Болезни Военный билет Призыв

Что такое неокортекс у человека. Роль неокортекса в восприятии окружающего мира и мышлении. Нарушения и их последствия

Тема 14

Физиология головного мозга

Часть V

Новая кора больших полушарий

Новая кора (неокортекс) представляет собой слой серого вещества общей площадью 1500-2200 см 2 , покрывающий большие полушария конечного мозга. Она составляет около 40% массы головного мозга. В коре имеется около 14 млрд. нейронов и около 140 млрд. глиальных клеток. Кора головного мозга является филогенетически наиболее молодой нервной структурой. У человека она осуществляет высшую регуляцию функций организма и психофизиологические процессы, обеспечивающие различные формы поведения.

Структурно-функциональная характеристика коры . Кора больших полушарий состоит из шести горизонтальных слоев, расположенных в направлении с поверхности в глубь.

    Молекулярный слой имеет очень мало клеток, но большое количество ветвящихся дендритов пирамидных клеток, формирующих сплетение, расположенное параллельно поверхности. На этих дендритах образуют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.

    Наружный зернистый слой составлен в основном звездчатыми и частично малыми пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, образуя кортикокортикальные связи.

    Наружный пирамидный слой состоит преимущественно из пирамидных клеток средней величины. Аксоны этих клеток, как и зернистые клетки II слоя, образуют кортикокортикальные ассоциативные связи.

    Внутренний зернистый слой по характеру клеток и расположению их волокон аналогичен наружному зернистому слою. На нейронах этого слоя образуют синаптические окончания афферентные волокна, идущие от нейронов специфических ядер таламуса и, следовательно, от рецепторов сенсорных систем.

    Внутренний пирамидный слой образован средними и крупными пирамидными клетками, причем гигантские пирамидные клетки Беца расположены в двигательной коре. Аксоны этих клеток образуют эфферентные кортикоспинальные и кортикобульбарный двигательные пути.

    Слой полиморфных клеток образован преимущественно веретенообразными клетками, аксоны которых образуют кортикоталамические пути.

Афферентные и эфферентные связи коры . В слоях I и IV происходят восприятие и обработка поступающих в кору сигналов. Нейроны II и III слоев осуществляют кортикокортикальные ассоциативные связи. Покидающие кору эфферентные пути формируются преимущественно в V – VI слоях. Более детально деление коры на различные поля проведено на основе цитоархитектонических признаков (формы и расположения нейронов) К.Бродманом, который выделил 11 областей, включающих в себя 52 поля, многие из которых характеризуются функциональными и нейрохимическими особенностями. По Бродману лобная область включает 8, 9, 10, 11, 12, 44, 45, 46, 47 поля. В прецентральную область входят 4 и 6 поле, в постцентральную – 1, 2, 3, 43 поля. Теменная область включает в себя поля 5, 7, 39, 40, а затылочная 17 18 19. Височная область состоит из очень большого количества цитоархитектонических полей: 20, 21, 22, 36, 37, 38, 41, 42, 52.

Рис.1. Цитоархитектонические поля коры головного мозга человека (по К.Бродману): а – наружная поверхность полушария; б – внутренняя поверхность полушария.

Гистологические данные показывают, что элементарные нейронные цепи, участвующие в обработке информации, расположены перпендикулярно поверхности коры. В моторной и различных зонах сенсорной коры имеются нейронные колонки диаметром 0,5-1,0 мм, которые представляют собой функциональное объединение нейронов. Соседние нейронные колонки могут частично перекрываться, а также взаимодействовать друг с другом по механизму латерального торможения и осуществлять саморегуляцию по типу возвратного торможения.

В филогенезе роль коры большого мозга в анализе и регуляции функций организма и подчинение себе нижележащих отделов ЦНС возрастает. Этот процесс называется кортиколизацией функций.

Проблема локализации функций имеет три концепции:

    Принцип узкого локализационизма – все функции помещены в одну, отдельно взятую структуру.

    Концепция эквипотенциализма – различные корковые структуры функционально равноценны.

    Принцип многофункциональности корковых полей. Свойство мультифункциональности позволяет данной структуре включаться в обеспечение различных форм деятельности, реализуя при этом основную, генетически присущую ей функцию. Степень мультифункциональности различных корковых структур неодинакова: например, в полях ассоциативной коры она выше, чем в первичных сенсорных полях, а в корковых структурах выше, чем в стволовых. В основе мультифункциональности лежит многоканальность поступления в кору мозга афферентного возбуждения, перекрытие афферентных возбуждений, особенно на таламическом и корковым уровнях, модулирующее влияние различных структур (неспецифического таламуса, базальных ганглиев) на корковые функции, взаимодействие корково-подкорковых и межкорковых путей проведения возбуждения.

Одним из наиболее крупных вариантов функционального разделения новой коры головного мозга является выделение в ней сенсорной, ассоциативной и двигательной областей.

Сенсорные области коры больших полушарий . Сенсорные области коры – это зоны, в которые проецируются сенсорные раздражители. Сенсорные области коры иначе называют: проекционной корой или корковыми отделами анализаторов. Они расположены преимущественно в теменной, височной и затылочной долях. Афферентные пути в сенсорную кору поступают преимущественно от специфических сенсорных ядер таламуса (вентральных, задних латерального и медиального). Сенсорная кора имеет хорошо выраженные II и IVслои и называется гранулярной .

Зоны сенсорной коры, раздражение или разрушение которых вызывает четкие и постоянные изменения чувствительности организма, называются первичными сенсорными областями . Они состоят преимущественно из мономодальных нейронов и формируют ощущения одного качества. В первичных сенсорных зонах обычно имеется четкое пространственное (топографическое) представительство частей тела, их рецепторных полей. Вокруг первичных сенсорных зон находятся менее локализованные вторичные сенсорные зоны , полимодальные нейроны которых отвечают на действие нескольких раздражителей.

╠ Важнейшей сенсорной областью является теменная кора постцентральной извилины и соответствующая ей часть парацентральной дольки на медиальной поверхности полушарий (поля 1-3), которую обозначают как первичная соматосенсорная область (S I). Здесь имеется проекция кожной чувствительности противоположной стороны тела от тактильных, болевых, температурных рецепторов, интероцептивной чувствительности и чувствительности опорно-двигательного аппарата от мышечных, суставных и сухожильных рецепторов. Проекция участков тела в этой области характеризуется тем, что проекция головы и верхних отделов туловища расположена в нижнелатеральных участках постцентральной извилины, проекция нижней половины туловища и ног – в верхнемедиальных зонах извилины, проекция нижней части голени и стоп – в коре парацентральной дольки на медиальной поверхности полушарий. При этом проекция наиболее чувствительных участков (язык, губы, гортань, пальцы рук) имеет относительно большие зоны по сравнению с другими частями тела (см.рис.2). Предполагается, что в зоне тактильной чувствительности языка расположена и проекция вкусовой чувствительности.

Кроме S I выделяют вторичную соматосенсорную область меньшую размером (S II). Она расположена на верхней стенке боковой борозды, на границе ее пересечения с центральной бороздой. Функции S II изучены плохо. Известно, что локализация поверхности тела в ней менее четкая, импульсация сюда поступает как от противоположной стороны тела, так и от «своей» стороны, предполагают ее участие в сенсорной и моторной координации двух сторон тела.

╠ Другой первичной сенсорной зоной является слуховая кора (поля 41, 42), которая расположена в глубине латеральной борозды (кора поперечных височных извилин Гешля). В этой зоне в ответ на раздражение слуховых рецепторов кортиева органа формируются звуковые ощущения, изменяющиеся по громкости, тону и другим качествам. Здесь имеет четкая топическая проекция: в разных участках коры представлены различные участки кортиева органа. К проекционной коре височной доли относится также центр вестибулярного анализатора в верхней и средней височных извилинах (поля 20 и 21). Обработанная сенсорная информация используется для формирования «схемы тела» и регуляции функций мозжечка (височно-мостомозжечковый путь).

Рис.2. Схема чувствительного и двигательного гомункулусов. Разрез полушарий во фронтальной плоскости: а – проекция общей чувствительности в коре постцентральной извилины; б – проекция двигательной системы в коре прецентральной извилины.

╠ Еще одна первичная проекционная область новой коры расположена в затылочной коре - первичная зрительная область (кора части клиновидной извилины и язычковой дольки, поле 17). Здесь имеет топическое представительство рецепторов сетчатки, и каждой точке сетчатки соответствует свой участок зрительной коры, при этом зона желтого пятна имеет большую зону представительства. В связи с неполным перекрестом зрительных путей в зрительную область каждого полушария проецируются одноименные половины сетчатки. Наличие в каждом полушарии проекции сетчатки обоих глаз является основой бинокулярного зрения. Раздражение коры 17-го поля приводит к возникновению световых ощущений. Около поля 17 расположена кора вторичной зрительной области (поля 18 и 19). Нейроны этих зон полимодальны и отвечают не только на световые, но и на тактильные, слуховые раздражители. В данной зрительной области происходит синтез различных видов чувствительности и возникают более сложные зрительные образы и их опознавание. Раздражение этих полей вызывает зрительные галлюцинации, навязчивые ощущения, движения глаз.

Основная часть информации об окружающей среде и внутренней среда организма, поступившая в сенсорную кору, передается для дальнейшей ее обработки в ассоциативную кору.

Ассоциативные области коры . Ассоциативные области коры включают участки новой коры, расположенные рядом с сенсорными и двигательными зонами, но не выполняющие непосредственно чувствительных и двигательных функций. Границы этих областей обозначены не достаточно четко, неопределенность преимущественно связана со вторичными проекционными зонами, функциональные свойства которых являются переходными между свойствами первичных проекционных и ассоциативных зон. У человека ассоциативная кора составляет 70% неокортекса.

Основной физиологической особенностью нейронов ассоциативной коры является полимодальность: они отвечают на несколько раздражителей с почти одинаковой силой. Полимодальность (полисенсорность) нейронов ассоциативной коры создается за счет, во-первых, наличия кортикокортикальных связей с разными проекционными зонами, во-вторых, за счет главного афферентного входа от ассоциативных ядер таламуса, в которых уже произошла сложная обработка информации от различных чувствительных путей. В результате этого ассоциативная кора представляет собой мощный аппарат конвергенции различных сенсорных возбуждений, позволяющих произвести сложную обработку информации о внешней и внутренней среде организма и использовать ее для осуществления высших психофизиологических функций. В ассоциативной коре выделяют три ассоциативные системы мозга: таламотеменную, таламолобную и таламовисочную.

Таламотеменная система представлена ассоциативными зонами теменной коры (поля 5, 7, 40), получающими основные афферентные входы от задней группы ассоциативных ядер таламуса (латеральное заднее ядро и подушка). Теменная ассоциативная кора имеет эфферентные выходы на ядра таламуса и гипоталамуса, моторную кору и ядра экстрапирамидной системы. Основными функциями таламотеменной системы являются гнозис, формирование «схемы тела» и праксис. Под гнозисом понимают функцию различных видов узнавания: формы, величины, значения предметов, понимание речи, познание процессов, закономерностей. К гностическим функциям относится оценка пространственных отношений. В теменной коре выделяют центр стереогнозиса, расположенный сзади от средних отделов постцентральной извилины (поля 7, 40, частично 39) и обеспечивающий способность узнавания предметов на ощупь. Вариантом гностической функции является формирование в сознании трехмерной модели тела («схемы тела»), центр которой расположен в поле 7 теменной коры. Под праксисом понимают целенаправленное действие, центр его находится в надкраевой извилине (поля 39 и 40 доминантного полушария). Этот центр обеспечивает хранение и реализацию программы двигательных автоматизированных актов.

Таламолобная система представлена ассоциативными зонами лобной коры (поля 9-14), имеющими основной афферентный вход от ассоциативного медиодорсального ядра таламуса. Главной функцией лобной ассоциативной коры является формирование программ целенаправленного поведения, особенно в новой для человека обстановке. Реализация этой общей функции основывается на других функциях таламолобной системы: 1) формирование доминирующей мотивации обеспечивающей направление поведения человека. Эта функция основана на тесных двусторонних связях лоьной коры с лимбической системой и ролью последней в регуляции высших эмоций человека, связанных с его социальной деятельностью и творчеством.; 2) обеспечение вероятностного прогнозирования, что выражается изменением поведения в ответ на изменения обстановки окружающей среды и доминирующей мотивации; 3) самоконтроль действий путем постоянного сравнения результата действия с исходными намерениями, что связано с созданием аппарата предвидения (акцептора результата действия).

При повреждении префронтальной лобной коры, где пересекаются связи между лобной долей и таламусом, человек становится грубым, нетактичным, ненадежным, у него появляется тенденция к повторению каких-либо двигательных актов, хотя обстановка уже изменилась и надо выполнять другие действия.

Таламовисочная система изучена не достаточно. Но если говорить о височной коре, то надо отметить, что некоторые ассоциативные центры, например стереогнозиса и праксиса, включают в себя и участки височной коры (поле 39). В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины (поля 22, 37, 42 левого доминантного полушария). Этот центр обеспечивает речевой гнозис – распознавание и хранение устной речи, как собственной, так и чужой. В средней части верхней височной извилины (поле 22) находится центр распознавания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей (поле 39) находится центр чтения письменной речи, обеспечивающий распознавание и хранение образов письменной речи.

Двигательные области коры . В двигательной коре выделяют первичную и вторичную моторные области.

В первичной моторной коре (прецентральная извилина, поле 4) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топографическая проекция мышц тела. При этом проекции мышц нижних конечностей и туловища расположены в верхних участках прецентральной извилины и занимают сравнительно небольшую площадь, а проекция мышц верхних конечностей, лица и языка расположены в нижних участках извилины и занимают большую площадь (см.рис.2). Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Двигательные реакции на раздражение первичной моторной коры осуществляются с минимальным порогом (высокая возбудимость), и представлены элементарными сокращениями мышц противоположной стороны тела (для мышц головы сокращение может быть билатеральным). При поражении этой области коры утрачивается способность к тонким координированным движениям рук, особенно пальцев.

Вторичная двигательная кора (поле 6) расположена на латеральной поверхности полушарий, впереди прецентральной извилины (премоторная кора). Она осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений. Кора поля 6 получает основную часть эфферентной импульсации базальных ядер и мозжечка и участвует в перекодировании информации о программе сложных движений. Раздражение коры поля 6 вызывает более сложные координированные движения, например, поворот головы, глаз и туловища в противоположную сторону, содружественные сокращения мышц-сгибателей или мышц-разгибателей на противоположной стороне. В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: центр письменной речи в заднем отделе средней лобной извилины (поле 6), центр моторной течи Брока в заднем отделе нижней лобной извилины (поле 44), обеспечивающий речевой праксис, а также музыкальный моторный центр (поле 45), определяющий тональность речи, способность петь.

Афферентные и эфферентные связи моторной коры . В моторной коре лучше, чем в других зонах коры, выражен слой, содержащий гигантские пирамидные клетки Беца. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, а также от базальных ядер и мозжечка. Основной эфферентный выход двигательной коры на стволовые и спинальные моторные центры формируют пирамидные клетки V слоя. Пирамидные и сопряженные с ними вставочные нейроны расположены вертикально по отношению к поверхности коры и образуют нейронные двигательные колонки. Пирамидные нейроны двигательной колонки могут возбуждать или тормозить мотонейроны стволовых и спинальных центров. Соседние колонки в функциональном плане перекрываются, а пирамидные нейроны, регулирующие деятельность одной мышцы, расположены обычно не в одной, а в нескольких колонках.

Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути, которые начинаются от гигантских пирамидных клеток Беца и менее крупных пирамидных клеток V слоя коры прецентральной извилины (60% волокон), премоторной коры (20% волокон) и постцентральной извилины (20% волокон). Крупные пирамидные клетки имеют быстропроводящие аксоны и фоновую импульсную активность около 5 Гц, которая при движении увеличивается до 20-30 Гц. Эти клетки иннервируют крупные (высокопороговые) ά-мотонейроны в двигательных центрах ствола и спинного мозга, регулирующих физические движения. От мелких пирамидных клеток отходят тонкие медленнопроводящие миелиновые аксоны. Эти клетки имеют фоновую активность около 15 Гц, которая во время движения увеличивается или уменьшается. Они иннервируют мелкие (низкопороговые) ά-мотонейроны в стволовых и спинальных двигательных центрах, регулирующие тонус мышц.

Пирамидные пути состоят из 1 млн волокон кортикоспинального пути, которые начинаются от коры верхней и средней трети прецентральной извилины, и 20 млн волокон кортикобульбарного пути, который начинается от коры нижней трети прецентральной извилины. Волокна пирамидного пути оканчиваются на ά-мотонейронах двигательных ядер III - VII и IX - XII черепных нервов (кортикобульбарный путь) или на спинальных двигательных центрах (кортикоспинальный путь). Через двигательную кору и пирамидные пути осуществляются произвольные простые движения и сложные целенаправленные двигательные программы, например, профессиональные навыки, формирование которых начинается в базальных ганглиях и мозжечке и заканчивается во вторичной моторной коре. Большинство волокон пирамидных путей осуществляют перекрест, однако небольшая часть волокон остается неперекрещенными, что способствует компенсации нарушенных функций движения при односторонних поражениях. Через пирамидные пути осуществляет свои функции и премоторная кора: двигательные навыки письма, поворот головы, глаз и туловища в противоположную сторону, а также речь (речедвигательный центр Брока, поле 44). В регуляции письма и особенно устной речи имеется выраженная асимметрия больших полушарий мозга: у 95% правшей и 70% левшей устная речь контролируется левым полушарием.

К корковым экстрапирамидным путям относят кортикорубральные и кортикоретикулярные пути, начинающиеся приблизительно от тех зон, которые дают начало пирамидным путям. Волокна кортикорубрального пути оканчиваются на нейронах красных ядер среднего мозга, от которых далее идут руброспинальные пути. Волокна кортикоретикулярных путей оканчиваются на нейронах медиальных ядер ретикулярной формации моста (от них идут медиальные ретикулоспинальные пути) и на нейронах ретикулярных гигантоклеточных ядер продолговатого мозга, от которых начинаются латеральные ретикулоспинальные пути. Через эти пути осуществляется регуляция тонуса и позы, которые обеспечивают точные целенаправленные движения. Корковые экстрапирамидные пути являются компонентом экстрапирамидной системы головного мозга, к которой относятся мозжечок, базальные ганглии, моторные центры ствола. Экстрапирамидная система осуществляет регуляцию тонуса, позы равновесия, выполнение заученных двигательных актов, таких как ходьба, бег, речь, письмо. Поскольку кортикопирамидные пути отдают свои многочисленные коллатерали структурам экстрапирамидной системе, то обе системы работают в функциональном единстве.

Оценивая в общем плане роль различных структур головного и спинного мозга в регуляции сложных направленных движений, можно отметить, что побуждение (мотивация) к движению создается в лимбической системе, замысел движения – в ассоциативной коре больших полушарий, программы движений – в базальных ганглиях, мозжечке и премоторной коре, а выполнение сложных движений происходит через двигательную кору, моторные центры ствола и спинного мозга.

Межполушарные взаимоотношения . Межполушарные взаимоотношения у человека проявляются в двух формах – функциональной асимметрии больших полушарий и совместной их деятельности.

Функциональная асимметрия полушарий является важнейшим психофизиологическим свойством головного мозга человека. Выделяют психическую, сенсорную и моторную межполушарную функциональную асимметрии мозга. При исследовании психофизиологических функций было показано, что в речи словесный информационный канал контролируется левым полушарием, а несловесный канал (голос, интонация) – правым. Абстрактное мышление и сознание связаны, преимущественно, с левым полушарием. При выработке условного рефлекса в начальной фазе доминирует правое полушарие, а во время упрочения рефлекса – левое. Правое полушарие осуществляет обработку информации одновременно, синтетически, по принципу дедукции, лучше воспринимаются пространственные и относительные признаки предмета. Левое полушарие производит обработку информации последовательно, аналитически, по принципу индукции, лучше воспринимает абсолютные признаки предмета и временные отношения. В эмоциональной сфере правое полушарие обуславливает преимущественно отрицательные эмоции, контролирует проявления сильных эмоций, в целом оно более «эмоционально». Левое полушарие обуславливает в основном положительные эмоции, контролирует проявление более слабых эмоций.

В сенсорной сфере роль правого и левого полушарий лучше всего проявляется при зрительном восприятии. Правое полушарие воспринимает зрительный образ целостно, сразу во всех подробностях, легче решает задачу различения предметов и опознания визуальных образов предметов, которое трудно описать словами, создает предпосылки конкретно-чувственного мышления. Левое полушарие оценивает зрительный образ расчленено, аналитически, при этом каждый признак анализируется раздельно. Легче опознаются знакомые предметы и решаются задачи сходства предметов, зрительные образы лишены конкретных подробностей и имеют высокую степень абстракции; создаются предпосылки логического мышления.

Моторная асимметрия выражается, прежде всего, в право-леворукости, которая контролируется моторной корой противоположного полушария. Асимметрия других групп мышц имеет индивидуальный, а не видовой характер.

Рис.3. Асимметрия полушарий мозга.

Парность в деятельности больших полушарий обеспечивается наличием комиссуральной системы (мозолистого тела, передней и задней, гиппокампальной и хабенулярной комиссур, межталамического сращения), которые анатомически соединяют два полушария головного мозга. Иначе говоря, оба полушария связаны не только горизонтальными связями, но и вертикальными. Основные факты, полученные с помощью электрофизиологических методик, показали, что возбуждение из участка раздражения одного полушария передается через комиссуральную систему не только в симметричный участок другого полушария, но и в несимметричные участки коры. Исследование метода условных рефлексов показало, в процессе выработки рефлекса происходит «перенос» временной связи в другое полушарие. Элементарные же формы взаимодействия двух полушарий могут осуществляться через четверохолмие и ретикулярную формацию ствола.

На основании новейших анатомических... влияния коры больших полушарий на кору мозжечка. Низшие рефлекторные центры спинного мозга и стволовой части головного мозга ...

  • Г. А. Петров физиология с основами анатомии

    Документ

    ... КОРЫ БОЛЬШИХ ПОЛУШАРИЙ ГОЛОВНОГО МОЗГА Модуль 3. СЕНСОРНЫЕ СИСТЕМЫ ЧЕЛОВЕКА 3.1. Общая физиология ... нового ... 14 . жизненно важная часть дыхательного центра расположена в спинном мозге заднем мозге среднем мозге промежуточном мозге коре больших полушарий ...

  • Н. П. Реброва Физиология сенсорных систем

    Учебно-методическое пособие

    Входит составной частью в естественнонаучные дисциплины «Анатомия и физиология человека», «Физиология сенсорных систем... в головной мозг . Эти пути начинаются в спинном мозге , переключаются в таламусе и далее направляются к коре больших полушарий . ...

  • Анастасии Новых «Сэнсэй. Исконный Шамбалы» (2)

    Документ

    Среднего мозга , под­корковых отделов коры больших полушарий и мозжечка... из самых загадочных частей головного мозга и человека в... трамвай. 14 Выехали мы... зарождении новых душ, созданию новых «личинок... историком, востоковедом, физиологом . Но простым косто...

  • Строение и возрастные особенности коры головного мозга. Функции специализированных и звездчатых нейронов. Ассоциативные зоны и локализация полей. Отличия мозга от других органов человека. Характеристика отдельных областей коры до рождения и после.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    хорошую работу на сайт">

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http :// www . allbest . ru /

    КОНТРОЛЬНАЯ РАБОТА

    ГОЛОВНОЙ МОЗГ (ДРЕВНЯЯ, СТАРАЯ, НОВАЯ КОРА, ОТДЕЛЫ, ВОЗРАСТНЫЕ ОСОБЕННОСТИ, МАССА МОЗГА)

    Введение

    2. Корковые отделы

    Введение

    Кора покрывает поверхность больших полушарий с ее многочисленными бороздами и извилинами, за счет которых площадь коры значительно увеличивается. Различают ассоциативные зоны коры, а также сенсорную и моторную кору -- области, в которых сосредоточены нейтроны, иннервирующие различные части тела.

    Кора больших полушарий связана нервными путями со всеми низжележащими отделами центральной нервной системы, а через них -- со всеми органами тела. С одной стороны, импульсы, поступающие с периферии, доходят до той или иной точки коры, с другой -- кора посылает «распоряжения» в низжележащие отделы мозга, а оттуда -- к различным органам.

    Проявления психической и интеллектуальной деятельности человека непосредственно связано с одной из самых развитых и в филогенетическом отношении новой части головного мозга, конечным мозгом (или большим мозгом), состоящим из двух полушарий большого мозга.

    Итак, основу большого мозга составляют два больших полушария. На первый взгляд, их поверхность кажется беспорядочным нагромождением возвышающихся извилин и разделяющих их борозд. Но на самом-то деле у каждой извилины и борозды свое место и предназначение.

    Как утверждают ученые, нет двух одинаковых экземпляров мозга с полностью совпадающим рисунком поверхности. Так что рисунок борозд и извилин на поверхности коры больших полушарий мозга у людей столь же различен, как их лица, но, в то же время, отличается некоторым семейным сходством. Одни борозды и извилины, в основном наиболее крупные, встречаются в каждом мозге, другие же не столь постоянны, и их приходиться еще и поискать. Кроме того, различие борозд и извилин так же проявляется в их длине, глубине, прерывистости и многих других, более индивидуальных особенностях.

    Для полного понимания строения и протекающих в организме всех процессов, представление должно строиться по принципу целостности и иерархичности нервной системы, начиная с клеточного уровня и завершая наиболее сложным высшим отделом центральной нервной системы -- корой больших полушарий, которая является материальным субстратом психики человека.

    Легких путей не ищем,и начнем со строения коры больших полушарий головного мозга.

    1. Строение коры головного мозга

    Так вот, площадь коры головного мозга одного полушария человека составляет около 800 -- 2200 кв. см., толщина -- 1,5?5 мм. Большая часть коры (2/3) залегает в глубине борозд и не видна снаружи. Благодаря такой организации мозга в процессе эволюции была получена возможность значительно увеличить площадь коры при ограниченном объеме черепа. Общее количество нейронов в коре может достигать 10 -- 15 млрд.

    Сама же по себе кора больших полушарий неоднородна, поэтому в соответствии с филогенезом (по происхождению) различают древнюю кору (палеокортекс), старую кору (архикортекс), промежуточную(или среднюю) кору (мезокортекс) и новую кору (неокортекс).

    Древняя кора

    Древняя кора, (или палеокортекс) -- это наиболее просто устроина кора больших полушарий, которая содержит 2?3 слоя нейронов. Согласно ряду известных ученых таких как Х. Фениш, Р. Д. Синельникову и Я. Р. Синельникову указывающих, что древняя кора соответствует области мозга, каторая развивается из грушевидной доли, а также компонентами древней коры являются обонятельный бугорок и окружающая его кора, включающая участок переднего продырявленного вещества. В состав древней коры входят следующие структурные образования такие как препириформная, периамигдалярная область коры, диагональная кора и обонятельный мозг, включающий обонятельные луковицы, обонятельный бугорок, прозрачную перегородку, ядра прозрачной перегородки и свод.

    Согласно М. Г. Привесу и ряду некоторых ученых обонятельный мозг топографически делится на два отдела включая в себя ряд образований и извилин.

    1. периферический отдел (или обонятельная доля) в состав которого входят образования лежащие на основании мозга:

    обонятельная луковица;

    обонятельный тракт;

    обонятельный треугольник (внутри которого располагается обонятельный бугорок т. е. вершина обонятельного треугольника);

    внутренние и боковые обонятельные извилины;

    внутренние и боковые обонятельные полоски (волокна внутренней полоски заканчиваются в подмозолистом поле паратерминальной извилине, прозрачной перегородке и в переднем продырявленном веществе, а волокна боковой полоски заканчиваются в парагиппокампальной извилине);

    переднее продырявленное пространство, или вещество;

    диагональная полоска, или полоска Брока.

    2. центральный отдел входят три извилины:

    парагиппокампальная извилина (извилина гиппокампа, или извилина морского конька);

    зубчатая извилина;

    поясная извилина (включая ее переднею часть -- крючек).

    Старая и промежуточная кора

    Старая кора (или архикортекс) -- эта кора появляется позже древней коре и содержит в себе только три слоя нейронов. В ее состав входят гиппокамп (морской конек или аммонов рог) с его, основанием, зубчатая извилина и поясная извилина. кора головной мозг нейрон

    Промежуточная кора (или мезокортекс) -- представляющая собой пятислойные участи коры, отделяющие новую кору (неокортекс), от древней коры (палеокортекса) и старой коры (архикортекса) и из-за этого среднюю кору делят на две зоны:

    1. перипалеокортикальная;

    2. периархиокортикальная.

    В состав мезокортекса согласно В. М. Покровскому и Г. А. Кураеву входят остарвковая, а также в энториальной области граничащая со старой корой парагиппокампальная извилина и предоснование гиппокампа.

    В промежуточную кору по мнению Р. Д. Синельникова и Я. Р. Синельникова входят такие образования как нижний отдел остравковой доли, парагиппокампальная извилина и нижний отдел лимбической области коры. Но при этом необходимо понимать, что под лимбической областью понимают часть новой коры полушарий большого мозга, которая занимает поясную и парагиппокампальную извилины. Так же есть мнение, что промежуточная кора -- это неполностью дифференцированная зона коры остравка (или висцеральная кора).

    Из-за неоднозначности такой трактовки структур относящихся к древней и старой коре перевела к целесообразности использования объединенного понятия как архиопалеокортекс.

    Структуры архиопалеокортекса имеют множественные связи, как между собой, так и сдругими образованиями мозга.

    Новая кора

    Новая кора (или неокортекс) -- филогенетически, т. е. по своему происхождению -- это наиболее позднее образование головного мозга. Из-за более позднего эволюционного возникновения и бурного развития новой коры головного мозга в ее организации сложных форм высшей нервной деятельности и высший иерархический ее уровень который вертикально согласованный с деятельностью центральной нервной системой составляя при этом наиболее особенности этого отдела мозга. Особенности новой коры вот уже много лет привлекает и продолжает удерживать внимание множество исследователей изучающих физиологию коры больших полушарий головного мозга. В настоящее время на смену старых представлениям о монопольном участии новой коры в формировании сложных форм поведения, в том числе условных рефлексов, пришло представление о ней, как высшем уровне таламокортикальных систем, функционирующих совместно с таламусом, лимбической и другими системами головного мозга. Новая кора участвует в психическом переживании внешнего мира -- его восприятия и создания его образов, которые сохраняются на более или менее долгое время.

    Особенность структуры новой коры является экранный принцип ее организации. Главное в этом принципе -- организации нейронных систем заключается в геометрическом распределении проекций высших рецепторных полей на большой поверхности нейронального поля коры. Также для экранной организации характерная организация клеток и волокон, которые идут перпендикулярно поверхности или параллельно ей. Такая ориентация нейронов коры обеспечивает возможности для объединения нейронов в группировки.

    Что касается клеточного состава в новой коре то он очень многообразен, величина нейронов примерно от 8?9 мкм до 150 мкм. Преобладающее большинство клеток относится к двум типам это -- прирамидным и звездчатым. Также в новой коре имеются и веретенообразные нейроны.

    Для того чтобы лучше рассмотреть особенности микроскопического строения коры больших полушарий необходимо обратиться к архитектонике. Под микроскопическим строением различают цитоархитектонику (клеточное строение) и миелоархитектонику (волокнистое строение коры). Начало изучения архитектоники коры больших полушарий относится к концу XVIII века, когда в 1782 г. Дженнари впервые обнаружил неоднородность строения коры в затылочных долях полушарий. В 1868 г. Мейнерт разделил поперечник коры полушарий на слои. В России первым исследователем коры былВ. А. Бец (1874), открывший крупные пирамидные нейроны в 5 слое коры в области предцентральной извилины, названные его именем. Но, есть и другое разделение коры головного мозга -- так называемая карта полей Бродмана. В 1903 году германский анатом, физиолог, психолог и психиатр К. Бродман опубликовал описание пятидесяти двух цитоархитектонических полей, которые представляют собой участки коры головного мозга, различные по своему клеточному строению. Каждое такое поле отличается по величине, форме, расположению нервных клеток и нервных волокон и, конечно же, различные поля связаны с различными функциями головного мозга. На основании описания этих полей и была составлена карта 52 полей Бродман

    2. Корковые отделы

    Цитоархитектонические особенности позволили разделить всю поверхность коры на 11 цитоархитектонических областей, включающих в себя 52 поля (по Бродману). Каждое цитоархитектоническое поле обозначено на картах мозга номером, который присваивался ему в порядке описания.

    В первом слое коры волокна образуют полоску молекулярной пластинки. Во втором слое залегают тонкие волокна наружной зернистой пластинки. В составе четвертого слоя коры находится полоска внутренней зернистой пластинки (наружная полоска Байярже). В пятом слое содержатся волокна внутренней пирамидной пластинки (внутреняя полоска Байярже).

    Основная информация в кору поступает по специфическим афферентным проводящим путям, заканчивающимся на клетках 3 и 4 слоев. Неспецифические пути от РФ заканчиваются в верхних слоях коры и регулируют ее функциональное состояние (возбуждение, торможение).

    Звездчатые нейроны выполняют главным образом чувствительную (афферентную) функцию. Пирамидные и веретеновидные клетки -- это преимущественно двигательные (эфферентные) нейроны.

    Часть клеток коры принимают информацию от любых рецепторов организма -- это полисенсорные нейроны, воспринимающие импульсы только от определенных рецепторов (зрительных, слуховых, тактильных и т. д.). Клетки нейроглии выполняют вспомогательные функции: трофическую, нейросекреторную, защитную, изолирующую.

    Специализированные нейроны и другие клетки, входящие в состав вертикальных колонок, образуют отдельные участки коры, которые называются проекционными зонами (цитоархитектоническими полями). Эти функциональные зоны коры делятся на 3 группы:

    Афферентные (чувственные);

    Эфферентные (двигательные или моторные);

    Ассоциативные (соединяют предыдущие зоны и обусловливают сложную работу мозга, лежащую в основе высшей психической деятельности).

    Ассоциативные зоны и локализация полей

    Каждый анализатор (например, зрения, обоняния, слуха и т. д.) имеет, по представлению И. П. Павлова, в коре головного мозга центральную часть (ядро), где осуществляется высший анализ и синтез, и широкую периферическую зону, в которой аналитические и синтетические процессы совершаются в элементарном виде. Между ядрами отдельных анализаторов разбросаны и перемешаны нервные элементы, принадлежащие различным анализаторам. Если ядро анализатора в силу каких-либо причин разрушено или выбыло из строя, его функцию перенимают периферические элементы того же анализатора. Современная физиология отвергает и узкий («абсолютный») локализационизм и принцип однородности, равноценности всех участков коры мозга. Локализация существует, но имеет «подвижный», «динамический» характер, о чем еще много лет назад говорил И. П. Павлов.

    Нервные образования, которые мы привыкли называть «центрами», не ограничиваются корой головного мозга. Они включают и подкорковые структуры, значение которых необычайно велико.

    Следует помнить, что любой центр коры головного мозга теснейшим образом связан со всеми другими отделами центральной нервной системы. В этом объединении, или, как говорят, интеграции, и заключается ведущая роль коры мозга в организме. Представление о единых корковых центрах, полностью обеспечивающих какую-либо определенную функцию, является в настоящее время пройденным этапом в физиологии.

    К тому же кора головного мозга отличается необычайной пластичностью, и одни отделы ее легко перенимают функции других, компенсируя расстройство их деятельности, вызванное различными причинами. Наиболее важная задача современной науки выявить анатомическую основу физиологических процессов и одновременно установить связи и взаимосвязи между всеми явлениями, наблюдаемыми в головном мозгу. Исследования, проведенные различными авторами, как отечественными, так и зарубежными, показали, что в центральной извилине мозга, расположенной спереди от центральной борозды, находится специальная двигательная область. Раздражение ее электрическим током вызывает сокращение определенных мышц противоположной стороны тела. Напротив, удаление этой области хирургическим путем ведет к расстройству координированных движений, шаткости походки, ослаблению мышц. У человека ранение двигательной области сопровождается обычно параличами и другими тяжелыми нарушениями деятельности организма. С помощью метода условных рефлексов удалось показать, что так называемые двигательные центры содержат чувствительные клетки, к которым приходят периферические раздражения от двигательного аппарата (костей, суставов, мышц). Эта область является мозговым концом двигательного анализатора в такой же степени, как затылочная -- мозговым концом зрительного анализатора, височная -- слухового анализатора и т. д. В двигательной области имеются как чувствительные клетки, расположенные в верхних слоях коры, так и двигательные, сосредоточенные в ее нижних слоях. Импульсы от рецепторов двигательного аппарата поступают в чувствительные клетки передней мозговой извилины, а отсюда уже передаются двигательным клеткам головного и спинного мозга.

    У человека ассоциативные зоны достигают наибольшего развития. Локализация функций в коре головного мозга относительна -- здесь нельзя провести каких-либо четких границ, поэтому мозг обладает высокой пластичностью, приспосабливаемостью к повреждениям. Тем не менее, морфологическая и функциональная неоднородность коры позволила выделить в ней 52 цитоархитектонических поля (К. Бродман), а среди них -- центры зрения, слуха, осязания и др. Все они связаны между собой волокнами проводящих путей белого вещества, которые делятся на 3 типа:

    1. ассоциативные (связывают зоны коры в пределах одного полушария),

    2. комиссуральные (связывают симметричные зоны коры двух полушарий через мозолистое тело),

    3. проекционные (связывают кору и подкорку с периферическими органами, бывают чувствительные и двигательные).

    1. Чувствительная зона коры (в постцентральной извилине) воспринимает импульсы от тактильных, температурных и болевых рецепторов кожи, а также от проприорецепторов противоположной половины тела.

    2. Двигательная зона коры (в предцентральной извилине) содержит в 5 слое коры пирамидные клетки Беца, от которых идут импульсы произвольных движений к скелетным мышцам противоположной половины тела.

    3. Премоторная зона (в основании средней лобной извилины) обеспечивает сочетанный поворот головы и глаз в противоположную сторону.

    4. Праксическая зона (в надкраевой извилине) обеспечивает сложные целенаправленные движения практической деятельности и профессиональных двигательных навыков. Зона асимметрична (у правшей -- в левом, а у левшей -- в правом полушарии).

    5. Центр проприоцептивного гнозиса (в верхней теменной дольке) обеспечивает восприятие импульсов проприорецепторов, контролирует ощущения тела и его частей как целостного образования.

    6. Центр чтения (в верхней теменной дольке, вблизи затылочной доли) контролирует восприятие написанного текста.

    7. Слуховая зона коры (в верхней височной извилине) воспринимает информацию от рецепторов органа слуха.

    8. Слуховой центр речи, центр Вернике (в основании верхней височной извилины). Зона асимметрична (у правшей -- в левом, а у левшей -- в правом полушарии).

    9. Слуховой центр пения (в верхней височной извилине). Зона асимметрична (у правшей -- в левом, а у левшей -- в правом полушарии).

    10. Двигательный центр устной речи, центр Брока (в основании нижней лобной извилины) контролирует произвольные сокращения мышц, участвующих в речеобразовании. Зона асимметрична (у правшей -- в левом, а у левшей -- в правом полушарии).

    11. Двигательный центр письменной речи (в основании средней лобной извилины) обеспечивает произвольные движения, связанные с написанием букв и других знаков. Зона асимметрична (у правшей -- в левом, а у левшей -- в правом полушарии).

    12. Стереогностическая зона (в угловой извилине) контролирует узнавание предметов наощупь (стереогноз).

    13. Зрительная зона коры (в затылочной доле) воспринимает информацию от рецепторов органа зрения.

    14. Зрительный центр речи (в угловой извилине) контролирует движение губ и мимику говорящего оппонента, тесно связан с другими сенсорными и моторными речевыми центрами. Речь и сознание -- это филогенетические наиболее молодые функции мозга, поэтому речевые центры имеют большое число рассеянных элементов и наименее локализованы. Речевые и мыслительные функции выполняются при участии всей коры. Речевые центры у человека сформировались на основе трудовой деятельности, поэтому они асимметричные, непарные и связаны с рабочей рукой.

    Позади центральной борозды расположена чувствительная область коры. В ней заканчивается путь, начавшийся в рецепторах кожи и внутренних органов. Здесь расположен его конечный этап. Каждое полушарие мозга связано в основном с противоположной половиной тела. Однако существуют связи полушария и с одноименной половиной тела.

    3. Возрастные особенности коры головного мозга и масса мозга человек

    С пятого месяца внутриутробного развития поверхность полушарий начинает покрываться бороздами. Это ведет к увеличению поверхности коры, вследствие чего с пятого пренатального месяца до взрослого состояния она увеличивается примерно в 30 раз. Первыми закладываются очень глубокие борозды, так называемые щели(например, шпорная, латеральная), которые впячивают стенку полушария вглубь бокового желудочка. У шестимесячного плода (рис. 3.49) полушария значительно нависают над отдельными частями мозга, щели сильно углубляются, на дне латеральной щели становится заметным так называемый островок. Позднее появляются менее глубокие первичные борозды (например, центральная) и вторичные. В течение первых лет жизни ребенка образуются еще и третичные борозды - это в основном ответвления от первичных и вторичных борозд (рис. 3.54). На медиальной поверхности полушария раньше всех появляются гиппокампова и поясная извилины. После этого формирование борозд и извилин протекает очень быстро.

    Хотя все основные извилины уже существуют к моменту рождения, рисунок борозд еще не достигает высокой степени сложности. Спустя год после рождения появляются индивидуальные различия в распределении борозд и извилин и происходит усложнение их строения. В результате неравномерного роста отдельных участков коры в процессе онтогенеза в некоторых областях наблюдается как бы оттеснение определенных отделов вглубь борозд за счет наплыва над ними соседних, функционально более важных. Примером этого является постепенное погружение островка вглубь латеральной борозды за счет мощного разрастания соседних отделов коры, развивающихся с развитием членораздельной речи ребенка. Это - так называемая, лобная покрышка и височная покрышка (речедвигательный и речеслуховой центры). Восходящая и горизонтальная передние ветви латеральной борозды образуются из наплыва треугольной извилины лобной доли и развиваются у человека на самых поздних стадиях пренатального развития. Борозды образуются в следующей последовательности: к 5-му месяцу эмбриогенеза появляется центральная и поперечно-затылочная борозды, к 6-ти месяцам - верхняя и нижняя лобные, краевая и височные борозды, к 7-ми месяцам - верхние и нижние пре- и постцентральные и межтеменная, к 8-ми месяцам - средняя лобная и т.д.

    В возрасте до пяти лет сильно изменяются форма, топография, размеры борозд и извилин полушарий. Этот процесс продолжается и после пяти лет, но значительно медленнее.

    Мозг отличается от других органов человека ускоренным развитием. Древняя и старая кора имеет у новорожденного в общем то же строение, что и у взрослых людей. В то же время новая кора и связанные с ней подкорковые и стволовые образования продолжают свой рост и развитие вплоть до взрослого состояния. Численность нервных клеток в коре с возрастом не увеличивается. Однако сами нейроны продолжают развиваться: они растут, количество дендритов увеличивается, а их форма усложняется. Происходит процесс быстрой миелинизации волокон (табл. 3.1).

    Различные области коры миелинизируются в онтогенезе не одновременно. Первыми в последние месяцы внутриутробной жизни получают миелиновую оболочку волокна проекционных областей, в которых оканчиваются восходящие или берут начало нисходящие корковые пути. Ряд путей миелинизируется в течение первого месяца после рождения. И, наконец, на втором - четвертом месяцах жизни этот процесс охватывает наиболее филогенетически новые области, развитие которых особенно характерно для полушарий конечного мозга человека. Тем не менее кора полушарий ребенка в отношении миелинизации еще значительно отличается от коры взрослого. Одновременно развиваются двигательные функции. Уже в первые дни жизни ребенка появляются пищевые и оборонительные рефлексы на запахи, световые и другие раздражители. Начавшаяся во внутриутробной жизни миелинизация проводящих путей зрительной, вестибулярной и слуховой сенсорных систем заканчивается в первые месяцы после рождения. Вследствие этого простейшие движения трехмесячного ребенка обогащаются рефлекторным поворотам глаз и головы к источнику света и звука. Шестимесячный ребенок тянется к предметам и схватывает их, контролируя свои действия зрением.

    Структуры мозга, обеспечивающие моторные реакции, также созревают постепенно. На 6-7 неделе пренатального периода созревает красное ядро среднего мозга. Оно играет важную роль в организации мышечного тонуса и в осуществлении установочных рефлексов при согласовании позы при поворотах туловища, рук, головы. К 6-7 месяцам происходит созревание полосатых тел, которые становятся регулятором тонуса мышц при разных положениях и непроизвольных движениях.

    Движения новорожденного неточны и недифференцированы. Они обеспечиваются системой волокон, идущих от полосатых тел (стриатарной системой). В первые годы жизни ребенка к полосатым телам от коры прорастают нисходящие волокна. В результате экстрапирамидная система становится под контроль пирамидной - деятельность полосатых тел начинает регулироваться корой. Движения становятся более точными и целенаправленными.

    В дальнейшем постепенно усиливаются и уточняются такие двигательные акты, как выпрямление туловища, сидение, стояние. К концу первого года жизни миелинизация распространяется на большие полушария. Ребенок учится сохранять равновесие и начинает ходить. Процесс миелинизации оканчивается к двум годам. Одновременно у ребенка развивается речь, представляющая специфически человеческую форму высшей нервной деятельности.

    Отдельные области коры до рождения и после него растут неодинаково, что связано с их филогенетическим происхождением и функциональными особенностями.

    Помимо обонятельной сенсорной системы, связанной в основном с древней корой, в новой коре раньше других приближаются к строению мозга взрослого корковые отделы соматосенсорной системы, а также лимбическая область. Затем дифференцируются корковые отделы зрительной и слуховой систем и ассоциативная верхнетеменная область, имеющая отношение к тонкой кожной чувствительности - узнаванию предметов на ощупь.

    При этом на протяжении всего постнатального развития относительная площадь поверхности одной из более старых областей - затылочной - сохраняется постоянной (12%). Значительно позднее приближаются к строению мозга взрослого такие эволюционно новые, ассоциативные области, как лобная и нижнетеменная, связанные с несколькими сенсорными системами. При этом, в то время как у новорожденного лобная область составляет 20,6-21,5% поверхности всего полушария, у взрослого она занимает 23,5%. Нижнетеменная область занимает у новорожденного 6,5% поверхности всего полушария, а у взрослого - 7,7%. Филогенетически наиболее новые ассоциативные поля 44 и 45, «специфически человеческие», имеющие преимущественное отношение к речедвигательной системе, дифференцируются на более поздних этапах развития, этот процесс продолжается и после семи лет.

    В процессе развития ширина коры увеличивается в 2,5-3 раза. Прогрессивно растут и отдельные ее слои, особенно слой III, и наиболее интенсивно в ассоциативных полях коры. В течение развития наблюдается уменьшение числа клеток на единицу площади, т.е. их более разреженное расположение (рис. 3.55, А). Это связано со значительным ростом и усложнением отростков нервных клеток, особенно дендритов, рост которых ведет к раздвиганию тел нейронов

    Большой скачок в степени зрелости коры мозга ребенка по сравнению с корой мозга новорожденного наблюдается через 14 дней после рождения. Особенно интенсивно увеличивается поверхность полушарий и их отдельных областей в первые два года жизни. Это связано с формированием сложных, целенаправленных действий, быстрым развитием речи и первыми признаками становления абстрактного мышления. Дальнейшее качественное совершенствование коры больших полушарий и изменение количественных показателей особенно резко выявляются в 4 года и 7 лет, когда процессы психической деятельности становятся богаче, разнообразнее и сложнее. Возраст 7 лет можно считать критическим в развитии ребенка, и по морфологическим данным, и по физиологическим показателям.

    Вес мозга в пре- и постнатальном онтогенезе изменяется. Мозг ребенка очень рано приобретает размеры, близкие к мозгу взрослых людей, и уже к семи годам масса его у мальчиков в среднем достигает 1260 г, а у девочек - 1190 г. Максимальной массы мозг достигает в возрасте от 20 до 30 лет, а затем она начинает медленно уменьшаться, в основном за счет увеличения глубины и ширины борозд, уменьшения массы белого вещества и расширения просветов желудочков (рис. 3.56). Масса головного мозга взрослого человека равна в среднем 1275-1375 г. При этом индивидуальный диапазон очень велик (от 960 до 2000 г) и коррелирует с массой тела. Объем мозга составляет 91-95% емкости черепа.

    Мы видим, что сама по себе кора больших полушарий неоднородна, по происхождению ее различают на древнюю кору (палеокортекс), старую кору (архикортекс), промежуточную, или среднюю, кору (мезокортекс) и новую кору (неокортекс). Также по своему строению и месту нахождению они разные имея свои зоны, ряд различных образований также видно тесную взаимосвязь.

    Закладка новой коры образуется в латеральных частях плаща. Новая кора интенсивно развивается и оттесняет древнюю кору на основание полушарий, где она сохраняется в виде узкой полоски обонятельной коры и занимает 0,6% поверхности коры на вентральной поверхности полушарий, а старая кора отодвигается на медиальные поверхности полушарий, занимает 2, 2% поверхности коры и представлена гиппокампом и зубчатой извилиной. По происхождению и клеточному строению новая кора отличается от древней и старой коры. Переход от одной корковой формации к другой в клеточном строении происходит постепенно. Кора переходного типа называется межуточной корой, она занимает 1, 3% общей площади коры. Таким образом, большую часть поверхности коры (95, 6%) занимает новая кора.

    Для древней коры характерно отсутствие послойного строения. В ней преобладают крупные нейроны, сгруппированные в клеточные островки. Старая кора имеет три клеточных слоя. Ключевой структурой старой коры является гиппокамп. Гиппокамп имеет обширные связи со многими другими структурами мозга. Он является центральной структурой лимбической системы мозга.

    Функциональной единицей коры является вертикальная колонка взаимосвязанных нейронов. Все нейроны вертикальной колонки отвечают на одно и тоже афферентное раздражение одинаковой реакцией и совместно формируют эфферентный ответ. Распространение возбуждения в горизонтальном направлении (иррадиация) обеспечивается поперечными волокнами, идущими от одной вертикальной колонки к другой, а ограничивается -- процессами торможения. Возникновение возбуждения в вертикальной колонке нейронов приводит к активности спинальные мотонейроны и к сокращению связанных с ними мышц.

    В антропологии принято учитывать «индекс церебрализации» - степень развития мозга при исключенном влиянии массы тела. По этому индексу человек резко отличается от животных. Весьма существенно, что на протяжении онтогенеза можно выделить особый период в развитии ребенка, который отличается максимальным «индексом церебрализации». Этот период соответствует не стадии новорожденности, а периоду раннего детства - от 1 года до 4 лет. После этого периода индекс снижается. Указанный факт соответствует многим нейрогистологическим данным. Так, например, количество синапсов на единице площади в теменной коре после рождения бурно увеличивается только до 1 года, затем несколько уменьшается до 4 лет и резко падает после 10 лет жизни ребенка. Это доказывает, что именно период раннего детства заключает в себе огромное количество возможностей, заложенных в нервной ткани мозга, от реализации которых во многом зависит дальнейшее интеллектуальное развитие человека.

    Вес мозга взрослого мужчины - 1150- 1700 гр. На протяжении всей жизни у мужчин сохраняется более высокая масса мозга, чем у женщин. Индивидуальная вариабельность веса мозга очень велика, но при этом она не является показателем уровня развития умственных способностей человека. Так, мозг Тургенева весил 2012 г, Кювье - 1829 г, Байрона - 1807 г, Шиллера - 1785 г, Бехтерева - 1720 г, Павлова - 1653 г, Менделеева - 1571 г, Анатоля Франса - 1017 г.

    Список использованной литературы

    1. Воронова Н. В. Анатомия центральной нервной системы: Учебное пособие для студентов вузов -- М.: Аспект Пресс, 2005. -- 128 с.

    2. Козлов В. И. Анатомия нервной системы -- М.: МИР, 2006. -- 208 с.

    3. Хомутов А.Е., Кульба С.Н. АНАТОМИЯЦЕНТРАЛЬНОЙНЕРВНОЙСИСТЕМЫ. /Учебное пособие. Изд. 4-е Ростов н/Д: Феникс, 2008 -- 315 ст.

    4. Синельников Р.Д. , Синельников Я.Р. АТЛАСАНАТОМИИЧЕЛОВЕКА

    5. Павлов И. П., Двадцатилетний опыт объективного изучения высшей нервной деятельности животных, Полн. собр. соч., 2 изд., т. 3, кн. 1--2, М., 1951;

    6. Brodmann Korbinian. Vergleichende Lokalisationslehre der Grosshirnrinde: in ihren Principien dargestellt auf Grund des Zellenbaues. -- Leipzig: Johann Ambrosius Barth Verlag, 1909.

    Размещено на Allbest.ru

    ...

    Подобные документы

      Изучение строения коры головного мозга - поверхностного слоя мозга, образованного вертикально ориентированными нервными клетками. Горизонтальная слоистость нейронов коры головного мозга. Пирамидальные клетки, сенсорные зоны и моторная область мозга.

      презентация , добавлен 25.02.2014

      Строение коры головного мозга. Характеристика корковых проекционных зон мозга. Произвольная регуляция психической деятельности человека. Основные нарушения при поражении структуры функционального отдела мозга. Задачи блока программирования и контроля.

      презентация , добавлен 01.04.2015

      Кора больших полушарий головного мозга - структура головного мозга, слой серого вещества толщиной 1,3-4,5 мм, расположенный по периферии полушарий головного мозга, и покрывающий их. Функции и филогенетические особенности коры. Поражение корковых зон.

      презентация , добавлен 26.11.2012

      Особенности строения ствола головного мозга, физиологическая роль ретикулярной формации мозга. Функции мозжечка и его влияние на состояние рецепторного аппарата. Строение вегетативной нервной системы человека. Методы изучения коры головного мозга.

      реферат , добавлен 23.06.2010

      Строение больших полушарий головного мозга. Кора больших полушарий головного мозга и ее функции. Белое вещество и подкорковые структуры мозга. Основные составляющие процесса обмена веществ и энергии. Вещества и их функции в процессе обмена веществ.

      контрольная работа , добавлен 27.10.2012

      Основание головного мозга. Полушария большого мозга. Зрительная система. Продолговатый мозг. Основные участки правого полушария большого мозга лобная, теменная, затылочная и височная доли. Средний, промежуточный и конечный мозг. Кора большого мозга.

      реферат , добавлен 23.01.2009

      Онтогенез нервной системы. Особенности головного и спинного мозга у новорожденного. Строение и функции продолговатого мозга. Ретикулярная формация. Строение и функции мозжечка, ножек мозга, четверохолмия. Функции больших полушарий головного мозга.

      шпаргалка , добавлен 16.03.2010

      Изображение правого полушария головного мозга взрослого человека. Структура мозга, его функции. Описание и предназначение большого мозга, мозжечка и мозгового ствола. Специфические черты строения головного мозга человека, отличающие его от животного.

      презентация , добавлен 17.10.2012

      Учение о нервной системе. Центральная нервная система человека. Головной мозг в разные стадии развития человека. Строение спинного мозга. Топография ядер спинного мозга. Борозды и извилины большого мозга. Цихоархитектонические поля коры полушарий.

      учебное пособие , добавлен 09.01.2012

      Строение, типы и развитие нейронов. Взаимодействие глиальных клеток и нейронов. Схема межнейронного синапса. Механизм передачи возбуждения. Строение и функции спинного мозга. Отделы головного мозга, их функциональное значение. Лимбическая система.

    Человек это единственный вид на земле, который способен кроме удовлетворения потребностей продиктованных инстинктами, осуществлять эмоциональную, творческую и мыслительную деятельность. Уникальность людей заключается в наличии у них обширных, высокоразвитых и сложно построенных областей головного мозга, которые имеют обобщенное название неокртекс. Поэтому в изучении человека, как вида находящегося на верхней ступени эволюции, основными направлениями являются вопросы о строении и выполняемых функциях данного участка центральной нервной системы.

    Общие сведения

    Неокортекс (новая кора, изокортекс или лат. neocortex) представляет собой области коры головного мозга, занимающие порядка 96% поверхности полушарий и имеющие толщину 1.5 – 4 мм, которые отвечают за восприятие окружающего мира, моторику, мышление и речь.

    Новая кора состоит из трех основных типов нейронов – пирамидальных, звездчатых и веретенообразных. Первые, наиболее многочисленная группа, которая составляет порядка 70-80 % от всего количества в мозгу. Доля звездчатых нейронов находится на уровне 15-25 %, а веретенообразных – порядка 5 %.

    По своей структуре неокортекс практически однороден и состоит из 6 горизонтальных слоев и вертикальных колонок кортекса. Слои новой коры имеют следующее строение:

    1. Молекулярный, состоящий из волокон и небольшого числа мелких звездчатых нейронов. Волокна образуют тангенциальное сплетение.
    2. Наружный зернистый, образованный мелкими нейронами разнообразной формы, которые связаны с молекулярным слоем по все площади. В самом конце слоя располагаются небольшие пирамидальные клетки.
    3. Наружный пирамидальный, состоящий из малых, средних и больших пирамидальных нейронов. Отростки этих клеток могут быть связаны как с 1 слоем, так и с белым веществом.
    4. Внутренний зернистый, который состоит в основном из звездчатых клеток. Данный слой характеризуется не плотным расположением в нем нейронов.
    5. Внутренний пирамидальный, образованный средними и большими пирамидальными клетками, отростки которых связаны со всеми другими слоями.
    6. Полиморфный, основу которого составляют веретенообразные нейроны, связанные отростками с 5 слоем и белым веществом.

    Кроме того новая кора делиться по областям, которые в свою очередь подразделяются на поля Бродмана. Выделяют следующие области:

    1. Затылочная (17,18 и 19 поля).
    2. Верхняя теменная (5 и 7).
    3. Нижняя теменная (39 и 40).
    4. Постцентральная (1, 2, 3 и 43).
    5. Предцентральная (4 и 6).
    6. Лобная (5, 9, 10, 11, 12, 32, 44, 45, 46 и 47).
    7. Височная (20, 21, 22, 37, 41 и 42).
    8. Лимбическая (23, 24, 25 и31).
    9. Островковая (13 и 14).

    Колонки кортекса представляют собой группу нейронов, которые располагаются перпендикулярно коре головного мозга. В пределах небольшой колонки, все клетки выполняют одинаковую задачу. Но гиперколонка, состоящая из 50-100 миниколонок, может иметь как одну, так и множество функций.

    Функции neocortex

    Новая кора отвечает за выполнение высших нервных функций (мышление, речь, обработка информации с органов чувств, творчество и др.). Клинические испытания показали, что каждая область коры головного мозга, отвечает за строго определенные функции. Например, человеческая речь управляется левой лобной извилиной. Однако, при повреждении какой либо из области, выполнение ее функции может взять на себя соседняя, правда для этого необходим длительный период времени. Условно выделяют три основных группы функций, которые выполняет неокортекс – сенсорная, моторная и ассоциативная.

    Сенсорная

    Данная группа включает в себя, набор функций, при помощи которых человек способен воспринимать информацию с органов чувств.

    Каждое чувство анализируется отдельной областью, но при этом учитывается и сигналы с других.

    Сигналы с кожи обрабатываются задней центральной извилиной. Причем информация с нижних конечностей поступает на верхний отдел извилины, с тела – на средний, с головы и рук – на нижний. При этом задней центральной извилиной обрабатывается лишь болевые и температурные ощущения. Осязание же контролируется верхней теменной областью.

    Зрение контролируется затылочной областью. Прием информации происходит в 17 поле, а в 18 и 19 она обрабатывается, то есть происходит анализ цвета, размера, формы и других параметров.

    Слух обрабатывается в височной области.

    Обаяние и вкусовые ощущения управляется гиппокампальной извилиной, которая в отличие от общего строения неокортекса имеет только 3 горизонтальных слоя.

    Стоит отметить, что кроме зон непосредственного приема информации с органов чувств, рядом с ними находятся второстепенные, в которых происходит соотношение полученных образов с хранящимися в памяти. При повреждениях данных участков мозга, у человека полностью теряется возможность распознавания поступающих данных.

    Моторная

    К этой группе относятся функции новой коры, при помощи которых осуществляется любое движение конечностей человека. Моторика управляется и контролируется предцентральной областью. Нижние конечности зависят от верхних отделов центральной извилины, а верхние – от нижних. Кроме предцентральной, в движении участвуют лобная, затылочная и верхняя теменная области. Важной особенностью выполнения моторных функций является то, что они не могут производиться без постоянных связей с сенсорными областями.

    Ассоциативная

    Эта группа функций неокортекса отвечает за такие сложные элементы сознания как мышление, планирование, эмоциональный контроль, память, эмпатию и многие другие.

    Ассоциативные функции выполняются лобной, височной и теменной областями.

    В данных участках мозга происходит формирование реакции на данные поступающие от органов чувств и отправка командных сигналов в моторные и сенсорные зоны.

    Для получения и управления все сенсорные и моторные участки коры головного мозга, окружены ассоциативными полями, в которых и происходит анализ полученной информации. Но при этом, стоит учитывать, что данные приходящие в эти поля, уже первично обработаны в сенсорных и моторных участках. Например, при нарушении в работе такого участка в зрительной области, человек видит и понимает, что есть предмет, однако не может его назвать и соответственно принять решение о дальнейшем своем поведении.

    Кроме того, лобная доля коры очень жестко связана с лимбической системой, что позволяет ей контролировать и управлять эмоциональными посылами и рефлексами. Это дает возможность состояться человеку как личность.

    Выполнение ассоциативных функции в неокортексе возможно благодаря тому, что нейроны этого участка центральной нервной системы способны сохранять следы возбуждения по принципу обратной связи могут сохраняться длительное время (от нескольких лет до всей жизни). Это способность и является памятью, при помощи которой строятся ассоциативные связи получаемой информации.

    Роль неокортекса в эмоциях и стереогинезе

    Эмоции у человека изначально появляются в лимбической системе головного мозга. Но в этом случае они представлены примитивными понятиями, которые попадая в новую кору, обрабатываются при помощи ассоциативной функции. Вследствие этого человек может оперировать эмоциями на более высоком уровне, что дает возможность ввести такие понятия как радость, печаль, любовь, гнев и др.

    Также неокортекс имеет возможность гасить сильные всплески эмоций в лимбической системе, благодаря посылу успокаивающих сигналов в области с высоким возбуждением нейронов. Это приводит к тому, что у человека главенствующую роль в поведении играет разум, а не инстинктивные рефлексы.

    Отличия от старой коры

    Старая кора (архикортекс) является более ранним появившимся участком коры головного мозга, чем неокортекс. Но в процессе эволюции новая кора стала более развитой и обширной. В связи с этим архикортекс перестал играть главенствующую роль и стал одной из составных частей .

    Если сравнивать старую и по выполняемым функциям, то первой отведена роль исполнения врожденных рефлексов и мотивации, а второй – управления эмоциями и действиями на более высоком уровне.

    Кроме того по неокортекс значительно превышает по размеру старую кору. Так первая занимает порядка 96% процентов от общей поверхности полушарий, а размер второй – не более 3%. Такое соотношение, показывает, что в архикортексе не может выполнять высшие нервные функции.

    Кора головного мозга является центром высшей нервной (психической) деятельности человека и контролирует выполнение огромного количества жизненно важных функций и процессов. Она покрывает всю поверхность больших полушарий и занимает около половины их объема.

    Большие полушария головного мозга занимают около 80% объема черепной коробки, и состоят из белого вещества, основа которого состоит из длинных миелиновых аксонов нейронов. Снаружи полушария покрывает серое вещество или кора головного мозга, состоящая из нейронов, безмиелиновых волокон и глиальных клеток, которые также содержатся в толще отделов этого органа.

    Поверхность полушарий условно делится на несколько зон, функциональность которых заключается в управлении организмом на уровне рефлексов и инстинктов. Также в ней находятся центры высшей психической деятельности человека, обеспечивающие сознание, усвоение поступившей информации, позволяющей адаптироваться в окружающей среде, и через нее, на уровне подсознания, посредством гипоталамуса контролируется вегетативная нервная система (ВНС), управляющая органами кровообращения, дыхания, пищеварения, выделения, размножения, а также метаболизмом.

    Для того чтобы разобраться что такое кора мозга и каким образом осуществляется ее работа, требуется изучить строение на клеточном уровне.

    Функции

    Кора занимает большую часть больших полушарий, а ее толщина не равномерна по всей поверхности. Такая особенность обусловлена большим количеством связующих каналов с центральной нервной системой (ЦНС), обеспечивающих функциональную организацию коры мозга.

    Эта часть головного мозга начинает образовываться еще во время внутриутробного развития и совершенствуется на протяжении всей жизни, посредством получения и обработки сигналов, поступающих из окружающей среды. Таким образом, она отвечает за выполнение следующих функций головного мозга:

    • связывает органы и системы организма между собой и окружающей средой, а также обеспечивает адекватную реакцию на изменения;
    • обрабатывает поступившую информацию от моторных центров с помощью мыслительных и познавательных процессов;
    • в ней формируется сознание, мышление, а также реализовывается интеллектуальный труд;
    • осуществляет управление речевыми центрами и процессами, характеризующими психоэмоциональное состояние человека.

    При этом данные поступают, обрабатываются, сохраняются благодаря значительному количеству импульсов, проходящих и образующихся в нейронах, связанных длинными отростками или аксонами. Уровень активности клеток можно определить по физиологическому и психическому состоянию организма и описать с помощью амплитудных и частотных показателей, так как природа этих сигналов похожа на электрические импульсы, а их плотность зависит от участка, в котором происходит психологический процесс.

    До сих пор неясно, каким образом лобная часть коры больших полушарий влияет на работу организма, но известно, что она мало восприимчива к процессам, происходящим во внешней среде, поэтому все опыты с воздействием электрических импульсов на этот участок мозга, не находят яркого отклика в структурах. Однако отмечается, что люди, у которых лобная часть повреждена, испытывают проблемы в общении с другими индивидами, не могут реализовать себя в какой-либо трудовой деятельности, а также им безразличен их внешний вид и сторонние мнение. Иногда встречаются и другие нарушения в осуществлении функций этого органа:

    Поверхность коры полушарий поделена на 4 зоны, очерченные наиболее четкими и значимыми извилинами. Каждая из частей при этом контролирует основные функции коры головного мозга:

    1. теменная зона - отвечает за активную чувствительность и музыкальное восприятие;
    2. в затылочной части расположена первичная зрительная область;
    3. височная или темпоральная отвечает за речевые центры и восприятие звуков поступивших из внешней среды, кроме того участвует в формировании эмоциональных проявлений, таких как радость, злость, удовольствие и страх;
    4. лобная зона управляет двигательной и психической активностью, а также руководит речевой моторикой.

    Особенности строения коры мозга

    Анатомическое строение коры больших полушарий обусловливает ее особенности и позволяет выполнять возложенные на нее функции. Кора головного мозга владеет следующим рядом отличительных черт:

    • нейроны в ее толще располагаются послойно;
    • нервные центры находятся в конкретном месте и отвечают за деятельность определенного участка организма;
    • уровень активности коры зависит от влияния ее подкорковых структур;
    • она имеет связи со всеми нижележащими структурами центральной нервной системы;
    • наличие полей разных по клеточному строению, что подтверждается гистологическим исследованием, при этом каждое поле отвечает за выполнение какой-либо высшей нервно деятельности;
    • присутствие специализированных ассоциативных областей позволяет устанавливать причинно-следственную связь между внешними раздражителями и ответом организма на них;
    • способность к замещению поврежденных участков близлежащими структурами;
    • этот отдел мозга способен сохранять следы возбуждения нейронов.

    Большие полушария головного мозга состоят главным образом из длинных аксонов, а также содержит в своей толще скопления нейронов, образующих наибольшие ядра основания, которые входят в состав экстрапирамидальной системы.

    Как уже говорилось, формирование коры мозга происходит еще во время внутриутробного развития, причем вначале кора состоит из нижнего слоя клеток, а уже в 6 месяцев ребенка в ней сформированы все структуры и поля. Окончательное становление нейронов происходит к 7-летнему возрасту, а рост их тел завершается в 18 лет.

    Интересен тот факт, что толщина коры не равномерна на всей протяженности и включает в себя разное количество слоев: например, в области центральной извилины она достигает своего максимального размера и насчитывает все 6 слоев, а участки старой и древней коры имеют 2-х и 3-х слойное строение соответственно.

    Нейроны этой части мозга запрограммированы на восстановление поврежденного участка посредством синоптических контактов, таким образом каждая из клеток активно старается восстановить поврежденные связи, что обеспечивает пластичность нейронных корковых сетей. Например, при удалении или дисфункции мозжечка, нейроны, связывающие его с конечным отделом, начинают прорастать в кору больших полушарий. Кроме того пластичность коры также проявляется в обычных условиях, когда происходит процесс обучения новому навыку или в результате патологии, когда функции, выполняемые поврежденной зоной, переходят на соседние участки мозга или даже полушария.

    Кора мозга обладает способностью сохранять следы возбуждения нейронов длительное время. Эта особенность позволяет обучаться, запоминать и отвечать определенной реакцией организма на внешние раздражители. Так происходит формирование условного рефлекса, нервный путь которого состоит из 3 последовательно соединенных аппарата: анализатора, замыкательного аппарата условно-рефлексных связей и рабочего прибора. Слабость замыкательной функции коры и следовых проявлений можно наблюдать у детей с выраженной умственной отсталостью, когда образовавшиеся условные связи между нейронами хрупки и ненадежны, что влечет за собой трудности в обучении.

    Кора головного мозга включает в себя 11 областей, состоящих из 53 полей, каждому из которых в нейрофизиологии присвоен свой номер.

    Области и зоны коры

    Кора относительно молодая часть ЦНС, развывшаяся из конечного отдела мозга. Эволюционно становление этого органа происходило поэтапно, поэтому ее принято разделять на 4 типа:

    1. Архикортекс или древняя кора в связи с атрофией обоняния превратился в гиппокамповую формацию и состоит из гиппокампа и сопряженных ему структур. С помощью ее регулируется поведение, чувства и память.
    2. Палеокортекс или старая кора, составляет основную часть обонятельной зоны.
    3. Неокортекс или новая кора имеет толщину слоя около 3-4 мм. Является функциональной частью и совершает высшую нервную деятельность: обрабатывает сенсорную информацию, отдает моторные команды, а также в ней формируется осознанное мышление и речь человека.
    4. Мезокортекс является промежуточным вариантом первых 3 типов коры.

    Физиология коры больших полушарий

    Кора головного мозга имеет сложную анатомическую структуру и включает в себя сенсорные клетки, моторные нейроны и интернероны, обладающих способностью останавливать сигнал и возбуждаться в зависимости от поступивших данных. Организация этой части мозга построена по колончатому принципу, в котором колонки делаться на микромодули, имеющие однородное строение.

    Основу системы микромодулей составляют звездчатые клетки и их аксоны, при этом все нейроны одинаково реагируют на поступивший афферентный импульс и посылают также синхронно в ответ эфферентный сигнал.

    Формирование условных рефлексов, обеспечивающих полноценное функционирование организма, и происходит благодаря связи головного мозга с нейронами, расположенными в различных частях тела, а кора обеспечивает синхронизацию умственной деятельности с моторикой органов и областью, отвечающей за анализ поступающих сигналов.

    Передача сигнала в горизонтальном направлении происходит через поперечные волокна, находящиеся в толще коры, и передают импульс от одной колонки к другой. По принципу горизонтальной ориентации кору мозга можно поделить на следующие области:

    • ассоциативная;
    • сенсорная (чувствительная);
    • моторная.

    При изучении этих зон применялись различные способы воздействия на нейроны, входящие в ее состав: химическое и физическое раздражение, частичное удаление участков, а также выработка условных рефлексов и регистрация биотоков.

    Ассоциативная зона связывает поступившую сенсорную информацию с полученными ранее знаниями. После обработки формирует сигнал и передает его в двигательную зону. Таким образом она участвует в запоминании, мышлении и обучении новым навыкам. Ассоциативные участки коры головного мозга расположены в близости с соответствующей сенсорной зоной.

    Чувствительная или сенсорная зона занимает 20% коры головного мозга. Она также состоит из нескольких составляющих:

    • соматосенсорной, расположенной в теменной зоне отвечает за тактильную и вегетативную чувствительность;
    • зрительной;
    • слуховой;
    • вкусовой;
    • обонятельной.

    Импульсы от конечностей и органов осязания левой стороны тела, поступают по афферентным путям в противоположную долю больших полушарий для последующей обработки.

    Нейроны моторной зоны возбуждаются при помощи импульсов, поступивших от клеток мускулатуры, и находятся в центральной извилине лобной доли. Механизм поступления данных схож с механизмом сенсорной зоны, так как двигательные пути образуют перехлест в продолговатом мозге и следуют в расположенную напротив моторную зону.

    Извилины борозды и щели

    Кора больших полушарий образована несколькими слоями нейронов. Характерной особенностью этой части мозга является большое количество морщин или извилин, благодаря чему ее площадь во много раз превосходит площадь поверхности полушарий.

    Корковые архитектонические поля определяют функциональное строение участков коры головного мозга. Все они различны по морфологическим признакам и регулируют разные функции. Таким образом выделяется 52 различных поля, расположенных на определенных участках. По Бродману это разделение выглядит следующим образом:

    1. Центральная борозда разделяет лобную долю от теменной области, впереди нее пролегает предцентральная извилина, а сзади - позадицентральная.
    2. Боковая борозда отгораживает теменную зону от затылочной. Если развести ее боковые края то внутри можно рассмотреть ямку, в центре которой имеется островок.
    3. Теменно-затылочная борозда отделяет теменную долю от затылочной.

    В предцентральной извилине расположено ядро двигательного анализатора, при этом к мышцам нижней конечности относятся верхние части передней центральной извилины, а к мышцам полости рта, глотки и гортани – нижние.

    Правосторонняя извилина образует связь с двигательным аппаратом левой половины тела, левосторонняя – с правой частью.

    В позадицентральной извилине 1 доли полушария содержится ядро анализатора тактильных ощущений и она также связана с противолежащей частью тела.

    Клеточные слои

    Кора головного мозга осуществляет свои функции посредством нейронов, находящихся в ее толще. Причем количество слоев этих клеток может отличаться в зависимости от участка, габариты которых также разнятся по размеру и топографии. Специалисты выделяют следующие слои коры головного мозга:

    1. Поверхностный молекулярный сформирован в основном из дендритов, с небольшим вкраплением нейронов, отростки которых не покидают границы слоя.
    2. Наружный зернистый состоит из пирамидальных и звездчатых нейронов, отростки которых связывают его со следующим слоем.
    3. Пирамидальный образован пирамидными нейронами, аксоны которых направлены вниз, где обрываются или образуют ассоциативные волокна, а дендриты их соединяют этот слой с предыдущим.
    4. Внутренний зернистый слой сформирован звездчатыми и малыми пирамидальными нейронами, дендриты которых уходят в пирамидальный слой, а также его длинные волокна уходят в верхние слои или спускаются вниз в белое вещество мозга.
    5. Ганглионарный состоит из крупных пирамидальных нейроцитов, их аксоны выходят за пределы коры и связывают различные структуры и отделы ЦНС между собой.

    Мультиформный слой сформирован всеми видами нейронов, а их дендриты ориентированы в молекулярный слой, а аксоны пронизывают предыдущие слои или выходят за пределы коры и образуют ассоциативные волокна, образующие связь клеток серого вещества с остальными функциональными центрами головного мозга.

    Видео: Кора больших полушарий головного мозга

    Неокортекс - эволюциоипо самая молодая часть коры, занимающая большую часть поверхности полушарий. Ее толщина у человека составляет примерно 3 мм.

    Клеточный состав неокоргекса очень разнообразен, но примерно три четверти нейронов коры составляют пирамидные нейроны (пирамиды), в связи с чем одна из основных классификаций нейронов коры делит их на пирамидные и неиирамидные (веретеновидные, звездчатые, зернистые, клетки-канделябры, клетки Мартинотти и др.). Другая классификация связана с длиной аксона (см. параграф 2.4). Длинноаксонные клетки Гольджи I - это в основном пирамиды и веретена, их аксоны могут выходить из коры, остальные клетки - короткоаксонные Гольджи II.

    Корковые нейроны отличаются и по величине клеточного тела: размер сверхмалых нейронов 6x5 мкм, размер гигантских - больше чем 40 х 18. Самые крупные нейроны - пирамиды Беца, их размер 120 х 30-60 мкм.

    Пирамидные нейроны (см. рис. 2.6, г) имеют форму тела в виде пирамиды, вершина которой направлена вверх. От этой вершины отходит апикальный дендрит, поднимающийся в вышележащие корковые слои. От остальных частей сомы отходят базальные дендриты. Все дендриты имеют шипики. От основания клетки отходит длинный аксон, образующий многочисленные коллатерали, в том числе и возвратные, которые загибаются и поднимаются вверх. У звездчатых клеток апикального дендрита нет, шипики на дендритах в большинстве случаев отсутствуют. У веретеновидных клеток от противоположных полюсов тела отходят два крупных дендрита, есть и мелкие дендриты, отходящие от остальных частей тела. Дендриты имеют шипики. Аксон длинный, маловетвящийся.

    Во время эмбрионального развития новая кора обязательно проходит стадию шестислойного строения, при созревании в некоторых областях число слоев может уменьшаться. Глубокие слои филогенетически более древние, наружные слои более молодые. Каждый слой коры характеризуется своим нейронным составом и толщиной, которая в разных областях коры может отличаться друг от друга.

    Перечислим слои новой коры (рис. 9.8).

    I слой - молекулярный - самый наружный, содержит небольшое количество нейронов и в основном состоит из волокон, проходящих параллельно поверхности. Также сюда поднимаются дендриты нейронов, расположенных в нижележащих слоях.

    II слой - наружный зернистый , или наружный гранулярный , - состоит главным образом из малых пирамидных нейронов и небольшого количества среднего размера звездчатых клеток.

    III слой - наружный пирамидный - самый широкий и толстый слой, содержит в основном малые и среднего размера пирамидные и звездчатые нейроны. В глубине слоя располагаются крупные и гигантские пирамиды.

    IV слой - внутренний зернистый , или внутренний гранулярный , - состоит главным образом из малых нейронов всех разновидностей, есть и немногочисленные крупные пирамиды.

    V слой - внутренний пирамидный , или ганглиозный, характерной особенностью которого является присутствие крупных и в некоторых областях (главным образом в полях 4 и 6; рис. 9.9; подпараграф 9.3.4) - гигантских пирамидных нейронов (пирамид Беца). Апикальные дендриты пирамид, как правило, достигают I слоя.

    VI слой - полиморфный , или мулътиформный, - содержит преимущественно веретенообразные нейроны, а также клетки всех других форм. Этот слой делят на два подслоя, которые ряд исследователей рассматривают как самостоятельные слои, говоря в этом случае о семислойной коре.

    Рис. 9.8.

    а - нейроны окрашены целиком; б - окрашены только тела нейронов; в - окрашены

    только отростки нейронов

    Основные функции каждого слоя также различаются. I и II слои осуществляют связи между нейронами разных слоев коры. Каллозальные и ассоциативные волокна главным образом идут от пирамид III слоя и приходят во II слой. Основные афферентные волокна, поступающие в кору из таламуса, оканчиваются на нейронах IV слоя. С системой нисходящих проекционных волокон главным образом связан V слой. Аксоны пирамид этого слоя образуют основные эфферентные пути коры больших полушарий.

    В большинстве корковых полей одинаково хорошо выражены все шесть слоев. Такая кора называется гомотипической. Однако в некоторых полях в процессе развития выраженность слоев может изменяться. Такую кору называют гетеротипической. Она бывает двух типов:

    гранулярная (ноля 3, 17, 41; рис. 9.9), в которой очень увеличено количество нейронов в наружном (II) и особенно во внутреннем (IV) зернистых слоях, в результате чего IV слой делят на три подслоя. Такая кора характерна для первичных сенсорных зон (см. ниже);

    Агранулярная (поля 4 и 6, или моторная и премоторная кора; рис. 9.9), в которой, наоборот, очень узкий II слой и практически отсутствует IV, но зато очень широкие пирамидные слои, особенно внутренний (V).