Болезни Военный билет Призыв

Что представляют собой туманности. Школьная энциклопедия. Смесь газа и пыли

Во Вселенной, кроме звезд, планет и галактик, имеются и диффузные туманности. Их роль в развитии космического пространства огромна: именно в недрах туманностей зарождаются звезды. Туманности состоят из двух компонентов – газа и пыли. Газ имеет доисторическое происхождение, т.е. он сформировался на заре возникновения Вселенной, именно в это время образовались водород и гелий – основные составляющие первых звезд. Более тяжелые элементы появились позже, когда начали происходить вспышки звезд и выбросы в межзвездную среду.

Пыль, входящая в состав туманностей, состоит из смеси углерода в разных стадиях сцепления и силикатов, также имеются следы и других органических веществ. Газ – это в основном водород.

В принципе, туманности представляют собой области с уплотненной под влиянием гравитации межзвездной средой, в которой сформировались облака. Увеличиваясь в размерах, они притянули к себе часть материи из окружающей среды. Иногда эти облака становятся видимыми из-за того, что относительно молодые звезды, входящие в их состав, возбуждают атомы. В результате туманность приобретает яркость.

Классификация туманностей

В небе много туманностей. Их делят на три типа: эмиссионные туманности, светлые (они светятся отраженным светом) и темные. За основу такого деления берется внешний вид туманностей и явления, характерные для них. Эмиссионные туманности – яркие, так как атомы возбуждаются под действием ультрафиолетового излучения близлежащих молодых звезд. Сами туманности также превращаются в источник радиации.

Светлые туманности не излучают радиацию, а отражают свет ближайших звезд. Классический пример светлой туманности – голубоватая туманность, окружающая рассеянное звездное скопление Плеяд. Темные туманности представляют собой плотную концентрацию пыли, активно поглощающую свет. Они становятся видимыми лишь при условии нахождения за ними источника блеска.

Многие туманности легко различимы, иногда даже невооруженным глазом. Вполне достаточно воспользоваться биноклем или небольшим любительским телескопом. Такие туманности зафиксированы в известном каталоге Мессье. Этот французский астроном составил его во второй половине XVIII в..

Самая яркая туманность нашего полушария – туманность Ориона, в каталоге она имеет обозначение М42. Пожалуй, это первый небесный объект, на который любители неба нацеливают свои астрономические инструменты длинными зимними ночами.

Есть и много других очень красивых туманностей. Вот несколько примеров.

Туманность в созвездии Стрельца

Туманность Лагуна, М8, расположена в созвездии Стрельца. В этой области небесного свода находится много туманностей. Это очень “заселенный” район Млечного Пути, здесь много газовых облаков.

М8 находится рядом с рассеянным звездным скоплением – такое сочетание встречается нередко. Как уже отмечалось, туманности являются зонами звездообразования и часто внутри них или рядом располагаются скопления молодых и ярких звезд. Уже при помощи небольшого бинокля можно рассмотреть некоторые детали М8, а используя более мощный бинокль, - увидеть характерные особенности, например темную полосу внутри облака.

В рассеянном звездном скоплении NGC 6530 видны примерно 40 звезд, звездная величина которых от 8 до 13. Их свет возбуждает атомы туманности, в результате она становится видимой.

В М8 имеются и глобулы Бока, темные зоны, диаметр которых равен десяткам тысяч а.е. Расстояние до М8 составляет 3000-4000 световых лет. В созвездии Стрельца находится и М20, типичная эмиссионная туманность. Имеется в виду туманность Трифида (“разделенная на три части”). Название отражает ее форму.

Эта туманность была открыта астрономом Ле Жантилем в 1750 г., но ее первое описание появилось только в 1764г. Это сделал Мессье. Уильям Гершель определил три линии, которые делят эту туманность на три треугольных сектора. С помощью бинокля можно увидеть самую блестящую часть туманности. Она смотрится как круглое пятно диаметром до 10’. Существование темных зон, которые делят облако на три части, связано с присутствием в его составе пыли и холодных газов.

Расстояние до М20 составляет примерно 3200 световых лет. В созвездии Стрельца, в середине Млечного Пути, находится и туманность М24, наблюдаемая невооруженным глазом. Она была открыта раньше, еще до того, как Мессье внес ее в свой каталог. Этот астроном полагал, что ее диаметр составляет около 1,5°.

Туманность Орел в созвездии Змеи

М16, туманность Орел, была открыта Де Шезо в 1746 г. Мессье зафиксировал ее через два года. Эта туманность располагается на границе созвездий Щита и Змеи. Внутри ее имеется темная область, которая вытягивается от северной к центральной части облака.

Звездное скопление насчитывает несколько десятков звезд, некоторые из них очень слабые, красного цвета. Звездная величина самых ярких звезд составляет от 8 до 11, они относятся к спектральным классам О и В, т.е. это классические горячие и молодые звезды. М16 – это эмиссионная туманность, но в ней присутствует и элемент отражательной туманности. Расстояние до нее составляет от 5000 до 11 000 световых лет, в среднем около 7500.

Планетарные туманности

Кроме диффузных, существуют и планетарные туманности. Их название связанно с тем, что в начале наблюдатели часто путали их с планетами, так как они имеют круглую форму.

Эти туманности образуются из эмиссий газовой оболочки звезд на более поздних стадиях их эволюции.

Наиболее известная планетарная туманность М57 расположена в созвездии Лиры. Ее сложно идентифицировать из-за слабой поверхностной освещенности. Есть и туманность М27 – Гантель, она находится в созвездии Лисицы. Эта туманность была открыта Мессье в 1764 г. Он, наблюдая за ней в телескоп, определил овальную форму образования. В небольших любительских телескопах эта туманность предстает в форме “песочных часов”. М27 расположена на расстоянии 500-1000 световых лет от Земли. Ее диаметр по максимуму составляет около 2,5 светового года

Содержание статьи

ТУМАННОСТИ. Раньше астрономы называли так любые небесные объекты, неподвижные относительно звезд, имеющие, в отличие от них, диффузный, размытый вид, как у маленького облачка (употребляемый в астрономии для «туманности» латинский термин nebula означает «облако»). Со временем выяснилось, что некоторые из них, например, туманность в Орионе, состоят из межзвездного газа и пыли и принадлежат нашей Галактике . Другие, «белые» туманности, как в Андромеде и в Треугольнике, оказались гигантскими звездными системами, подобными Галактике. Здесь речь пойдет о газовых туманностях.

До середины 19 в. астрономы считали, что все туманности – это далекие скопления звезд. Но в 1860, впервые использовав спектроскоп, У.Хёггинс показал, что некоторые туманности газовые. Когда сквозь спектроскоп проходит свет обычной звезды, наблюдается непрерывный спектр, в котором представлены все цвета от фиолетового до красного; в некоторых местах спектра звезды имеются узкие темные линии поглощения, но заметить их довольно трудно – они видны лишь на качественных фотографиях спектров. Поэтому при наблюдении глазом спектр звездного скопления выглядит как непрерывная цветная полоса. Спектр излучения разреженного газа, напротив, состоит из отдельных ярких линий, между которыми практически нет света. Как раз это и увидел Хёггинс при наблюдении некоторых туманностей через спектроскоп. Более поздние наблюдения подтвердили, что многие туманности действительно являются облаками горячего газа. Часто астрономы называют «туманностями» и темные диффузные объекты – тоже облака межзвездного газа, но холодные.

Типы туманностей.

Туманности разделяют на следующие основные типы: диффузные туманности, или области H II, такие, как Туманность Ориона; отражательные туманности, как туманность Меропы в Плеядах; темные туманности, как Угольный Мешок, которые обычно связаны с молекулярными облаками; остатки сверхновых, как туманность Сеть в Лебеде; планетарные туманности, как Кольцо в Лире.

Диффузные туманности.

Широко известные примеры диффузных туманностей – это Туманность Ориона на зимнем небе, а также Лагуна и Тройная (Трехраздельная) – на летнем. Темные линии, рассекающие Тройную туманность на части, – это холодные пылевые облака, лежащие перед ней. Расстояние до этой туманности ок. 2200 св. лет, а ее диаметр чуть менее 2 св. лет. Масса этой туманности в 100 раз больше солнечной. Некоторые диффузные туманности, например Лагуна 30 Золотой Рыбы и Туманность Ориона, значительно крупнее и массивнее.

В отличие от звезд газовые туманности не имеют собственного источника энергии; они светятся только в том случае, если внутри них или рядом находятся горячие звезды с температурой поверхности 20 000–40 000° С. Эти звезды испускают ультрафиолетовое излучение, которое поглощается газом туманности и переизлучается им в форме видимого света. Пропущенный через спектроскоп, этот свет расщепляется на характерные линии излучения различных элементов газа.

Отражательные туманности.

Отражательная туманность образуется, когда облако с рассеивающими свет пылинками освещается расположенной рядом звездой, температура которой не так высока, чтобы заставить светиться газ. Небольшие отражательные туманности иногда видны рядом с формирующимися звездами.

Темные туманности.

Темные туманности – это облака, состоящие в основном из газа и отчасти из пыли (в соотношении по массе ~ 100:1). В оптическом диапазоне они закрывают от нас центр Галактики и видны как черные пятна вдоль всего Млечного Пути, например, Большой Провал в Лебеде. Но в инфракрасном и радиодиапазонах эти туманности излучают довольно активно. В некоторых из них сейчас формируются звезды. Плотность газа в них значительно выше, чем в межоблачном пространстве, а температура ниже, от - 260 до - 220° С. В основном они состоят из молекулярного водорода, но обнаружены в них и другие молекулы вплоть до молекул аминокислот.

Остатки сверхновых.

Когда состарившаяся звезда взрывается, ее внешние слои сбрасываются со скоростью ок. 10 000 км/с. Это быстро летящее вещество, подобно бульдозеру, сгребает перед собой межзвездный газ, и вместе они образуют структуру, подобную туманности Сеть в Лебеде. При столкновении движущееся и неподвижное вещества нагреваются в мощной ударной волне и светятся без дополнительных источников энергии. Температура газа при этом достигает сотен тысяч градусов, и он становится источником рентгеновского излучения. Кроме того, в ударной волне усиливается межзвездное магнитное поле, а заряженные частицы – протоны и электроны – ускоряются до энергий гораздо выше энергии теплового движения. Движение этих быстрых заряженных частиц в магнитном поле вызывает излучение в радиодиапазоне, называемое нетепловым.

Самый интересный остаток сверхновой – это Крабовидная туманность. В ней выброшенный сверхновой газ еще не смешался с межзвездным веществом.

В 1054 была видна вспышка звезды в созвездии Тельца. Восстановленная по китайским летописям картина вспышки показывает, что это был взрыв сверхновой звезды, которая в максимуме достигла светимости в 100 млн. раз выше солнечной. Крабовидная туманность находится как раз на месте той вспышки. Измерив угловые размер и скорость расширения туманности и поделив одно на другое, рассчитали, когда это расширение началось, – почти точно получился 1054 год. Сомнений нет: Крабовидная туманность – остаток сверхновой.

В спектре этой туманности каждая линия раздвоена. Ясно, что один компонент линии, сдвинутый в голубую сторону, приходит от приближающейся к нам части оболочки, а другой, сдвинутый в красную сторону, – от удаляющейся. По формуле Доплера вычислили скорость расширения (1200 км/с) и, сравнив ее со скоростью углового расширения, определили расстояние до Крабовидной туманности: ок. 3300 св. лет.

Крабовидная туманность имеет сложное строение: ее внешняя волокнистая часть излучает отдельные эмиссионные линии, характерные для горячего газа; внутри этой оболочки заключено аморфное тело, излучение которого имеет непрерывный спектр и сильно поляризовано. Кроме того, оттуда исходит мощное нетепловое радиоизлучение. Это можно объяснить только тем, что внутри туманности быстрые электроны движутся в магнитном поле, испуская при этом синхротронное излучение в широком диапазоне спектра – от радио до рентгеновского. Долгие годы загадочным оставался источник быстрых электронов в Крабовидной туманности, пока в 1968 не удалось обнаружить в ее центре быстро вращающуюся нейтронную звезду – пульсар, остаток взорвавшейся примерно 950 лет назад массивной звезды. Совершая 30 оборотов в секунду и обладая огромным магнитным полем, нейтронная звезда выбрасывает в окружающую туманность потоки быстрых электронов, ответственных за наблюдаемое излучение.

Оказалось, что механизм синхротронного излучения весьма распространен среди активных астрономических объектов. В нашей Галактике можно указать немало остатков сверхновых, излучающих в результате движения электронов в магнитном поле, например, мощный радиоисточник Кассиопея А, с которым в оптическом диапазоне связана расширяющаяся волокнистая оболочка. Из ядра гигантской эллиптической галактики М 87 выбрасывается тонкая струя горячей плазмы с магнитным полем, излучающая во всех диапазонах спектра. Неясно, связаны ли активные процессы в ядрах радиогалактик и квазаров со сверхновыми, но физические процессы излучения в них весьма схожи.

Планетарные туманности.

Простейшие галактические туманности – это планетарные. Их открыто около двух тысяч, а всего в Галактике их ок. 20 000. Они концентрируются в галактическом диске, но не тяготеют, как диффузные туманности, к спиральным рукавам.

При наблюдении в небольшой телескоп планетарные туманности выглядят размытыми дисками без особых деталей и поэтому напоминают планеты. У многих из них вблизи центра видна голубая горячая звезда; типичный пример – туманность Кольцо в Лире. Как и у диффузных туманностей, источником их свечения служит ультрафиолетовое излучение звезды, находящейся внутри.

Спектральный анализ.

Чтобы проанализировать спектральный состав излучения туманности, часто используют бесщелевой спектрограф. В простейшем случае вблизи фокуса телескопа помещают вогнутую линзу, превращающую сходящийся пучок света в параллельный. Его направляют на призму или дифракционную решетку, расщепляющую пучок в спектр, а затем выпуклой линзой фокусируют свет на фотопластинке, получая при этом не одно изображение объекта, а несколько – по числу линий излучения в его спектре. Однако изображение центральной звезды при этом растягивается в линию, поскольку у нее непрерывный спектр.

В спектрах газовых туманностей представлены линии всех важнейших элементов: водорода, гелия, азота, кислорода, неона, серы и аргона. Причем, как и везде во Вселенной, водорода и гелия оказывается гораздо больше остальных.

Возбуждение атомов водорода и гелия в туманности происходит не так, как в лабораторной газоразрядной трубке, где поток быстрых электронов, бомбардируя атомы, переводит их в более высокое энергетическое состояние, после чего атом возвращается в нормальное состояние, излучая свет . В туманности нет таких энергичных электронов, которые могли бы своим ударом возбудить атом, т.е. «забросить» его электроны на более высокие орбиты. В туманности происходит «фотоионизация» атомов ультрафиолетовым излучением центральной звезды, т.е. энергии пришедшего кванта достаточно, чтобы вообще оторвать электрон от атома и пустить его в «свободный полет» . В среднем проходит 10 лет, пока свободный электрон встретится с ионом, и они вновь объединятся (рекомбинируют) в нейтральный атом, выделив энергию связи в виде квантов света. Рекомбинационные линии излучения наблюдаются в радио-, оптическом и инфракрасном диапазонах спектра.

Наиболее сильные линии излучения у планетарных туманностей принадлежат атомам кислорода, потерявшим один или два электрона, а также азоту, аргону, сере и неону. Причем они излучают такие линии, которые никогда не наблюдаются в их лабораторных спектрах, а появляются только в условиях, характерных для туманностей. Эти линии называют «запрещенными». Дело в том, что атом обычно находится в возбужденном состоянии менее миллионной доли секунды, а затем переходит в нормальное состояние, излучая квант. Однако существуют некоторые уровни энергии, между которыми атом совершает переходы очень «неохотно», оставаясь в возбужденном состоянии секунды, минуты и даже часы. За это время в условиях относительно плотного лабораторного газа атом обязательно сталкивается со свободным электроном, который изменяет его энергию, и переход исключается. Но в крайне разреженной туманности возбужденный атом долго не сталкивается с другими частицами, и, наконец, совершается «запрещенный» переход. Именно поэтому впервые обнаружили запрещенные линии не физики в лабораториях, а астрономы, наблюдая туманности. Поскольку в лабораторных спектрах этих линий не было, некоторое время даже считалось, что они принадлежат неизвестному на Земле элементу. Его хотели назвать «небулий», но недоразумение вскоре прояснилось. Эти линии видны в спектрах как планетарных, так и диффузных туманностей. В спектрах таких туманностей есть и слабое непрерывное излучение, возникающее при рекомбинации электронов с ионами.

На спектрограммах туманностей, полученных со щелевым спектрографом, линии часто выглядят изломанными и расщепленными. Это – эффект Доплера, указывающий на относительное движение частей туманности. Планетарные туманности обычно расширяются радиально от центральной звезды со скоростью 20–40 км/с. Оболочки сверхновых расширяются гораздо быстрее, возбуждая перед собой ударную волну. У диффузных туманностей вместо общего расширения обычно наблюдается турбулентное (хаотическое) движение отдельных частей.

Важная особенность некоторых планетарных туманностей – стратификация их монохроматического излучения. Например, излучение однократно ионизованного атомарного кислорода (потерявшего один электрон) наблюдается в обширной области, на большом расстоянии от центральной звезды, а двукратно ионизованные (т.е. потерявшие два электрона) кислород и неон видны лишь во внутренней части туманности, тогда как четырехкратно ионизованный неон или кислород заметны лишь в центральной ее части. Этот факт объясняется тем, что необходимые для более сильной ионизации атомов энергичные фотоны не достигают внешних областей туманности, а поглощаются газом уже недалеко от звезды.

По химическому составу планетарные туманности весьма разнообразны: элементы, синтезированные в недрах звезды, у некоторых из них оказались подмешанными к веществу сброшенной оболочки, а у других – нет. Еще сложнее состав остатков сверхновых: сброшенное звездой вещество в значительной степени смешано с межзвездным газом и, кроме того, разные фрагменты одного остатка иногда имеют различный химический состав (как у Кассиопеи А). Вероятно, это вещество выбрасывается с различных глубин звезды, что дает возможность проверять теорию эволюции звезд и взрыва сверхновых.

Происхождение туманностей.

Диффузные и планетарные туманности имеют совершенно разное происхождение. Диффузные всегда находятся в областях звездообразования – как правило, в спиральных рукавах галактик. Обычно они связаны с крупными и холодными газопылевыми облаками, в которых формируются звезды. Яркая диффузная туманность – это небольшой кусочек такого облака, разогретый родившейся поблизости горячей массивной звездой. Поскольку такие звезды формируются нечасто, диффузные туманности далеко не всегда сопровождают холодные облака. Например, в Орионе есть такие звезды, поэтому есть несколько диффузных туманностей, но они крошечные по сравнению с невидимым для глаза темным облаком, занимающим почти все созвездие Ориона. В небольшой области звездообразования в Тельце нет ярких горячих звезд, и поэтому нет заметных диффузных туманностей (есть лишь несколько слабых туманностей вблизи активных молодых звезд типа Т Тельца).

Планетарные туманности – это оболочки, сброшенные звездами на заключительном этапе их эволюции. Нормальная звезда светит за счет протекающих в ее ядре термоядерных реакций, превращающих водород в гелий. Но когда запасы водорода в ядре звезды истощаются, с ней происходят быстрые перемены: гелиевое ядро сжимается, оболочка расширяется, и звезда превращается в красный гигант. Обычно это переменные звезды типа Миры Кита или OH/IR с огромными пульсирующими оболочками . В конце концов они сбрасывают внешние части своих оболочек. Лишенная оболочки внутренняя часть звезды имеет очень высокую температуру, иногда выше 100 000° C. Она постепенно сжимается и превращается в белый карлик, лишенный ядерного источника энергии и медленно остывающий. Таким образом, планетарные туманности выбрасываются их центральными звездами, тогда как диффузные туманности типа Туманности Ориона – это вещество, которое осталось неиспользованным в процессе формирования звезд.

Великий астроном XVIII века Уильям Гершель, открывший планету Уран, кроме этого прославился первым глубоким изучением мира туманностей. Он разделил их на классы, в частности, выделив среди них так называемые «планетарные туманности». Гершель предложил это название исключительно из-за их внешнего сходства с планетой Уран. Маленькие и тусклые, планетарные туманности напоминали астрономам прошлого диск далекой планеты.

Гораздо позже ученые выяснили физическую природу этих объектов. Происхождение планетарных туманностей первым объяснил в 1950-х годах советский астрофизик И. С. Шкловский. Оказалось, что планетарные туманности порождаются умирающими звездами. В процессе превращения в белый карлик звезды сбрасывают в космос внешние слои, которые ионизируются ультрафиолетовым излучением и переизлучают фотоны в оптическом диапазоне. В последнее время выяснилось, что многие планетарные туманности обладают весьма сложной структурой. Особенно это видно на фотографиях, сделанных с помощью телескопа «Хаббл».

По астрономическим меркам планетарные туманности - весьма короткоживущие явления: срок их жизни составляет около десяти тысяч лет. Поэтому астрономам известно не более полутора тысяч подобных объектов в нашей галактике. 34 наиболее интересных из них предлагаем вашему вниманию.

Многообразие планетарных туманностей

Великолепная планетарная туманность «Улитка» - одна из наиболее ярких и красивых. В Новом общем каталоге туманностей она числится под номером 7293. Фото: NASA, ESA, C.R. O"Dell (Vanderbilt University), M. Meixner and P. McCullough (STScI)

Туманность «Кошачий глаз», NGC 6543: фантастические скульптуры из газа и пыли, сфотографированные телескопом «Хаббл». Фото: NASA, ESA, HEIC, and The Hubble Heritage Team (STScI/AURA)

Еще одно фото NGC 6543 в искусственных цветах. Возраст туманности «Кошачий глаз» около 1000 лет. Ее форма, возможно, свидетельствует о том, что она образовалась из двойной звездной системы. Фото: J.P. Harrington, K.J. Borkowski (University of Maryland)/ NASA

Знаменитая планетарная туманность М57 в созвездии Лиры, или туманность «Кольцо». На снимках, подобных этому видна сложная структура туманности. Фото: The Hubble Heritage Team (STScI/AURA/NASA)

Еще один известный пример планетарной туманности - объект MyCn18, «песочные часы» вокруг умирающей звезды. Фото: Raghvendra Sahai / John Trauger (JPL) / WFPC2 science team / NASA

Туманность «Медуза» - очень старая планетарная туманность. Она находится примерно в 1500 световых годах от Земли в созвездии Близнецы. Фото: H. Schweiker/NOAO/AURA/NSF / T. A. Rector/University of Alaska Anchorage

Туманность NGC 3132 - озеро света. Фото: The Hubble Heritage Team (STScI/AURA/NASA)

Планетарная туманность Abell 39 обладает почти идеально сферической формой. Ее диаметр составляет почти 5 световых лет, а толщина стенок - треть светового года. Туманность Abell 39 находится на расстоянии 7 000 световых лет от Земли в созвездии Геркулеса. Фото: WIYN/NOAO/NSF

Умирая, звезда сбрасывает внешние слои, которые, рассеиваясь в космосе, образуют планетарную туманность. Планетарными такие туманности называются исключительно потому, что в небольшие телескопы они похожи на крошечные и тусклые диски. Раньше многие астрономы принимали их за далекие планеты, откуда и повелось название. Но большие и современные инструменты показывают астрономам множество интересных поднобностей. NGC 6369 - еще один пример великолепной планетарной туманности с богатой структурой. Фото: NASA / The Hubble Heritage Team (STScI/AURA)

Планетарная туманность «Гантель» в созвездии Лисички - один из самых ярких объектов подобного рода. Туманность была обнаружена впервые французским астрономом Шарлем Мессье, который внес ее в свой каталог туманных объектов под номером 27. Расстояние до М27 известно лишь примерно и составляет около 1200 световых лет. Фото: ESO

Планетарная туманность NGC 2346. Фото: NASA / The Hubble Heritage Team (AURA/STScI).

Одна из последних фотографий космического телескопа им. Хаббла - туманность «Ожерелье». Фото: NASA, ESA, Hubble Heritage Team (STScI/AURA)

Туманность «Эскимо» или NGC 2392. Фото: NASA / Andrew Fruchter / ERO Team

Туманность «Спирограф» (IC 418). Фото: NASA / The Hubble Heritage Team (STScI/AURA)

Туманность Джонс-1 (Jones 1), известная также под номером PK 104-29.1, - очень тусклая, похожая на призрак, туманность в созвездии Пегаса. Это изображение получено в 2009 году на телескопе Мэйалла. Фото: T.A. Rector/University of Alaska Anchorage, H. Schweiker/WIYN and NOAO/AURA/NSF

Планетарная туманность «Черепаха», NGC 6210. Фото: NASA

Туманность «Электрический скат» или Hen-1357 - самая молодая из известных планетарных туманностей. Фото: Matt Bobrowsky (Orbital Sciences Corporation) / NASA

Молодая планетарная туманность Hen 1357. Фото: Matt Bobrowsky (CTA INCORPORATED) / NASA

Очень необычная планетарная туманность Sharpless 2-188 (Sh2-188). Имея почти сферическую форму, туманность светится неравномерно. Более яркое свечение юго-восточной части (внизу слева) объясняется столкновением газа с межзвездным веществом, которое и породило эту ударную волну. Именно в эту сторону движется мертвая звезда, породившая туманность. Шарплесс 2-188 находится в созвездии Кассиопея. Фото: T.A. Rector/University of Alaska Anchorage, H. Schweiker/WIYN and NOAO/AURA/NSF

Закрученная подобно спиральной галактике, планетарная туманность K 4-55. Фото: NASA / ESA / Hubble Heritage Team (STScI/AURA)

Объект Mz 3 - планетарная туманность «Муравей». Снимок телескопа «Хаббл». Фото: NASA / ESA / The Hubble Heritage Team (STScI/AURA)

Безмолвное космическое пламя умирающей звезды: планетарная туманность NGC 6302. Фото: NASA / ESA / Hubble SM4 ERO Team

Рассеянный свет туманности «Бумеранг». В 1995 году астрономы при помощи телескопа «Хаббл» измерили температуру материи внутри этой туманности. Оказалось, что вещество туманности всего на 1 градус теплее точки абсолютного нуля. Туманность «Бумеранг» - одно из самых холодных мест во Вселенной. Фото: NASA / ESA / The Hubble Heritage Team (STScI/AURA)

Туманность NGC 7662 или «Голубой снежок». Фото: Volker Wendel, Josef Pöpsel, Stefan Binnewies

Планетарная туманность «Мыльный пузырь». Объект PN G75.5+1.7 был найден 6 июля 2008 года любителем астрономии Дэйвом Юрасевичем (Dave Jurasevich). Этот снимок был получен с помощью 4-метрового телескопа обсерватории Китт Пик. Фото: T. A. Rector/University of Alaska Anchorage, H. Schweiker/WIYN and NOAO/AURA/NSF

Планетарная туманность NGC 5307, снимок телескопа «Хаббл». Фото: NASA / ESA / The Hubble Heritage Team (STScI/AURA)

Планетарная туманность М76 «Маленькая гантель» в созвездии Персея. На этом фото, полученном с помощью 60-см телескопа в Греции видно, что в центре туманности находится двойная звезда. Фото: Stefan Heutz, Stefan Binnewies, Josef Pöpsel

Туманность He 2-47. Фото: NASA / ESA / The Hubble Heritage Team (STScI/AURA)

Далекая планетарная туманность NGC 6894 в созвездии Лебедя. Фото: Volker Wendel, Stefan Binnewies, Josef Pöpsel

NGC 3242 или «Призрак Юпитера» - планетарная туманность в созвездии Гидры. Фото: Rainer Sparenberg, Stefan Binnewies, Volker Robering

Планетарная туманность NGC 6781 в созвездии Орла является излюбленным объектом для астрофотографов. Фото: Adam Block/Mount Lemmon SkyCenter/University of Arizona

Планетарная туманность NGC 6751. Фото: NASA / The Hubble Heritage Team (STScI/AURA)

Планетарная туманность IC 4406 благодаря сложной структуре получила название «Сетчатка». Фото: NASA / The Hubble Heritage Team (STScI/AURA)

Туманность NGC 5315. Фото: NASA / ESA / The Hubble Heritage Team (STScI/AURA)

Сфотографированная в лучах H-alpha туманность NGC 6445 в созвездии Стрелец. Фото: Josef Pöpsel, Beate Behle

Туманности в космосе — одно из чудес Вселенной, поражающих своей красотой. Ценны они не только визуальной привлекательностью. Исследование туманностей помогает ученым вносить ясность в законы функционирования космоса и его объектов, корректировать теории о развитии Вселенной и жизненном цикле звезд. Сегодня об этих объектах мы знаем многое, но далеко не все.

Смесь газа и пыли

Достаточно длительное время, вплоть до середины позапрошлого века, туманности считались удаленными от нас на значительные расстояния. Применение спектроскопа в 1860 году позволило установить: многие из них состоят из газа и пыли. Английский астроном У. Хеггинс выявил, что свет от туманностей отличен от излучения, идущего от обычных звезд. Спектр первых содержит яркие цветные линии, перемежающиеся с темными, тогда как во втором случае подобных не наблюдается.

Дальнейшие исследования установили, что туманности Млечного пути и других галактик в основном состоят из горячей смеси газа и пыли. Нередко встречают и схожие холодные формирования. Такие облака межзвездного газа также относятся к туманностям.

Классификация

В зависимости от свойств составляющих туманность элементов различают несколько их типов. Все они в большом количестве представлены на просторах космоса и одинаково интересны для астрономов. Туманности, излучающие по той или иной причине свет, принято назвать диффузными или светлыми. Противоположные им по основному параметру, естественно, обозначаются как темные. Диффузные туманности бывают трех типов:

    отражательные;

    эмиссионные;

    остатки сверхновой.

Эмиссионные, в свою очередь, подразделяются на области формирования новых звезд (H II) и планетарные туманности. Все названные типы характеризуются определенными свойствами, делающими их уникальными и достойными пристального изучения.

Области формирования звезд

Все эмиссионные туманности — это облака светящегося газа разных форм. Основной элемент, составляющий их, — водород. Под действием звезды, расположенной в центре туманности, он ионизируется и сталкивается с атомами более тяжелых компонентов облака. Результатом этих процессов становится характерное розоватое свечение.

Туманность Орла, или М16 — великолепный представитель этого типа объектов. Здесь располагается область звездообразования, множество молодых, а также массивных горячих светил. Туманность Орла — место, где размещается хорошо известный участок космоса, Столпы творения. Эти газовые сгустки, сформированные под воздействием звездного ветра, являются зоной звездообразования. К формированию светил здесь приводит сжатие газопылевых колонн под действием силы тяжести.

Недавно ученым стало известно, что любоваться Столпами творения мы сможем еще только тысячу лет. Затем они исчезнут. На самом деле разрушение Столпов произошло примерно 6000 лет назад из-за взрыва сверхновой. Однако свет из этой области космоса идет к нам примерно семь тысяч лет, поэтому вычисленное астрономами событие для нас — только дело будущего.

Планетарные туманности

Название следующего типа светящихся газопылевых облаков было введено У. Гершелем. Планетарная туманность — последняя стадия жизни звезды. Сбрасываемые светилом оболочки формируют характерный рисунок. Туманность напоминает диск, обычно окружающий планету при наблюдении ее через небольшой телескоп. На сегодняшний день известно больше тысячи таких объектов.

Планетарные туманности — часть процесса превращения в В центре формирования располагается горячая звезда, по своему спектру схожая со светилами класса О. Ее температура достигает 125 000 К. Планетарные туманности в основном имеют сравнительно небольшие размеры — 0,05 парсек. Большая их часть расположена в центре нашей галактики.

Масса газовой оболочки, сброшенной звездой, мала. Она составляет десятые доли от аналогичного параметра Солнца. Смесь газа и пыли удаляется от центра туманности со скоростью, достигающей 20 км/с. Оболочка существует примерно в течение 35 тысяч лет, а затем становится сильно разреженной и неразличимой.

Особенности

Планетарная туманность может быть различной формы. В основном, так или иначе, она близка к шару. Различают туманности круглые, кольцеобразные, похожие на гантели, неправильной формы. Спектры подобных космических объектов включают эмиссионные линии светящегося газа и центральной звезды, а также иногда линии поглощения из спектра светила.

Планетарная туманность излучает огромное количество энергии. Оно значительно больше аналогичного показателя для центральной звезды. Ядро образования из-за своей высокой температуры испускает ультрафиолетовые лучи. Они ионизируют атомы газа. Частицы разогреваются, вместо ультрафиолета они начинают испускать видимые лучи. Их спектр и содержит эмиссионные линии, характеризующие образование в целом.

Туманность Кошачий глаз

Природа — мастерица на создание неожиданных и красивых форм. Примечательна в этом плане планетарная туманность, из-за сходства названная Кошачьим глазом (NGC 6543). Она была обнаружена в 1786 году и стала первой, которую ученые определили как облако светящегося газа. Туманность Кошачий глаз располагается в и обладает очень интересной сложной структурой.

Она образовалась около 100 лет назад. Тогда центральная звезда сбросила свои оболочки и сформировались концентрические линии газа и пыли, характерные для рисунка объекта. На сегодняшний день остается до конца непонятен механизм формирования наиболее выразительной центральной структуры туманности. Появление такого рисунка хорошо объясняется расположением в сердцевине туманности двойной звезды. Однако пока сведений, свидетельствующих в пользу такого положения вещей, нет.

Температура гало NGC 6543 составляет примерно 15 000 К. Ядро туманности разогрето до 80 000 К. При этом центральная звезда в несколько тысяч раз ярче Солнца.

Колоссальный взрыв

Массивные звезды часто заканчивают свой жизненный цикл впечатляющими «спецэффектами». Огромные по своей мощи взрывы приводят к потере светилом всех внешних оболочек. Они удаляются от центра со скоростью, превышающей 10 000 км/с. Столкновение движущегося вещества со статичным вызывает сильное повышение температуры газа. В результате его частицы начинают светиться. Часто остатки сверхновой представляют собой не шарообразные образования, что кажется логичным, а туманности самой разной формы. Происходит так, потому что выброшенное на огромной скорости вещество неравномерно образует сгустки и скопления.

След тысячелетней давности

Пожалуй, самый известный остаток сверхновой — это крабовидная туманность. Звезда, породившая ее, взорвалась почти тысячу лет назад, в 1054 году. Точную дату удалось установить по китайским летописям, где хорошо описана ее вспышка в небе.

Характерный рисунок крабовидной туманности составляет газ, выброшенный сверхновой и еще не до конца смешавшийся с межзвездным веществом. Объект располагается на расстоянии 3300 световых лет от нас и непрерывно расширяется со скоростью 120 км/с.

В центре крабовидная туманность содержит остаток сверхновой — нейтронную звезду, которая испускает потоки электронов, являющихся источниками непрерывного поляризованного излучения.

Отражающие туманности

Другой тип этих космических объектов состоит из холодной смеси газа и пыли, неспособного самостоятельно излучать свет. Отражающие туманности светятся за счет расположенных рядом объектов. Это могут быть звезды или аналогичные диффузные образования. Спектр рассеянного свет остается таким же, как и у его источников, однако синий свет в нем для наблюдателя преобладает.

Очень интересная туманность этого типа связана со звездой Меропа. Светило из скопления Плеяд уже на протяжении нескольких миллионов лет разрушает пролетающее мимо молекулярное облако. В результате воздействия звезды частицы туманности выстраиваются в определенной последовательности и вытягиваются по направлению к ней. По прошествии некоторого времени (точный срок неизвестен) Меропа может полностью разрушить облако.

Темная лошадка

Диффузным формированиям часто противопоставляется поглощающая туманность. Галактика имеет их немало. Это очень плотные облака пыли и газа, поглощающие свет расположенных за ними эмиссионных и отражательных туманностей, а также звезд. Эти холодные космические образования в основном состоят из атомов водорода, хотя в них встречаются и более тяжелые элементы.

Великолепный представитель этого типа — туманность Она расположена в созвездии Орион. Характерная для туманности форма, столь схожая с головой лошади, образовалась в результате воздействия звездного ветра и излучения. Объект хорошо виден благодаря тому, что фоном ему служит яркое эмиссионное формирование. При этом туманность Конская голова — лишь небольшая часть протяженного поглощающего облака пыли и газа, практически невидимого.

Благодаря телескопу Хаббл туманности, в том числе и планетарные, знакомы сегодня широкому кругу людей. Фотоизображения участков космоса, где они располагаются, впечатляют до глубины души и никого не оставляют равнодушным.

В основу слова «туманность» легло латинское слово «облако». Действительно, она представляет собой космические облака, сотканные из пыли и газа, которые плавают в пространстве. Если есть больше одной, значит, речь идет о туманностях.
Это основной строительный блок во , в котором содержатся элементы, используемые для создания звезд и целых звездных систем. Кроме этого, их по праву считают красивейшими объектами, светящимися богатством цветовых оттенков и световыми завихрениями.

Знаете ли вы самую яркую среди туманностей?

Это туманность Ориона, располагается в одноименном созвездии. Она относится к самым ярким и известным.
Именно звезды, расположенные внутри такого газового облака, расцвечивают его прекрасными оттенками цвета – красного, синего, зеленого. Все зависит от комбинации самых разных элементов, находящихся внутри такой туманности. Подавляющее их большинство состоит из:
- водорода 90%;
- гелия 10%;
- на 0,1% приходятся такие тяжелые элементы, как азот, углерод, калий, магний, кальций, железо. Подобные облака с материей достаточно крупные. Собственно говоря, это крупнейшие галактические объекты. Большинство из них в поперечнике имеют десятки, а в ряде случаев и сотни световых лет.
Туманности разделили на 5 категорий, выступающих основными:
эмиссионные;
отражательные;
темные;
планетарные;
остатки сверхновых.
Первые две категории по своему внешнему виду очень нечеткие, не обладают какой-либо заметной формой, либо структурой. Их еще называют диффузными.

Основные типы туманностей

Эмиссионная туманность

Это газовое облако высокой температуры. Звезды дают подсветку атомов облака УФ-излучением. Так как они попадают затем на более низкий энергетический уровень, то происходит излучение, напоминающее процесс появления неонового света – туманность начинает светиться. Обилие водорода наполняет их красным цветом, дополнительные оттенки (синего и зеленого цветов) могут производить атомы других элементов. Хотя самым распространенным практически всегда остается водород. В качестве примера такой туманности следует привести туманность Ориона (M42).

Отражательная туманность

Её отличие от эмиссионной в следующем – от неё не исходит собственная радиация. Данное пыле-газовое облако способствует лишь отражению световой энергии соседних туманностей или группы из нескольких звезд. Чаще всего располагается в местах образования звезд. Наличие синеватого оттенка достигается рассеянным светом, ведь именно синий может рассеиваться максимально эффективно. Отличным примером служит М20 - трехраздельная туманность, расположенная в Стрельца.

Темная туманность

Облако пыли, блокирующее прохождение света от расположенных за ним объектов. Напоминает отражательную, согласно своего состава. Отличием служит расположение источника света. Обычно темную туманность наблюдают совместно с отражательными и эмиссионными.
Пожалуй, наиболее известным примером служит туманность Конская Голова, расположенная в созвездии Орион. Представляет собой темную пылевую область, имеющую форму лошадиной головы, блокирующей свет от гораздо большей по размерам эмиссионной, располагающейся за ней.

Планетарная туманность

Это оболочка из газа, который «рожден» звездой, приближающейся к завершению цикла своей жизни. Подобное название слегка вводит в заблуждение, ведь в действительности у них нет ничего общего с какими-либо планетами. Своим названием обязаны округлой форме, напоминающей очертания планет. Внешнюю газовую оболочку чаще всего освещают остатки звезд, сохранившиеся в центре.
Лучшим примером считается М57 туманность Кольцо в созвездии Лира.

Остаток сверхновой звезды

Создаются они после завершения жизни звезд в результате массивного взрыва, больше известном как сверхновая звезда, в результате которого большая часть звездного вещества уносится в космос. Облака материи начинают пылать вместе с остатками породившей их звезды.
Лучше всего демонстрирует подобный остаток сверхновых звезд М1 - Крабовидная туманность, находящаяся в созвездии Тельца.