Болезни Военный билет Призыв

Где используют реактивное движение. Реактивное движение. Формула Циолковского. Формула реактивного движения

В небо взмывают многотонные космические корабли, а в морских водах ловко лавируют прозрачные, студенистые медузы, каракатицы и осьминоги - что между ними общего? Оказывается, в обоих случаях для перемещения используется принцип реактивного движения. Именно этой теме и посвящена наша сегодняшняя статья.

Заглянем в историю

Самые первые достоверные сведения о ракетах относятся к XIII веку. Они применялись индусами, китайцами, арабами и европейцами в боевых действиях как боевое и сигнальное оружие. Затем последовали целые столетия почти полного забвения этих устройств.

В России идея использования реактивного двигателя возродилась благодаря работам революционера-народовольца Николая Кибальчича. Сидя в царских застенках, он разработал российский проект реактивного двигателя и летательный аппарат для людей. Кибальчич был казнен, а его проект долгие годы пылился в архивах царской охранки.

Основные идеи, чертежи и расчеты этого талантливого и мужественного человека получили дальнейшее развитие в трудах К. Э. Циолковского, который предложил использовать их для межпланетных сообщений. С 1903 по1914 год он публикует ряд работ, где убедительно доказывает возможность использования реактивного движения для исследования космического пространства и обосновывает целесообразность использования многоступенчатых ракет.

Многие научные разработки Циолковского и по сей день применяются в ракетостроении.

Биологические ракеты

Как, вообще возникла идея перемещаться, отталкиваясь от собственной реактивной струи? Возможно, пристально наблюдая за морскими обитателями, жители прибрежных зон заметили, как это происходит в животном мире.

Например, морской гребешок перемещается за счет реактивной силы водной струи, выбрасываемой из раковины при быстром сжатии её створок. Но ему никогда не угнаться за самыми быстрыми пловцами - кальмарами.

Их ракетообразные тела мчатся хвостом вперед, выбрасывая из специальной воронки, запасенную воду. перемещаются по тому же принципу, выдавливая воду сокращением своего прозрачного купола.

Природа одарила «реактивным двигателем» и растение под названием «бешеный огурец». Когда его плоды полностью созревают, в ответ на самое слабое прикосновение, он выстреливает клейковину с семенами. Сам плод при этом отбрасывается в противоположную сторону на расстояние до 12 м!

Ни морским обитателям, ни растениям неведомы физические законы, лежащие в основе этого способа передвижения. Мы же попробуем в этом разобраться.

Физические основы принципа реактивного движения

Вначале обратимся к простейшему опыту. Надуем резиновый шарик и, не завязывая, отпустим в свободный полёт. Стремительное движение шарика будет продолжаться до тех пор, пока истекающая из него струя воздуха будет достаточно сильной.

Для объяснения результатов этого опыта нам следует обратиться к III закону , который утверждает, что два тела взаимодействуют с силами равными по величине и противоположными по направлению. Следовательно, сила, с которой шарик воздействует на вырывающиеся из него струи воздуха, равна силе, с которой воздух отталкивает от себя шарик.

Перенесем эти рассуждения на ракету. Эти устройства на огромной скорости выбрасывают некоторую часть своей массы, вследствие чего сами получают ускорение в противоположном направлении.

С точки зрения физики этот процесс чётко объясняется законом сохранения импульса. Импульс - это произведение массы тела на его скорость (mv) Пока ракета в покое, её скорость и импульс равны нулю. Если из неё выбрасывается реактивная струя, то оставшаяся часть по закону сохранения импульса должна приобрести такую скорость, чтобы суммарный импульс по-прежнему был равным нулю.

Обратимся к формулам:

m г v г + m р v р =0;

m г v г =- m р v р,

где m г v г импульс создаваемой струей газов, m р v р импульс, полученный ракетой.

Знак минус показывает, что направление движения ракеты и реактивной струи противоположны.

Устройство и принцип работы реактивного двигателя

В технике реактивные двигатели приводят в движение самолёты, ракеты, выводят на орбиты космические аппараты. В зависимости от назначения они имеют разное устройство. Но каждый из них имеет запас топлива, камеру для его сгорания и сопло, ускоряющее реактивную струю.

На межпланетных автоматических станциях оборудован также приборный отсек и кабины с системой жизнеобеспечения для космонавтов.

Современные космические ракеты это сложные, многоступенчатые летательные аппараты, использующие новейшие достижения инженерной мысли. После старта вначале сгорает топливо в нижней ступени, после чего она отделяется от ракеты, уменьшая её общую массу и увеличивая скорость.

Затем расходуется топливо во второй ступени и т. д. Наконец, летательный аппарат выводится на заданную траекторию и начинает свой самостоятельный полёт.

Немного помечтаем

Великий мечтатель и учёный К. Э. Циолковский подарил будущим поколениям уверенность в том, что реактивные двигатели позволят человечеству вырваться за пределы земной атмосферы и устремиться в космос. Его предвидение сбылось. Луна, и даже далёкие кометы успешно исследуются космическими аппаратами.

В космонавтике используют жидкостные реактивные двигатели. Используя в качестве топлива нефтепродукты, но скорости, которые удается получить с их помощью, недостаточны для очень дальних перелётов.

Возможно, вы, наши дорогие читатели, станете свидетелями полётов землян в другие галактики на аппаратах с ядерными, термоядерными или ионными реактивными двигателями.

Если это сообщение тебе пригодилось, буда рада видеть тебя

Среди великих технических и научных достижений XX столетия одно из первых мест, несомненно, принадлежит ракетам и теории реактивного движения . Годы второй мировой войны (1941-1945) привели к необычайно быстрому совершенствованию конструкций реактивных аппаратов. На полях сражений вновь появились пороховые ракеты, но уже на более калорийном бездымном тротилпироксилиновом порохе («катюши»). Были созданы самолеты с воздушно-реактивными двигателями, беспилотные самолеты с пульсирующими воздушно-реактивными двигателями («ФАУ-1») и баллистические ракеты с дальностью полета до 300 км («ФАУ-2»).

Ракетная-техника становится сейчас очень важной и быстрорастущей отраслью промышленности. Развитие теории полета реактивных аппаратов - одна из насущных проблем современного научно-технического развития.

К. Э. Циолковский много сделал для познания основ теории движения ракет . Он был первым в истории науки, кто формулировал и исследовал проблему изучения прямолинейных движений ракет, исходя из законов теоретической механики. Как мы указывали, принцип сообщения движения, при помощи сил реакции отбрасываемых частиц был осознан Циолковским еще в 1883 году, однако создание им математически строгой теории реактивного движения относится к концу XIX столетия.

В одной из своих работ Циолковский писал: «Долго на ракету я смотрел, как и все: с точки зрения увеселений и маленьких применений. Не помню хорошо, как мне пришло в голову сделать вычисления, относящиеся к ракете. Мне кажется, первые семена мысли были заронены известным фантазером Жюлем Верном; он пробудил работу моего мозга в известном направлении. Явились желания, за желаниями возникла деятельность ума. ...Старый листок с окончательными формулами, относящимися к реактивному прибору, помечен датою 25 августа 1898 года».

«...Никогда я не претендовал на полное решение вопроса. Сначала неизбежно идут: мысль, фантазия, сказка. За ними шествует научный расчет. И уже в конце концов исполнение венчает мысль. Мои работы о космических путешествиях относятся к средней фазе творчества. Более, чем кто-нибудь, я понимаю бездну, разделяющую идею от ее осуществления, так как в течение моей жизни я не только мыслил и вычислял, но и исполнял, работая также руками. Однако нельзя не быть идее: исполнению предшествует мысль, точному расчету - фантазия».

В 1903 году в журнале «Научное обозрение» появилась первая статья Константина Эдуардовича по ракетной технике, которая называлась «Исследование мировых пространств реактивными приборами». В этом труде на основании простейших законов теоретической механики (закона сохранения количества движения и закона независимого действия сил) была дана теория полета ракеты и обоснована возможность применения реактивных аппаратов для межпланетных сообщений (Создание общей теории движения тел, масса которых изменяется в процессе движения, принадлежит профессору И. В. Мещерскому (1859-1935)).

Идея применения ракеты для решения научных проблем, использование реактивных двигателей для создания движения грандиозных межпланетных кораблей целиком принадлежат Циолковскому. Он родоначальник современных жидкостных ракет дальнего действия, один из создателей новой главы теоретической механики.

Классическая механика, изучающая законы движения и равновесия материальных тел, базируется на трех законах движения , отчетливо и строго сформулированных английским ученым еще в 1687 году. Эти законы применялись многими исследователями для изучения движения тел, масса которых не изменялась во время движения. Были рассмотрены очень важные случаи движения и создалась большая наука - механика тел постоянной массы. Аксиомы механики тел постоянной массы, или законы движения Ньютона, явились обобщением всего предыдущего развития механики. В настоящее время основные законы механического движения излагаются во всех учебниках физики для средней школы. Мы дадим здесь краткое изложение законов движения Ньютона, так как последующий шаг в науке, позволивший изучать движение ракет, был дальнейшим развитием методов классической механики.

В данном разделе мы будем рассматривать движение тел переменной массы. Такой вид движения часто встречается в природе и в технических системах. В качестве примеров, можно упомянуть:

    Падение испаряющейся капли;

    Перемещение тающего айсберга по поверхности океана;

    Движение кальмара или медузы;

    Полет ракеты.

Ниже мы выведем простое дифференциальное уравнение, описывающее движение тела переменной массы, рассматривая полет ракеты.

Дифференциальное уравнение реактивного движения

Реактивное движение основано на третьем законе Ньютона , в соответствии с которым "сила действия равна по модулю и противоположна по направлению силе противодействия". Горячие газы, вырываясь из сопла ракеты, образуют силу действия. Сила реакции, действующая в противоположном направлении, называется силой тяги . Эта сила как раз и обеспечивает ускорение ракеты.

Пусть начальная масса ракеты равна \(m,\) а ее начальная скорость составляет \(v.\) Через некоторое время \(dt\) масса ракеты уменьшится на величину \(dm\) в результате сгорания топлива. Это приведет к увеличению скорости ракеты на \(dv.\) Применим закон сохранения импульса к системе "ракета + поток газа". В начальный момент времени импульс системы равен \(mv.\) Через малое время \(dt\) импульс ракеты будет составлять \[{p_1} = \left({m - dm} \right)\left({v + dv} \right),\] а импульс, связанный с выхлопными газами, в системе координат относительно Земли будет равен \[{p_2} = dm\left({v - u} \right),\] где \(u\) − скорость истечения газов относительно Земли. Здесь мы учли, что скорость истечения газов направлена в сторону, противоположную скорости движения ракеты (рисунок \(1\)). Поэтому, перед \(u\) поставлен знак "минус".

В соответствии с законом о сохранении полного импульса системы, можно записать: \[ {p = {p_1} + {p_2},}\;\; {\Rightarrow mv = \left({m - dm} \right)\left({v + dv} \right) + dm\left({v - u} \right).} \]

Рис.1

Преобразуя данное уравнение, получаем: \[\require{cancel} \cancel{\color{blue}{mv}} = \cancel{\color{blue}{mv}} - \cancel{\color{red}{vdm}} + mdv - dmdv + \cancel{\color{red}{vdm}} - udm. \] В последнем уравнении можно пренебречь слагаемым \(dmdv,\) рассматривая малые изменения этих величин. В результате уравнение запишется в виде \ Разделим обе части на \(dt,\) чтобы преобразовать уравнение в форму второго закона Ньютона : \ Данное уравнение называется дифференциальным уравнением реактивного движения . Правая часть уравнения представляет собой силу тяги \(T:\) \ Из полученной формулы видно, что силя тяги пропорциональна скорости истечения газов и скорости сгорания топлива . Конечно, это дифференциальное уравнение описывает идеальный случай. Оно не учитывает силу тяжести и аэродинамическую силу . Их учет приводит к значительному усложнению дифференциального уравнения.

Формула Циолковского

Если мы проинтегрируем выведенное выше дифференциальное уравнение, то получим зависимость скорости ракеты от массы сгоревшего топлива. Результирующая формула называется идеальным уравнением реактивного движения или формулой Циолковского , который вывел ее в \(1897\) году.

Чтобы получить указанную формулу, удобно переписать дифференциальное уравнение в следующем виде: \ Разделяя переменные и интегрируя, находим: \[ {dv = u\frac{{dm}}{m},}\;\; {\Rightarrow \int\limits_{{v_0}}^{{v_1}} {dv} = \int\limits_{{m_0}}^{{m_1}} {u\frac{{dm}}{m}} .} \] Заметим, что \(dm\) обозначает уменьшение массы. Поэтому, возьмем приращение \(dm\) с отрицательным знаком. В результате, уравнение принимает вид: \[ {\left. v \right|_{{v_0}}^{{v_1}} = - u\left. {\left({\ln m} \right)} \right|_{{m_0}}^{{m_1}},}\;\; {\Rightarrow {v_1} - {v_0} = u\ln \frac{{{m_0}}}{{{m_1}}}.} \] где \({v_0}\) и \({v_1}\) − начальная и конечная скорость ракеты, а \({m_0}\) и \({m_1}\) − начальная и конечная масса ракеты, соответственно.

Полагая \({v_0} = 0,\) получим формулу, выведенную Циолковским: \ Данная формула определяет скорость ракеты в зависимости от изменения ее массы по мере сгорания топлива. С помощью этой формулы можно грубо оценить запас топлива, необходимый для ускорения ракеты до определенной скорости.