Болезни Военный билет Призыв

Мембрана не выполняет функцию. Функции мембран. Образное представление о мембране

Ни для кого не секрет, что все живые существа на нашей планете состоят их клеток, этих бесчисленных « » органической материи. Клетки же в свою очередь окружены специальной защитной оболочкой – мембраной, играющей очень важную роль в жизнедеятельности клетки, причем функции клеточной мембраны не ограничиваются только лишь защитой клетки, а представляют собой сложнейший механизм, участвующий в размножении, питании, регенерации клетки.

Что такое клеточная мембрана

Само слово «мембрана» с латыни переводится как «пленка», хотя мембрана представляет собой не просто своего роду пленку, в которую обернута клетка, а совокупность двух пленок, соединенных между собой и обладающих различными свойствами. На самом деле клеточная мембрана это трехслойная липопротеиновая (жиро-белковая) оболочка, отделяющая каждую клетку от соседних клеток и окружающей среды, и осуществляющая управляемый обмен между клетками и окружающей средой, так звучит академическое определение того что, представляет собой клеточная мембрана.

Значение мембраны просто огромно, ведь она не просто отделяет одну клетку от другой, но и обеспечивает взаимодействие клетки, как с другими клетками, так и окружающей средой.

История исследования клеточной мембраны

Важный вклад в исследование клеточной мембраны был сделан двумя немецкими учеными Гортером и Гренделем в далеком 1925 году. Именно тогда им удалось провести сложный биологический эксперимент над красными кровяными тельцами – эритроцитами, в ходе которых ученые получили так званые «тени», пустые оболочки эритроцитов, которые сложили в одну стопку и измерили площадь поверхности, а также вычислили количество липидов в них. На основании полученного количества липидов ученые пришли к выводу, что их как раз хватаем на двойной слой клеточной мембраны.

В 1935 году еще одна пара исследователей клеточной мембраны, на этот раз американцы Даниэль и Доусон после целой серии долгих экспериментов установили содержание белка в клеточной мембране. Иначе никак нельзя было объяснить, почему мембрана обладает таким высоким показателем поверхностного натяжения. Ученые остроумно представили модель клеточной мембраны в виде сэндвича, в котором роль хлеба играют однородные липидо-белковые слои, а между ними вместо масла – пустота.

В 1950 году с появлением электронного теорию Даниэля и Доусона удалось подтвердить уже практическими наблюдениями – на микрофотографиях клеточной мембраны были отчетливо видны слои из липидных и белковых головок и также пустое пространство между ними.

В 1960 году американский биолог Дж. Робертсон разработал теорию о трехслойном строении клеточных мембран, которая долгое время считалась единственной верной, но с дальнейшим развитием науки, стали появляться сомнения в ее непогрешимости. Так, например, с точки зрения клеткам было бы сложно и трудозатратно транспортировать необходимые полезные вещества через весь «сэндвич»

И только в 1972 году американские биологи С. Сингер и Г. Николсон смогли объяснить нестыковки теории Робертсона с помощью новой жидкостно-мозаичной модели клеточной мембраны. В частности они установили что клеточная мембрана не однородна по своему составу, более того – ассиметрична и наполнена жидкостью. К тому же клетки пребывают в постоянном движении. А пресловутые белки, которые входят в состав клеточной мембраны имеют разные строения и функции.

Свойства и функции клеточной мембраны

Теперь давайте разберем, какие функции выполняет клеточная мембрана:

Барьерная функция клеточной мембраны — мембрана как самый настоящий пограничник, стоит на страже границ клетки, задерживая, не пропуская вредные или попросту неподходящие молекулы

Транспортная функция клеточной мембраны – мембрана является не только пограничником у ворот клетки, но и своеобразным таможенным пропускным пунктом, через нее постоянно проходит обмен полезными веществами с другими клетками и окружающей средой.

Матричная функция – именно клеточная мембрана определяет расположение относительно друг друга, регулирует взаимодействие между ними.

Механическая функция – отвечает за ограничение одной клетки от другой и параллельно за правильно соединение клеток друг с другом, за формирование их в однородную ткань.

Защитная функция клеточной мембраны является основой для построения защитного щита клетки. В природе примером этой функции может быть твердая древесина, плотная кожура, защитный панцирь у , все это благодаря защитной функции мембраны.

Ферментативная функция – еще одна важная функция, осуществляемая некоторыми белками клетки. Например, благодаря этой функции в эпителии кишечника происходит синтез пищеварительных ферментов.

Также помимо всего этого через клеточную мембрану осуществляется клеточный обмен, который может проходить тремя разными реакциями:

  • Фагоцитоз – это клеточный обмен, при котором встроенные в мембрану клетки-фагоциты захватывают и переваривают различные питательные вещества.
  • Пиноцитоз – представляет собой процесс захвата мембраной клетки, соприкасающиеся с ней молекулы жидкости. Для этого на поверхности мембраны образуются специальные усики, которые как будто окружают каплю жидкости, образуя пузырек, которые впоследствии «проглатывается» мембраной.
  • Экзоцитоз – представляет собой обратный процесс, когда клетка через мембрану выделяет секреторную функциональную жидкость на поверхность.

Строение клеточной мембраны

В клеточной мембране имеются липиды трех классов:

  • фосфолипиды (представляются собой комбинацию жиров и фосфора),
  • гликолипиды (представляют собой комбинацию жиров и углеводов),
  • холестерол.

Фосфолипиды и гликолипиды в свою очередь состоят из гидрофильной головки, в которую отходят два длинных гидрофобных хвостика. Холестерол же занимает пространство между этими хвостиками, не давая им изгибаться, все это в некоторых случаях делает мембрану определенных клеток весьма жесткой. Помимо всего этого молекулы холестерола упорядочивают структуру клеточной мембраны.

Но как бы там ни было, а самой важной частью строения клеточной мембраны является белок, точнее разные белки, играющие различные важные роли. Несмотря на разнообразие белков содержащихся в мембране есть нечто, что их объединяет – вокруг всех белков мембраны расположены аннулярные липиды. Аннулярные липиды – это особые структурированные жиры, которые служат своеобразной защитной оболочкой для белков, без которой они бы попросту не работали.

Структура клеточной мембраны имеет три слоя: основу клеточной мембраны составляет однородный жидкий билипидный слой. Белки же покрывают его с обеих сторон наподобие мозаики. Именно белки помимо описанных выше функций также играют роль своеобразных каналов, по которым сквозь мембрану проходят вещества, неспособные проникнуть через жидкий слой мембраны. К таким относятся, например, ионы калия и натрия, для их проникновения через мембрану природой предусмотрены специальные ионные каналы клеточных мембран. Иными словами белки обеспечивают проницаемость клеточных мембран.

Если смотреть на клеточную мембрану через микроскоп, мы увидим слой липидов, образованный маленькими шарообразными молекулами по которому плавают словно по морю белки. Теперь вы знаете, какие вещества входят в состав клеточной мембраны.

Клеточная мембрана, видео

И в завершение образовательное видео о клеточной мембране.

Плазматическая мембрана , или плазмалемма, - наиболее постоянная, основная, универсальная для всех клеток мембрана. Она представляет собой тончайшую (около 10 нм) пленку, покрывающую всю клетку. Плазмалемма состоит из молекул белков и фосфолипидов (рис. 1.6).

Молекулы фосфолипидов расположены в два ряда - гидрофобными концами внутрь, гидрофильными головками к внутренней и внешней водной среде. В отдельных местах бислой (двойной слой) фосфолипидов насквозь пронизан белковыми молекулами (интегральные белки). Внутри таких белковых молекул имеются каналы - поры, через которые проходят водорастворимые вещества. Другие белковые молекулы пронизывают бислой липидов наполовину с одной или с другой стороны (полуинтегральные белки). На поверхности мембран эукариотических клеток имеются периферические белки. Молекулы липидов и белков удерживаются благодаря гидрофильно-гидрофобным взаимодействиям.

Свойства и функции мембран. Все клеточные мембраны представляют собой подвижные текучие структуры, поскольку молекулы липидов и белков не связаны между собой ковалентными связями и способны достаточно быстро перемещаться в плоскости мембраны. Благодаря этому мембраны могут изменять свою конфигурацию, т. е. обладают текучестью.

Мембраны - структуры очень динамичные. Они быстро восстанавливаются после повреждения, а также растягиваются и сжимаются при клеточных движениях.

Мембраны разных типов клеток существенно различаются как по химическому составу, так и по относительному содержанию в них белков, гликопротеинов, липидов, а следовательно, и по характеру имеющихся в них рецепторов. Каждый тип клеток поэтому характеризуется индивидуальностью, которая определяется в основном гликопротеинами. Разветвленные цепи гликопротеинов, выступающие из клеточной мембраны, участвуют в распознава-нии факторов внешней среды, а также во взаимном узнавании родственных клеток. Например, яйцеклетка и сперматозоид узнают друг друга по гликопротеинам клеточной поверхности, которые подходят другкдругу как отдельные элементы цельной структуры. Такое взаимное узнавание - необходимый этап, предшествующий оплодотворению.

Подобное явление наблюдается в процессе дифференциров-ки тканей. В этом случае сходные по строению клетки с помощью распознающих участков плазмалеммы правильно ориентируются относительно друг друга, обеспечивая тем самым их сцепление и образование тканей. С распознаванием связана и регуляция транспорта молекул и ионов через мембрану, а также иммунологический ответ, в котором гликопротеины играют роль антигенов. Сахара, таким образом, могут функционировать как информационные молекулы (подобно белкам и нуклеиновым кислотам). В мембранах содержатся также специфические рецепторы, переносчики электронов, преобразователи энергии, ферментные белки. Белки участвуют в обеспечении транспорта определенных молекул внутрь клетки или из нее, осуществляют структурную связь цитоскелета с клеточными мембранами или же служат в качестве рецепторов для получения и преобразования химических сигналов из окружающей среды.

Важнейшим свойством мембраны является также избирательная проницаемость. Это значит, что молекулы и ионы проходят через нее с различной скоростью, и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы; значительно медленнее проходят сквозь мембрану ионы. Диффузия воды через мембрану называется осмосом.

Существует несколько механизмов транспорта веществ через мембрану.

Диффузия -проникновение веществ через мембрану по градиенту концентрации {из области, где их концентрация выше, в область, где их концентрация ниже). Диффузный транспорт веществ (воды, ионов) осуществляется при участии белков мембраны, в которых имеются молекулярные поры, либо при участии липидной фазы (для жирорастворимых веществ).

При облегченной диффузии специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану по градиенту концентрации.

Активный транспорт сопряжен с затратами энергии и служит для переноса веществ против их градиента концентрации. Он осуществляется специальными белками-переносчиками, образующими так называемыеионные насосы. Наиболее изученным является Na - / К - -насос в клетках животных, активно выкачивающих ионы Na + наружу, поглощая при этом ионы К - . Благодаря этому в клетке поддерживается большая концентрация К - и меньшая Na + по сравнению с окружающей средой. На этот процесс затрачивается энергия АТФ.

В результате активного транспорта с помощью мембранного насоса в клетке происходит также регуляция концентрации Mg 2- и Са 2+ .

В процессе активного транспорта ионов в клетку через цито-плазматическую мембрану проникают различные сахара, нукле-отиды, аминокислоты.

Макромолекулы белков, нуклеиновых кислот, полисахаридов, липопротеидные комплексы и др. сквозь клеточные мембраны не проходят, в отличие от ионов и мономеров. Транспорт макромолекул, их комплексов и частиц внутрь клетки происходит совершенно иным путем - посредством эндоцитоза. При эндоци-тозе {эндо... - внутрь) определенный участок плазмалеммы захватывает и как бы обволакивает внеклеточный материал, заключая его в мембранную вакуоль, возникшую вследствие впя-чивания мембраны. В дальнейшем такая вакуоль соединяется с лизосомой, ферменты которой расщепляют макромолекулы до мономеров.

Процесс, обратный эндоцитозу, - экзоцитоз (экзо... - наружу). Благодаря ему клетка выводит внутриклеточные продукты или непереваренные остатки, заключенные в вакуоли или пу-

зырьки. Пузырек подходит к цитоплазматической мембране, сливается с ней, а его содержимое выделяется в окружающую среду. Гак выводятся пищеварительные ферменты, гормоны, гемицел-люлоза и др.

Таким образом, биологические мембраны как основные структурные элементы клетки служат не просто физическими границами, а представляют собой динамичные функциональные поверхности. На мембранах органелл осуществляются многочисленные биохимические процессы, такие как активное поглощение веществ, преобразование энергии, синтез АТФ и др.

Функции биологических мембран следующие:

    Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы.

    Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот.

    Выполняют роль рецепторов (получение и преобразование сит-налов из окружающей среды, узнавание веществ клеток и т. д.).

    Являются катализаторами (обеспечение примембранных химических процессов).

    Участвуют в преобразовании энергии.

Мембрана - это сверхтонкая структура, образующая поверхности органоидов и клетки в целом. Все мембраны имеют сходное строение и связаны в одну систему.

Химический состав

Мембраны клетки химически однородны и состоят из белков и липидов различных групп:

  • фосфолипидов;
  • галактолипидов;
  • сульфолипидов.

Также в их состав входят нуклеиновые кислоты, полисахариды и другие вещества.

Физические свойства

При нормальной температуре мембраны находятся в жидкокристаллическом состоянии и постоянно колеблется. Их вязкость близка к вязкости растительного масла.

Мембрана способна к восстановлению, прочна, эластична и имеет поры. Толщина мембран 7 - 14 нм.

ТОП-4 статьи которые читают вместе с этой

Для крупных молекул мембрана непроницаема. Мелкие молекулы и ионы могут проходить через поры и саму мембрану под действием разности концентраций по разные стороны мембраны, а также при помощи транспортных белков.

Модель

Обычно строение мембран описывается при помощи жидкостно-мозаичной модели. Мембрана имеет каркас - два ряда липидных молекул, плотно, как кирпичики прилегающих друг к другу.

Рис. 1. Биологическая мембрана типа сэндвича.

С обеих сторон поверхность липидов покрыта белками. Мозаичная картина образуется неравномерно распределёнными на поверхности мембраны молекулами белков.

По степени погруженности в билипидный слой белковые молекулы делят на три группы:

  • трансмембранные;
  • погружённые;
  • поверхностные.

Белки обеспечивают основное свойство мембраны - её избирательную проницаемость для различных веществ.

Типы мембран

Все мембраны клетки по локализации можно разделить на следующие типы:

  • наружная;
  • ядерная;
  • мембраны органоидов.

Наружная цитоплазматическая мембрана, или плазмолемма, является границей клетки. Соединяясь с элементами цитоскелета, она поддерживает её форму и размеры.

Рис. 2. Цитоскелет.

Ядерная мембрана, или кариолемма, является границей ядерного содержимого. Она построена из двух мембран, очень похожих на наружную. Внешняя мембрана ядра связана с мембранами эндоплазматической сети (ЭПС) и, через поры, с внутренней мембраной.

Мембраны ЭПС пронизывают всю цитоплазму, образуя поверхности, на которых идёт синтез различных веществ, в том числе мембранных белков.

Мембраны органоидов

Мембранное строение имеет большинство органоидов.

Из одной мембраны построены стенки:

  • комплекса Гольджи;
  • вакуолей;
  • лизосом.

Пластиды и митохондрии построены из двух слоёв мембран. Их наружная мембрана гладкая, а внутренняя образует множество складок.

Особенностями фотосинтетических мембран хлоропластов являются встроенные молекулы хлорофилла.

Животные клетки имеют на поверхности наружной мембраны углеводный слой, называемый гликокаликсом.

Рис. 3. Гликокаликс.

Наиболее развит гликокаликс в клетках кишечного эпителия, где он создаёт условия для пищеварения и защищает плазмолемму.

Таблица «Строение клеточной мембраны»

Что мы узнали?

Мы рассмотрели строение и функции клеточной мембраны. Мембрана является селективным (избирательным) барьером клетки, ядра и органоидов. Строение клеточной мембраны описывается жидкостно-мозаичной моделью. Согласно этой модели, в двойной слой липидов вязкой консистенции встроены белковые молекулы.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 270.

Клеточная мембрана - это оболочка клетки, выполняющая следующие функции: разделение содержимого клетки и внешней среды, избирательный транспорт веществ (обмен с внешней для клетки средой), место протекания некоторых биохимических реакций, объединение клеток в ткани и рецепция.

Клеточные мембраны подразделяют на плазматические (внутриклеточные) и наружные. Основное свойство любой мембраны - полупроницаемость, то есть способность пропускать только определенные вещества. Это позволяет осуществлять избирательный обмен между клеткой и внешней средой или обмен между компартментами клетки.

Плазматические мембраны - это липопротеиновые структуры. Липиды спонтанно образуют бислой (двойной слой), а мембранные белки «плавают» в нем. В мембранах присутствует несколько тысяч различных белков: структурные, переносчики, ферменты и др. Между белковыми молекулами имеются поры, сквозь которые проходят гидрофильные вещества (непосредственному их проникновению в клетку мешает липидный бислой). К некоторым молекулам на поверхности мембраны присоединены гликозильные группы (моносахариды и полисахариды), которые участвуют в процессе распознавания клеток при образовании тканей.

Мембраны отличаются по своей толщине, обычно она составляет от 5 до 10 нм. Толщина определяется размерами молекулы амфифильного липида и составляет 5,3 нм. Дальнейшее увеличение толщины мембраны обусловлено размерами мембранных белковых комплексов. В зависимости от внешних условий (регулятором является холестерол) структура бислоя может изменяться так, что он становится более плотным или жидким - от этого зависит скорость перемещения веществ вдоль мембран.

К клеточным мембранам относят: плазмолемму, кариолемму, мембраны эндоплазматической сети, аппарата Гольджи, лизосом, пероксисом, митохондрий, включений и т. д.

Липиды не растворимы в воде (гидрофобность), но хорошо растворяются в органических растворителях и жирах (липофильность). Состав липидов в разных мембранах неодинаков. Например, плазматическая мембрана содержит много холестерина. Из липидов в мембране чаще всего встречаются фосфолипиды (глицерофосфатиды), сфингомиелины (сфинголипиды), гликолипиды и холестерин.

Фосфолипиды, сфингомиелины, гликолипиды состоят из двух функционально различных частей: гидрофобной неполярной, которая не несет зарядов - «хвосты», состоящие из жирных кислот, и гидрофильной, содержащей заряженные полярные «головки» - спиртовые группы (например, глицерин).

Гидрофобная часть молекулы обычно состоит из двух жирных кислот. Одна из кислот предельная, а вторая непредельная. Это определяет способность липидов самопроизвольно образовывать двухслойные (билипидные) мембранные структуры. Липиды мембран выполняют следующие функции: барьерную, транспортную, микроокружение белков, электрическое сопротивление мембраны.

Мембраны отличаются друг от друга набором белковых молекул. Многие мембранные белки состоят из участков, богатых полярными (несущими заряд) аминокислотами, и участков с неполярными аминокислотами (глицином, аланином, валином, лейцином). Такие белки в липидных слоях мембран располагаются так, что их неполярные участки как бы погружены в «жирную» часть мембраны, где находятся гидрофобные участки липидов. Полярная (гидрофильная) же часть этих белков взаимодействует с головками липидов и обращена в сторону водной фазы.

Биологические мембраны обладают общими свойствами :

мембраны - замкнутые системы, которые не позволяют содержимому клетки и ее компартментов смешиваться. Нарушение целостности мембраны может привести к гибели клетки;

поверхностная (плоскостная, латеральная) подвижность. В мембранах идет непрерывное перемещение веществ по поверхности;

асимметрия мембраны. Строение наружного и поверхностного слоев химически, структурно и функционально неоднородно.

Снаружи клетка покрыта плазматической мембраной (или наружной клеточной мембраной) толщиной около 6-10нм.

Клеточная мембрана это плотные пленки из белков и липидов (в основном, фосфолипидов). Молекулы липидов расположены упорядоченно - перпендикулярно к поверхности, в два слоя, так, что их части, интенсивно взаимодействующие с водой (гидрофильные), направлены наружу, а части, инертные к воде (гидрофобные) - внутрь.

Молекулы белка расположены несплошным слоем на поверхности липидного каркаса с обеих его сторон. Часть их погружена в липидный слой, а некоторые проходят через него насквозь, образуя участки, проницаемые для воды. Эти белки выполняют различные функции - одни из них являются ферментами, другие - транспортными белками, участвующими в переносе некоторых веществ из окружающей среды в цитоплазму и в обратном направлении.

Основные функции клеточной мембраны

Одним из основных свойств биологических мембран является избирательная проницаемость (полупроницаемость) - одни вещества проходят через них с трудом, другие легко и даже в сторону большей концентрации Так, для большинства клеток концентрация ионов Na внутри значительно ниже, чем в окружающей среде. Для ионов K характерно обратное соотношение: их концентрация внутри клетки выше, чем снаружи. Поэтому ионы Na всегда стремятся проникнуть в клетку, а ионы K - выйти наружу. Выравниванию концентраций этих ионов препятствует присутствие в мембране особой системы, играющей роль насоса, который откачивает ионы Na из клетки и одновременно накачивает ионы K внутрь.

Стремление ионов Na к перемещению снаружи внутрь используется для транспорта сахаров и аминокислот внутрь клетки. При активном удалении ионов Na из клетки создаются условия для поступления глюкозы и аминокислот внутрь ее.


У многих клеток поглощение веществ происходит также путем фагоцитоза и пиноцитоза. При фагоцитозе гибкая наружная мембрана образует небольшое углубление, куда попадает захватываемая частица. Это углубление увеличивается, и, окруженная участком наружной мембраны, частица погружается в цитоплазму клетки. Явление фагоцитоза свойственно амебам и некоторым другим простейшим, а также лейкоцитам (фагоцитам). Аналогично происходит и поглощение клетками жидкостей, содержащих необходимые клетке вещества. Это явление было названо пиноцитозом .

Наружные мембраны различных клеток существенно отличаются как по химическому составу своих белков и липидов, так и по их относительному содержанию. Именно эти особенности определяют разнообразие в физиологической активности мембран различных клеток и их роль, в жизнедеятельности клеток и тканей.

С наружной мембраной связана эндоплазматическая сеть клетки. При помощи наружных мембран осуществляются различные типы межклеточных контактов, т.е. связь между отдельными клетками .

Для многих типов клеток характерно наличие на их поверхности большого количества выступов, складок, микроворсинок. Они способствуют как значительному увеличению площади поверхности клеток и улучшению обмена веществ, так и более прочным связям отдельных клеток друг с другом.

У растительных клеток снаружи клеточной мембраны имеются толстые, хорошо различимые в оптический микроскоп оболочки, состоящие из клетчатки (целлюлозы). Они создают прочную опору растительным тканям (древесина).

Некоторые клетки животного происхождения тоже имеют ряд внешних структур, находящихся поверх клеточной мембраны и имеющих защитный характер. Примером может быть хитин покровных клеток насекомых.

Функции клеточной мембраны (кратко)

Функция Описание
Защитный барьер Отделяет внутренние органеллы клетки от внешней среды
Регулирующая Производит регуляцию обмена веществ между внутренним содержимым клетки и наружной средой
Разграничивающая (компартментализация) Разделение внутреннего пространства клетки на независимые блоки (компартменты)
Энергетическая - Накопление и трансформация энергии;
- световые реакции фотосинтеза в хлоропластах;
- Всасывание и секреция.
Рецепторная (информационная) Участвует в формировании возбуждения и его проведения.
Двигательная Осуществляет движение клетки или отдельных ее частей.