - часть имени человека, то текущее тоже может быть частью имени, но вряд ли будет частью названия организации. Реализовать это требование на практике помогают рекуррентные нейронные сети, расширяющие идею языковых моделей (language model), предложенных в конце прошлого века. Классическая языковая модель предсказывает вероятность того, что слово i встретится после слова i-1. Языковые модели можно использовать и для предсказания следующего слова: какое слово с наибольшей вероятностью встретится после данного?

    Для обучения языковых моделей нужны большие корпусы - чем больше обучающий корпус, тем больше пар слов модель «знает». Использование нейронных сетей для разработки языковых моделей позволяет сократить объем хранимых данных. Представим себе простую архитектуру сети, в которой на вход поступают слова i-2 и i-1, а на выходе нейронная сеть предсказывает слово i. В зависимости от числа скрытых слоев и количества нейронов на них, обученная сеть может быть сохранена как некоторое количество плотных матриц относительно небольшой размерности. Иначе говоря, вместо обучающего корпуса и всех пар слов в нем можно хранить лишь несколько матриц и список уникальных слов. Однако такая нейронная языковая модель не позволяет учитывать длинные связи между словами. Эту проблему решают рекуррентные нейронные сети (рис. 3), в которых внутреннее состояние скрытого слоя не только обновляется после того, как на вход приходит новое слово, но и передается на следующий шаг. Таким образом, скрытый слой рекуррентной сети принимает входы двух типов: состояние скрытого слоя на предыдущем шаге и новое слово. Если рекуррентная нейронная сеть обрабатывает предложение, то скрытые состояния позволяют запоминать и передавать длинные связи в предложениях. Экспериментально неоднократно было проверено, что рекуррентные нейронные сети запоминают род субъекта в предложении и выбирают правильные местоимения (она - ее, он - его) при генерации предложения, однако показать в явном виде, как именно такого рода информация хранится в нейронной сети или как она используется, до сих пор не удалось.

    Рекуррентные нейронные сети служат и для классификации текстов. В этом случае выходы на промежуточных шагах не используются, а последний выход нейронной сети возвращает предсказанный класс. Сегодня двунаправленные (передающие скрытое состояние не только «направо», но и «налево») рекуррентные сети, имеющие несколько десятков нейронов на скрытом слое, стали стандартным инструментом для решения задач классификации текстов и последовательностей, а также генерации текстов и по сути вытеснили другие алгоритмы.

    Развитием рекуррентных нейронных сетей стали архитектуры вида Seq2seq, состоящие из двух соединенных рекуррентных сетей, одна из которых отвечает за представление и анализ входа (например, вопроса или предложения на одном языке), а вторая - за генерацию выхода (ответа или предложения на другом языке). Сети Seq2seq лежат в основе современных систем «вопрос-ответ», чат-ботов и систем машинного перевода.

    Кроме сверточных нейронных сетей, для анализа текстов применяются так называемые автокодировщики, используемые, например, для создания эффектов на изображениях в Photoshop или Instagram и нашедшие применение в лингвистике в задаче снижения размерности (поиск проекции вектора, представляющего текст, на пространство заведомо меньшей размерности). Проекция на двумерное пространство делает возможным представление текста в виде точки на плоскости и позволяет наглядно изобразить коллекцию текстов как множество точек, то есть служит средством предварительного анализа перед кластеризацией или классификацией текстов. В отличие от задачи классификации, в задаче снижения размерности нет четких критериев качества, однако изображения, получаемые при использовании автокодировщиков, выглядят достаточно «убедительно». С математической точки зрения автокодировщик - это нейронная сеть без учителя, которая обучается линейной функции f(x) = x и состоит из двух частей: кодировщика и декодировщика. Кодировщик - это сеть с несколькими скрытыми слоями с уменьшающимся количеством нейронов. Декодировщик - аналогичная сеть с увеличивающимся количеством нейронов. Их соединяет скрытый слой, на котором столько нейронов, сколько должно быть размерностей в новом пространстве меньшей размерности, и именно он отвечает за снижение размерности. Как и сверточные нейронные сети, автокодировщик не имеет никакой лингвистической интерпретации, поэтому может считаться скорее инженерным, чем аналитическим инструментом.

    Несмотря на впечатляющие результаты, нейронная сеть не может считаться самостоятельным инструментом для анализа текста (поиска закономерностей в языке) и тем более для понимания текста. Да, нейронные сети позволяют находить скрытые связи между словами и обнаруживать закономерности в текстах, но пока эти связи не представлены в интерпретируемом виде, нейронные сети будут оставаться достаточно тривиальными инструментами машинного обучения. Кроме того, в промышленных аналитических решениях глубинное обучение пока еще не востребовано, поскольку требует неоправданных затрат на подготовку данных при непредсказуемости результатов. Даже в исследовательском сообществе высказывается критическое отношение к попыткам сделать нейронные сети универсальным инструментом. В 2015 году Крис Маннинг, глава группы компьютерной лингвистики в Стэнфорде и президент ACL, четко очертил круг применимости нейронных сетей . В него он включил задачи классификации текстов, классификации последовательностей и снижения размерности. Однако благодаря маркетингу и популяризации глубинного обучения возросло внимание собственно к компьютерной лингвистике и ее новым приложениям.

    Литература

    1. Tomas Mikolov et. al. Efficient Estimation of Word Representations in Vector Space, arxiv.org. URL: http://arxiv.org/pdf/1301.3781.pdf
    2. Levy Omer, Yoav Goldberg, Ido Dagan. Improving distributional similarity with lessons learned from word embeddings. Transactions of the Association for Computational Linguistics 3. - 2015. - P. 211–225. URL: https://www.transacl.org/ojs/index.php/tacl/article/view/570/124 (дата обращения: 18.05.2017).
    3. Павел Велихов. Машинное обучение для понимания естественного языка // Открытые Системы.СУБД. - 2016. - № 1. - С.18–21. URL: (дата обращения: 18.05.2017).
    4. Christopher Manning. Computational linguistics and deep learning. Computational Linguistics. - 2016. URL: http://www.mitpressjournals.org/doi/full/10.1162/COLI_a_00239#.WQH8MBhh2qA (дата обращения: 18.05.2017).

    Дмитрий Ильвовский ([email protected]) - сотрудник Международной лаборатории интеллектуальных систем и структурного анализа, Екатерина Черняк ([email protected]) - преподаватель центра непрерывного образования, факультет компьютерных наук, НИУ ВШЭ (Москва). Работа выполнена в рамках Программы фундаментальных исследований НИУ ВШЭ.