Болезни Военный билет Призыв

Научный форум dxdy

Если внимательно присмотреться к числам от 1 до 16, расположенным в клетках квадрата на рис. 1, то можно заметить следующую закономерность: сумма чисел в каждом горизонтальном ряду, в каждом вертикальном ряду и по каждой из диагоналей одна и та же. Такой квадрат и все квадраты, обладающие аналогичным свойством, получили название магических.

Задачи составления и описания магических квадратов интересовали математиков с древнейших времен. Однако полного описания всех возможных магических квадратов не получено и до сего времени. Магических квадратов не существует. На рис. 2 изображен единственный магический квадрат . Единственный в том смысле, что все остальные магические квадраты получаются из него либо поворотом вокруг центра, либо отражением относительно одной из его осей симметрии.

С увеличением размеров (числа клеток) квадрата быстро растет количество возможных магических квадратов. Так, например, различных магических квадратов уже 880, а для размера их количество приближается к четверти миллиона. Среди них есть квадраты, обладающие интересными свойствами. Например, в квадрате на рис. 3 равны между собой не только суммы чисел в строках, столбцах и диагоналях, но и суммы пятерок чисел по «разломанным» диагоналям, связанным на рисунке цветными линиями.

Латинским квадратом называется квадрат клеток, в которых написаны числа , притом так, что в каждой строке и каждом столбце встречаются все эти числа по одному разу. На рис. 4 изображены два таких латинских квадрата . Они обладают интересной особенностью: если один квадрат наложить на другой, то все пары получившихся чисел оказываются различными. Такие пары латинских квадратов называются ортогональными. Задачу отыскания ортогональных латинских квадратов впервые поставил Л. Эйлер, причем в такой занимательной формулировке: «Среди 36 офицеров поровну уланов, драгунов, гусаров, кирасиров, кавалергардов и гренадеров и, кроме того, поровну генералов, полковников, майоров, капитанов, поручиков и подпоручиков, причем каждый род войск представлен офицерами всех шести рангов. Можно ли выстроить этих офицеров в каре так, чтобы в любой колонне и любой шеренге встречались офицеры всех рангов?»

Эйлер не смог найти решения этой задачи. В 1901 г. было доказано, что такого решения не существует. В то же время Эйлер доказал, что ортогональные пары латинских квадратов существуют для всех нечетных значений и для таких четных значений , которые делятся на 4. Решение задачи Эйлера для 25 офицеров изображено на рис. 5. Чин офицера символизирует цветной кружок в углу каждой из клеток. Здесь особенно хорошо видна связь между, задачей Эйлера и латинскими квадратами: рода войск соответствуют числам одного латинского квадрата, а чины (цветные точки) – числам ортогонального ему латинского квадрата. Эйлер выдвинул гипотезу, что для остальных значений , т.е. если число при делении на 4 дает в остатке 2, ортогональных квадратов не существует. В 1901 г. было доказано, что ортогональных квадратов размером не существует, и это усиливало уверенность в справедливости гипотезы Эйлера. Однако в 1959 г. с помощью ЭВМ были найдены сначала ортогональные квадраты , потом . А затем было показано, что для любого , кроме 6, существуют ортогональные квадраты размером .

Гравюра А. Дюрера «Меланхолия»

«Часто воспроизводится магический квадрат, присутствующий на знаменитой гравюре А. Дюрера «Меланхолия».

Любопытно, что средние числа в последней строке изображают год 1514, в котором была создана эта гравюра». Д. Оре

Магические и латинские квадраты – близкие родственники. Пусть мы имеем два ортогональных латинских квадрата. Заполним клетки нового квадрата тех же размеров следующим образом. Поставим туда число , где – число в такой клетке первого квадрата, а – число в такой же клетке второго квадрата. Нетрудно понять, что в полученном квадрате суммы чисел в строках и столбцах (но не обязательно на диагоналях) будут одинаковы.

Теория латинских квадратов нашла многочисленные применения как в самой математике, так и в ее приложениях. Приведем такой пример. Пусть мы хотим испытать 4 сорта пшеницы на урожайность в данной местности, причем хотим учесть влияние степени разреженности посевов и влияние двух видов удобрений. Для этого разобьем квадратный участок земли на 16 делянок (рис. 6). Первый сорт пшеницы посадим на делянках, соответствующих нижней горизонтальной полосе, следующий сорт – на четырех делянках, соответствующих следующей полосе, и т.д. (на рисунке сорт обозначен цветом). При этом максимальная густота посевов пусть будет на тех делянках, которые соответствуют левому вертикальному столбцу рисунка, и уменьшается при переходе вправо (на рисунке этому соответствует уменьшение интенсивности цвета). Цифры же, стоящие в клетках рисунка, пусть означают: первая – количество килограммов удобрения первого вида, вносимого на этот участок, а вторая – количество вносимого удобрения второго вида. Эти числа на 1 меньше чисел в ортогональных латинских квадратах из рис. 4. Нетрудно понять, что при этом реализованы все возможные пары сочетаний как сорта, и густоты посева, так и других компонентов: сорта и удобрений первого вида, удобрений первого и второго видов, густоты и удобрений второго вида.

Использование ортогональных латинских квадратов помогает учесть все возможные варианты в экспериментах в сельском хозяйстве, физике, химии, технике.

6. ПЛАНЫ ДЛЯ ОЦЕНКИ ВЛИЯНИЯ ФАКТОРОВ

6.1. Планы на латинских квадратах

При составлении планов поиска оптимальных значений функции и описания поверхности отклика предполагалось, что факторы представляют собой непрерывные величины. Однако некоторые параметры систем носят дискретный характер и принимают только относительно небольшое количество значений, например, емкость запоминающих устройств, тактовая частота системной шины персонального компьютера. Другие факторы по своей природе имеют не количественную, а качественную природу, в частности, однотипные изделия выпускаются целым рядом изготовителей. Этим изделиям можно приписать некоторые обозначения в номинативной шкале измерений.

Таким образом, существует параметры (характеристики), принимающие некоторое ограниченное количество значений, задаваемых в количественной или качественной шкале измерений. Необходимо в условиях воздействия других факторов оценить влияние таких параметров на показатель качества системы или определить их значимость. Полный перебор возможных сочетаний параметров системы потребует чрезмерно большого количества опытов. С целью рационального сокращения экспериментальных исследований применяют специальный вид планов – планы на латинских квадратах.

Латинский квадрат характеризуется особым расположением некоторого числа символов в ячейках, сгруппированных в строки и столбцы так, что каждый символ встречается один раз в каждой строке и в каждом столбце. Пример латинского квадрата, размером n ×n , для n = 3 представлен в табл. 6.1.

Таблица 6.1

Для любого n > 2 существует множество вариантов построения латинских квадратов. Количество вариантов латинских квадратов с ростом n быстро увеличивается и определяется формулой

N (n , n ) = n !(n – 1)!L (n ).

Некоторые значения L (n ) представлены в табл. 6.2.

Таблица 6.2

L (n )

Латинскому квадрату можно сопоставить план эксперимента, в котором строки соответствуют различным значениям одного фактора, столбцы – значениям другого, а латинские буквы – значениям третьего фактора, т.е. латинский квадрат позволяет исследовать влияние не более чем трех факторов. Пример представления латинского квадрата для факторов L , P , Z , каждый из которых варьируется на четырех уровнях (n = 4) приведен в табл. 6.3.

Таблица 6.3

Применение плана, построенного на основе латинского квадрата, позволяет оценить дифференциальный (разностный) эффект пар уровней, но не дает информации о взаимодействии между факторами (иначе говоря, факторы не зависят друг от друга). Так, сумма результатов экспериментов, соответствующих столбцу j , будет оценивать эффект P j , усредненный по всем L и Z . Тогда дифференциальный эффект увеличения значения фактора P от уровня 1 до уровня 2, усредненный по всем L и Z , можно оценить по разности между суммой значений функции отклика столбца 2 и столбца 1. Порядок перечисления уровней факторов роли не играет.

В частности, рассмотренный план позволяет оценить влияние размера видеопамяти графического адаптера (P ) на скорость вывода видеоизображений при различном быстродействии (L ) процессора компьютера и разном разрешении дисплея (Z ). Применительно к рассмотренному примеру для трех факторов при четырех уровнях варьирования ПФЭ требует 4 3 = 64 опытов, а с применением латинского квадрата – только 16. Экономия достигается за счет потери информации о взаимодействии факторов.

В условиях применения латинского квадрата все факторы должны варьироваться на одинаковом количестве уровней. Можно ослабить это требование путем приравнивания какого-либо уровня другому.

Приведенный пример является одним из возможных расположений уровней факторов, позволяющих получить несмещенные оценки главных эффектов. Латинские квадраты можно накладывать друг на друга, образуя греко-латинские квадраты . Например, два латинских квадрата 3´3 можно преобразовать в греко-латинский квадрат

Здесь латинские буквы образуют один латинский квадрат, а греческие буквы – другой латинский квадрат. Каждая латинская буква встречается в паре с конкретной греческой буквой только один раз. С помощью этого греко-латинского квадрата можно оценить главные эффекты четырех 3-х уровневых факторов (фактора строк, фактора столбцов, римских букв и греческих букв) проведя только 9 опытов.

Если наложить друг на друга три различных варианта латинских квадратов, то получится план гипер-греко-латинского квадрата . С его помощью можно оценить главные эффекты пяти факторов (фактора строк, столбцов и трех расположений квадратов). В частности, для пяти трехуровневых факторов потребуется провести только 9 опытов вместо 243 опытов при переборе всех возможных сочетаний факторов.

Итак, планы латинских (греко-латинских) квадратов используются в тех случаях, когда требуется оценить влияние факторов, варьируемых более чем на двух уровнях и заранее известно, что между факторами нет взаимодействий или этим взаимодействиями можно пренебречь. Имеются таблицы латинских и греко-латинских квадратов различных размеров, за исключением одного практически важного случая – не существует греко-латинского квадрата для 6 уровней факторов.

Метод разделения наблюдений для исключения неоднородности при проведении дальнейших исследований. См. Анализ дисперсионный.

  • - в древности войны латинов против Рима. В 496 до н. э. между Римом, претендовавшим на гегемонию в Латинском союзе, и латинами началась 1-я Л. в. Вскоре после легендарной битвы при Регильском оз. был вновь...

    Советская историческая энциклопедия

  • - Latini coloniarii, назывались жители новолатинских колоний, т. е. колоний, выведенных или выселенных из Лациума после покорения его, а также жители города, получившего право латинской колонии...
  • - Ferĭae latīnae, древнее торжественное собрание союза латинских городов под гегемонией Альбы-Лонги...

    Реальный словарь классических древностей

  • - «», «Panegyrici latini» - этим названием обозначали обычно в многочисленных рукописях сборник 12 хвалебных речей в честь разных императоров...

    Энциклопедия античных писателей

  • - - учебные заведения в Москве во 2-й половине 17 в. для изучения греческого, латинского и церковно-славянского языков, пиитики, риторики и философии. В их числе: Андреевская школа...
  • - - учебные заведения, начальные или повышенного типа с латинским языком обучения. Возникли в Западной Европе в период раннего Средневековья...

    Педагогический терминологический словарь

  • - филат. назв. рис. водяного знака бумаги, использ. для сов. почт, марок...

    Большой филателистический словарь

  • - треугольные паруса, которые пришнуровываются к длинному, часто составному рейку...

    Морской словарь

  • - треугольные паруса, получившие распространение с Средних веков на Средиземном м. на судах латинских народов...

    Морской словарь

  • - а. = annus, anno - год, в году ab init. = ab initio - от начала, вначале. absque dubio - без всякого сомнения ad - до, на, по в т. п. ad fin. = ad finem - до конца. ad hoc - к этому, для этого, именно на этот случай...

    Словарь ботанических терминов

  • - треугольные паруса, у которых верхняя часть передней шкаторины пришнуровывается к стеньге, а нижняя привязывается к сегарсам, ходящим по мачте...

    Морской словарь

  • - см. Волшебные квадраты. У нас в последнее время занимается вопросами, связанными с М. кв., И. Износков...
  • - Под названием способа Н. квадратов разумеют прием, посредством которого вычисляются результаты из совокупности многих однородных наблюдений...

    Энциклопедический словарь Брокгауза и Евфрона

  • - в древности войны латинов против Рима. В 496 до н. э. между Римом, претендовавшим на гегемонию в Латинском союзе, и латинами началась 1-я Л. в. Вскоре после легендарной битвы при Регильском оз. был...

    Большая Советская энциклопедия

  • - учебные заведения в Москве во 2-й пол. 17 в. для изучения греческого, латинского и церковнославянского языков, пиитики, риторики и философии...
  • - войны городов Латинского союза против гегемонии в нем Рима. 1-я латинская война завершилась восстановлением союза во главе с Римом...

    Большой энциклопедический словарь

"ЛАТИНСКИЕ КВАДРАТЫ" в книгах

Узор «Квадраты»

Из книги Обувь для дома своими руками автора Захаренко Ольга Викторовна

Узор «Квадраты» Этот узор вяжется так:1-й ряд: выполняйте все петли светлой нитью;2-й и все четные ряды: выполняйте все петли по рисунку;3-й и 21-й ряд: *1 п. светлой нити, 15 п. темной нити, 1 п. светлой нити, 15 п. темной нити*, повторите от * до *;5-й и 7-й ряд: *1 п. светлой нити, 1 п. темной

5.2.2. Магические квадраты в Чатуранге

Из книги Тестирование с помощью Чатуранги автора Шорин Александр

5.2.2. Магические квадраты в Чатуранге 5.2.2.1 Магия немагического квадрата Любопытно, что самый простой (немагический) квадрат 5?5, где цифры идут просто одна за одной – от 1 до 25 может также обладать необычными свойствами. Так, в этом простом квадрате сумма «Креста Слона»

Глава № 5 Магические квадраты

Из книги Математика для мистиков. Тайны сакральной геометрии автора Шессо Ренна

Глава № 5 Магические квадраты Мы называем их магическими квадратами или планетарными квадратами. Или печатями, камеями, таблицами. Как и многие другие магические инструменты, они под разными именами известны в различных системах, но как бы их ни называли, они датируются

Талисманы и магические квадраты

Из книги Практическая магия современной ведьмы. Обряды, ритуалы, пророчества автора Миронова Дарья

Талисманы и магические квадраты Магия талисманов тесно связана с традицией нумерологии. Числа и буквы алфавита, а также специальные символы, без которых не обходится изготовление амулета, оберегают его владельца от плохого воздействия.Многие талисманы имеют вид

Квадраты и зубочистки

Из книги Самые трудные головоломки из старинных журналов автора Таунсенд Чарлз Барри

Квадраты и зубочистки Эта маленькая головоломка отнимет у вас несколько минут... или больше. На рисунке пять квадратов, составленных из шестнадцати зубочисток. Передвиньте три зубочистки так, чтобы получилось четыре одинаковых

Спичечные квадраты

автора Таунсенд Чарлз Барри

Спичечные квадраты Уложите шестнадцать спичек, как показано на рисунке, - получилось пять одинаковых квадратов. А теперь, переставив всего две спички, постройте четыре квадрата одного и того же размера. На первый взгляд нет ничего легче,

Дюймы, площади, квадраты

Из книги Звездные головоломки автора Таунсенд Чарлз Барри

Дюймы, площади, квадраты А вот еще одна хитроумная геометрическая задачка. На рисунке изображены два квадрата: один - со стороной три, а второй - со стороной четыре дюйма (дюймы помечены значком"). Представьте, что больший квадрат, верхний левый угол которого закреплен в

Квадраты из спирали

Из книги Звездные головоломки автора Таунсенд Чарлз Барри

Квадраты из спирали Заставьте-ка помучиться ваших друзей, предложив им эту головоломку. Выложите на столе спираль из 35 карандашей. А теперь пусть кто-нибудь попробует переставить четыре карандаша так, чтобы получились три

Квадраты большие и маленькие

Из книги Этот необыкновенный квадрат автора Бартоломью Мел

Квадраты большие и маленькие А теперь подробнее о самом методе. Каждый квадрат имеет размер 12x12 дюймов (один дюйм равен 2,5 см). Это и есть площадь квадратного фута. На каждом квадрате произрастают разные овощи, цветы и травы. (Я твердо убежден, что в огороде необходимо

«Магические квадраты»

автора Вознюк Наталия Григорьевна

«Магические квадраты» Для игры необходимо начертить квадрат и разделить его на клетки (3 х 3, 4 х 4). Доказано, что существование квадрата 2 х 2 невозможно.Цель игры состоит в следующем: расположить числа в клетках нужно таким образом, чтобы их суммы в строках и столбцах, а

«Квадраты»

Из книги Полная энциклопедия современных развивающих игр для детей. От рождения до 12 лет автора Вознюк Наталия Григорьевна

«Квадраты» В эту игру можно играть как одному, так и целой компанией.Для игры понадобится 24 квадрата, вырезанных из бумаги, каждый из которых должен быть разделен на 4 сектора, раскрашенных в разные цвета.Задача игроков – сложить из этих квадратов прямоугольник размером 4

§ 5. Магические квадраты

Из книги Приглашение в теорию чисел автора Оре Ойстин

§ 5. Магические квадраты Если вы играли в «шафлборд», вы можете вспомнить, что девять квадратов, на которых вы размещаете свои фишки, занумерованы числами от 1 до 9, расположенными так, как на рис. 7. Здесь числа в каждом столбце и в каждой строчке, а также в каждой из

139. Сомнительные квадраты

Из книги Веселые задачи. Две сотни головоломок автора Перельман Яков Исидорович

139. Сомнительные квадраты Учитель черчения задал школьнику работу: начертить два равных квадрата и заштриховать их. Школьник выполнил работу так, как показано на рис. 138. Он был уверен, что это квадраты и притом равные. Почему он так

9. Сомнительные квадраты

Из книги Головоломки. Выпуск 2 автора Перельман Яков Исидорович

9. Сомнительные квадраты Учитель черчения задал школьнику работу: начертить два равных квадрата и заштриховать их. Школьник выполнил работу так, как показано на рис. 5. Он был уверен, что это квадраты и притом равные.Почему он так

Квадраты смерти

Из книги Балканы 1991-2000 ВВС НАТО против Югославии автора Сергеев П. Н.

Квадраты смерти Для уничтожения военной машины сербов в Косово специалистам оперативного центра пришлось разработать новую систему обнаружения и идентификации целей на театре военных действий с быстро и хаотически меняющейся обстановкой. Америки операторы центра не

Дизайн с включением рандомизированных блоков позволяет изолировать один искажающий фактор. Латинский квадрат дает возможность изолировать уже как минимум две переменные, угрожающие внутренней валидности исследования .

Латинский квадрат - это древняя математическая головоломка; его составление является частным случаем решения магических квадратов. В общем виде фигура представляет собой равностороннюю матрицу, заполненную латинскими буквами таким образом, что в каждой строке и в каждом столбце таблицы буква алфавита встречается в точности один раз (рис. 9.8).

Рис. 9.8.

С помощью латинского квадрата можно блокировать не только строки, но и столбцы. В исследовании это может выглядеть следующим образом: допустим, у нас есть искомое условие (X) и две переменные и С), воздействие которых нужно поставить под контроль. Это можно сделать, задав как горизонтальные, так и вертикальные блоки. Решение выглядит так, как показано на рис. 9.9. Задача заключается в составлении общей таблицы независимых переменных таким образом, чтобы комбинации в строках и столбцах не повторялись. Для трех переменных будет уже девять комбинаций.

Разумеется, вместо трех уровней независимой переменной можно использовать три разных переменных: решение от этого не изменится. Для эксперимента с латинским квадратом формулируются три нулевые гипотезы:

  • - равенство средних значений групп с разными уровнями условия (X);
  • - равенство средних значений групп с разными уровнями фактора В (строки);
  • - равенство средних значений групп с разными уровнями фактора С (столбцы).

Следует отметить некоторые недостатки латинского квадрата. Во-первых, теоретически исследователь может включить любое число уровней независимой переменной. Тем не менее на практике редко используются квадраты, включающие более десяти градаций условия . В то же время при уровне в 4 и меньше присутствует слишком мало степеней свободы, что увеличивает ошибку. Кроме того, если между условием, строками и столбцами существуют эффекты взаимодействия, результат окажется искаженным. Однако проверка модели на взаимодействие возможна только при достаточной величине стороны квадрата. Во-вторых, количество число уровней независимой переменной, строк и столбцов должно быть одинаковым, что не всегда бывает возможным. Наконец, провести рандомизацию для данного плана довольно-таки сложно.


Рис. 9.9.

Латинский квадрат - это базовая фигура для исследований с многомерным блокированием. На его основе можно построить и более сложные планы, например, греко-латинский квадрат и гипер-греко-латинский квадрат.

Несмотря на кажущуюся сложность, анализ эффекта воздействия результатов эксперимента с использованием латинского квадрата выполняется примерно по такому же алгоритму, как и анализ в исследовании с применением рандомизированных блоков.

Выше представлена небольшая часть разработанных в теории экспериментов планов. Используя их как основу и комбинируя друг с другом, можно создать практически неограниченное число самых разных исследований, которые, однако, потребуют более сложных процедур оценки эффекта воздействия и контроля фоновых факторов.

Может возникнуть вопрос: зачем уделять такое количество времени строгому эксперименту, если возможности его применения в социологии ограничены? С одной стороны, социальное взаимодействие во всех своих проявлениях действительно является сложно контролируемым феноменом, и во многих случаях социолог не может проводить рандомизацию, а также оказывать влияние на независимую переменную. С другой стороны, трудности экспериментирования связаны не только с характером объекта, но и со слабой заинтересованностью социологического сообщества. Эксперимент является довольно сложным методом, использование которого сопряжено с кропотливой работой по контролю, изоляции искомых переменных, а также с применением сложных процедур измерения эффекта тестирования. Учитывая общий дескриптивный характер современной социологии и зачастую относительно невысокий уровень рефлексии касательно валидности каузальных аргументов, экспериментальные исследования составляют не слишком большую долю в общей совокупности выпускаемых работ.

Данный факт не означает, что ниша эксперимента в общественных науках всегда будет ограниченной. Оглядываясь вокруг, мы можем заметить, что в других областях социального знания теория экспериментирования развивается куда более быстрыми темпами. Не секрет, что социальная психология уже долгое время работает как экспериментальная наука и не мыслит себя вне данного метода. Вместе с тем, можно наблюдать такое динамично развивающееся направление, как экспериментальная экономика. Словарная статья Вернона Смита «Экспериментальные методы в экономике» начинается словами: «Исторически предмет и метод экономики предполагал неэкспериментальный характер науки (подобно астрономии и метеорологии)» . Раскрывая современное состояние науки, автор показывает, что начиная с 1980-х годов экономика все более становится экспериментальной наукой.

Присмотримся к сравнительной политологии. Сто лет назад в послании к Американской ассоциации политической науки ее тогдашний руководитель Лоуренс Новелл заявлял: «Мы ограничены отсутствием возможности экспериментирования... Политические исследования являются обсервационной, а не экспериментальной наукой». Вышедшая в 2007 г. книга “The Oxford Handbook of Experimental Political Science” указывает, что ситуация меняется стремительным образом по мере того, как исследователи политики уделяют все большее влияние каузальным аргументам и эмпирическому изучению своего предмета . Достаточно перечислить многочисленные работы по таким темам, как мобилизация, голосование, парламентаризм, бюрократия, международные отношения, переговоры, внешняя политика, создание коалиций, политическая культура, «экспорт демократии», электоральные системы, право. Практически все эти области, казалось бы, оставляют ученому возможность лишь пассивного наблюдения и регистрации фактов, но рандомизированные эксперименты здесь проводятся и весьма успешно.

Не отрицая объективных трудностей использования строгого эксперимента в социологии, можно предположить, что повышение интереса к сравнительным исследованиям будет способствовать и росту числа экспериментов. Кроме того, развитие перспективных областей микросоциологии (например, изучения повседневности) также может способствовать развитию теории и практики полевого экспериментирования.

Наиболее очевидным полем внедрения экспериментальных исследований представляется область виртуальных технологий.

Социологический эксперимент обычно проводится в лаборатории или «реальных» условиях, при этом изучаются небольшие группы. Однако социология не интересуется индивидом, а в качестве объяснительных конструкций оперирует аргументами макроуровня, подтверждение которых требует множества наблюдений. Сети дают такую возможность. Например, группа молодых ученых из Колумбийского университета изучала влияние социальных факторов на функционирование музыкального рынка . Для этого они создали веб-сайт, на который выложили аудиозаписи 48 неизвестных инди-музыкантов для свободного скачивания. Все посетители страницы случайным образом назначались в группы, которые отличались способом представления информации на сайте (случайный порядок песен против ранжированного по количеству скачиваний и т. д.). Выяснилось, что выбор пользователей, испытывавших социальное влияние, оказывался куда менее предсказуемым, чем тех, кто не видел рейтингов, рекомендаций, количества «лайков» ит.д., причем эта зависимость обратна пропорциональна уровню социального влияния.

В книге «Основания социальной теории» Дж. Коулман писал, что даже если ученый строит каузальные аргументы на макроуровне (например, как модели социального взаимодействия влияют на силу норм), надлежащее объяснение требует определения микрооснований этих процессов . Как подчеркивал Коулман, переход от микро- к макроуровню является основным препятствием на пути интеллектуального развития социологической теории, поскольку требует изучения динамических процессов формирования и развития социальных процессов, которые сложно получить с помощью традиционных социологических методик (опросов и наблюдений). Однако использование экспериментального метода (в частности, в интернет-исследованиях) позволяет не только увидеть результат, но и воспроизвести схему переходов «макро-микро», «микро-микро» и «макро-микро». Фактически в распоряжении исследователя имеется мощный инструмент, который, с одной стороны, позволяет работать с большими массивами данных, а с другой - фиксировать взаимодействие индивидов per se.

Еще одна причина, по которой эксперимент достоин внимания, более прагматична. Как уже неоднократно отмечалось, в тех случаях, когда экспериментальный дизайн невозможен (а это применительно, например, ко всей исторической социологии), социальный ученый пытается создать нечто похожее на экспериментальную ситуацию. Вместе с тем сложный характер причинно-следственных отношений и необходимость контроля факторов требуют использования методов, симулирующих эксперимент. В таком случае эксперимент представляется идеально-типическим исследованием, по канонам которого ученый работает и к строгости которого стремится приблизиться. Собственно, количественная и качественная стратегия, по мысли Ч. Рагина, являются разными вариантами ответа на вопрос о том, возможно ли в социальном исследовании воспроизведение логики эксперимента .

Представленные выше планы являются своеобразными шаблонами, по лекалам которых социологи работают и с объектами, в отношении которых эксперимент принципиально невозможен. В сущности, такое каузальное исследование будет моделироваться и анализироваться с использованием похожих, но, разумеется, более сложных методик и техник. Поэтому в процессе изучения гл. 10, посвященной квазиэксперименталь- ному дизайну, рекомендуется соотносить описываемые планы с тем, что уже известно, искать различия и возможные угрозы внутренней и внешней валидности. Это облегчит понимание «механики» сравнительного квазиэкспериментального исследования.

  • У. Кохран и Г. Кокс приводят примеры латинских квадратов вплоть до 12x12.

Полное уравнивание

Для того чтобы избежать систематического смешения, возникающего при неоднородном переносе в схеме реверсивного уравнивания, можно использовать все возможные 296последовательности уровней, вместо двух. Такая схема с полным уравниванием для трехуровневого эксперимента выглядит следующим образом:

Так, если бы в исследовании Готтсданкера и Уэй было использовано только три уровня независимой переменной (например 50, 100 и 200 мс), различным испытуемым - или группам испытуемых - были бы предъявлены следующие шесть последовательностей: 50, 100, 200 мс; 50, 200 и 100 мс; 100, 50 и 200 мс; 100, 200 и 50 мс; 200, 50 и 100 мс; 200, 100 и 50 мс. Мы не иллюстрируем полное уравнивание для большего числа уровней независимой переменной (обычно встречающегося в многоуровневых экспериментах) по той причине, что таблица оказалась бы слишком громоздкой. Например, для всех пяти уровней в исследовании Готтсданкера и Уэй потребовалось 120 последовательностей. Так что если бы даже только один испытуемый проводился через одну последовательность, то число испытуемых оказалось бы равным 120. Число последовательностей, необходимых для полного уравнивания, вычисляется как n-факториал, где n - число уровней. Для шести уровней n-факториал находится следующей серией умножений:

6Х5Х4ХЗХ2Х1=720.

Поскольку кросс-индивидуальное уравнивание было введено для сокращения числа испытуемых по сравнению с их числом в межгрупповой схеме, полное позиционное уравнивание используется крайне редко. Нижеследующая схема позволяет сократить число испытуемых, избегая допущения об однородном переносе, необходимом для схемы реверсивного уравнивания.

Если мы не хотим использовать все возможные последовательности, то естественно прийти к идее о случайном выборе из всего их множества. Иногда это и делается. Однако в случайно выбранном наборе последовательностей мало вероятно, что каждый уровень окажется в каждой позиции равное число раз. Поэтому нежелательные последствия неоднородного переноса будут по-прежнему существовать.

Выходом будет случайный выбор среди «квадратов», в которых каждый уровень появляется один раз в каждой позиции. Каждый такой квадрат представляет собой полную экспериментальную схему. Он называется латинским квадратом. Приведем пример одного из 8640 таких квадратов для шести уровней независимой переменной:

Поскольку в латинском квадрате каждый уровень оказывается в каждой позиции последовательности, естественно, требуется столько групп испытуемых, сколько уровней независимой переменной. Если бы Готтсданкер и Уэй использовали (как это им и следовало сделать) латинский квадрат вместо реверсивного уравнивания, их испытуемые должны были разбиться на пять групп соответственно пяти уровням независимой переменной. Значит, в их опыте должны были бы принять участие пять или десять испытуемых вместо восьми, как это было на самом деле (ведь восемь на пять не делится).



Исследователи обычно вводят ограничение на латинский квадрат. Оно состоит в требовании, чтобы каждому уровню один раз непосредственно предшествовал каждый другой уровень. Такой квадрат называют сбалансированным квадратом . В приведенном выше латинском квадрате это условие не соблюдалось. Например, уровню Б только один раз предшествовали уровни А и Д, но три раза Е и ни разу В и Г. Метод получения сбалансированных квадратов приводится в работе Уагенаара (1969). Вот пример:

Если бы все эффекты переноса были связаны с непосредственно предшествующим уровнем, сбалансированный квадрат был бы очень эффективен. К сожалению, нет способа проверить, в действительности ли это так. Рассмотрим теперь систематические смешения (влияния последовательности), которые могут возникать даже при полном уравнивании.