Болезни Военный билет Призыв

Уравнение дифракционной решетки условие главных максимумов. Дифракционная решетка. Дифракционный спектр. Другие способы записи основной формулы для решетки

ОПРЕДЕЛЕНИЕ

Дифракционная решетка - это простейший спектральный прибор. Она содержит систему щелей, которые разделяют непрозрачные промежутки.

Дифракционные решетки подразделяют на одномерные и многомерные. Одномерная дифракционная решетка состоит из параллельных прозрачных для света участков одинаковой ширины, которые располагаются в одной плоскости. Прозрачные участки разделяют непрозрачные промежутки. При помощи данных решеток наблюдения проводят в проходящем свете.

Существуют отражающие дифракционные решетки. Такая решетка представляет собой, например, полированную (зеркальную) металлическую пластинку, на которую нанесены штрихи при помощи резца. В результате получают участки, которые отражают свет и участки, которые свет рассеивают. Наблюдение при помощи такой решетки проводят в отраженном свете.

Картина дифракции на решетке — это результат взаимной интерференции волн, которые идут ото всех щелей. Следовательно, при помощи дифракционной решетки реализуется многолучевая интерференция когерентных пучков света, которые подверглись дифракции и которые идут от всех щелей.

Период дифракционной решетки

Если ширину щели на решетки обозначим a, ширину непрозрачного участка - b, тогда сумма данных двух параметров - это период решетки (d):

Период дифракционной решетки иногда называют еще постоянной дифракционной решетки. Период дифракционной решетки можно определить как расстояние, через которое происходит повтор штрихов на решетке.

Постоянную дифракционной решетки можно найти, если известно количество штрихов (N), которые имеет решетка на 1 мм своей длины:

Период дифракционной решетки входит в формулы, которые описывают картину дифракции на ней. Так, если монохроматическая волна падает на одномерную дифракционную решетку перпендикулярно к ее плоскости, то главные минимумы интенсивности наблюдаются в направлениях, определенных условием:

где - угол между нормалью к решетке и направлением распространения дифрагированных лучей.

Кроме главных минимумов, в результате взаимной интерференции световых лучей, которые посылает пара щелей, в некоторых направлениях они гасят друг друга, в результате появляются дополнительные минимумы интенсивности. Они возникают в направлениях, где разность хода лучей составляют нечетное число полуволн. Условие дополнительных минимумов записывают как:

где N - число щелей дифракционной решетки; принимает любые целые значения кроме 0, Если решетка имеет N щелей, то между двумя главными максимумами находятся дополнительный минимум, которые разделяют вторичные максимумы.

Условием главных максимумов для дифракционной решетки служит выражение:

Величина синуса не может превышать единицу, следовательно, число главных максимумов (m):

Примеры решения задач

ПРИМЕР 1

Задание Сквозь дифракционную решетку проходит пучок света, имеющий длину волны . На расстоянии L от решетки размещается экран, на который при помощи линзы формируют картину дифракции. Получают, что первый максимум дифракции расположен на расстоянии x от центрального (рис.1). Каков период дифракционной решетки (d)?
Решение Сделаем рисунок.

В основу решения задачи положим условие для главных максимумов картины дифракции:

По условию задачи речь идет о первом главном максимуме, то . Из рис.1 получим, что:

Из выражений (1.2) и (1.1) имеем:

Выразим искомый период решетки, получаем:

Ответ

Как найти период дифракционной решетки?

    ну стыдно не знать

    Судя по всему, что просто число единиц.
    Т.е., никакой специфической единицы измерения у него нет.
    http://dic.academic.ru/dic.nsf/bse/84886/Дифракционная
    Ну, по крайней мере, тут я прочитал, что R=mN, где m - просто целое число, а N - опять же число щелей, и поскольку никаких единиц измерения под ними не подразумевается, то и ожидать какую-то единицу измерения от их произведения тоже не следует.
    То же самое следует и из этой формулы "R=λ/dλ": это как время делить на изменение времени - будут просто единицы, если логика моя верна.

  • ДИФРАКЦИЯ СВЕТА

    в узком (наиболее употребительном) смысле - явление огибания лучами света контура непрозрачных тел и, следовательно, проникновение света в область геом. тени; в широком смысле - проявление волновых св-в света в условиях, близких к условиям применимости представлении геометрической оптики.
    В естеств. условиях Д. с. обычно наблюдается в виде нерезкой, размытой границы тени предмета, освещаемого удалённым источником. Наиболее контрастна Д. с. в пространств. областях, где плотность потока лучей претерпевает резкое изменение (в области каустической поверхности, фокуса, границы геом. тени и др.). В лабораторных условиях можно выявить структуру света в этих областях, проявляющуюся в чередовании светлых и тёмных (или окрашенных) областей на экране. Иногда эта структура проста, как, напр., при Д. с. на дифракционной решётке, часто очень сложна, напр. в области фокуса линзы. Д. с. на телах с резкими границами используется в инструментальной оптике и, в частности, определяет предел возможностей оптич. устройств.
    Первая элем. количеств. теория Д. с. была развита франц. физиком О. Френелем (1816), к-рый объяснил её как результат интерференции вторичных волн (см. ГЮЙГЕНСА - ФРЕНЕЛЯ ПРИНЦИП). Несмотря на недостатки, метод этой теории сохранил своё значение, особенно в расчётах оценочного характера.
    Метод состоит в разбиении фронта падающей волны, обрезанного краями экрана, на зоны Френеля.
    Рис. 1. Дифракц. кольца при прохождении света: слева - через круглое отверстие, в к-ром укладывается чётное число зон; справа - вокруг круглого экрана.
    Считается, что на экране вторичные световые волны не рождаются и световое поле в точке наблюдения определяется суммой вкладов от всех зон. Если отверстие в экране оставляет открытым чётное число зон (рис. 1), то в центре дифракц. картины получается тёмное пятно, при нечётном числе зон - светлое. В центре тени от круглого экрана, закрывающего не слишком большое число зон Френеля, получается светлое пятно. Величины вкладов зон в световое поле в точке наблюдения пропорциональны площадям зон и медленно убывают с ростом номера зоны. Соседние зоны вносят вклады противоположных знаков, т. к. фазы излучаемых ими волн противоположны.
    Результаты теории О. Френеля послужили решающим доказательством волновой природы света и дали основу теории зонных пластинок. Различают два вида Д. с.- д и ф р а кц и ю Френеля и дифракцию Фраунгофера в зависимости от соотношения между размерами тела b, на к-ром происходит дифракция, и величиной зоны Френеля?(zl) (а следовательно, в зависимости от расстояния z до точки наблюдения). Метод Френеля эффективен лишь тогда, когда размер отверстия сравним с размером зоны Френеля: b = ?(zl) (дифракция в сходящихся лучах). В этом случае небольшое число зон, на к-рые разбивается сферич. волна в отверстии, определяет картину Д. с. Если отверстие в экране меньше зоны Френеля (b<-?(zl), дифракции Фраунгофера), как, напр., при очень удалённых от экрана наблюдателя и источника света, то можно пренебречь кривизной фронта волны, считать её плоской и картину дифракции характеризовать угловым распределением интенсивности потока. При этом падающий параллельный пучок света на отверстии становится расходящимся с углом расходимости j = l/b. При освещении щели параллельным монохроматич. пучком света на экране получается ряд тёмных и светлых полос, быстро убывающих по интенсивности. Если свет падает перпендикулярно к плоскости щели, то полосы расположены симметрично относительно центр. полосы (рис. 2), а освещённость меняется вдоль экрана периодически с изменением j, обращаясь в нуль при углах j, для к-рых sinj=ml/b (m=1, 2, 3, . . .).
    Рис. 2. Дифракция Фраунгофера на щели.
    При промежуточных значениях j освещённость достигает макс. значений. Гл. максимум имеет место при m=0 и sinj=0, т. е. j=0. С уменьшением ширины щели центр. светлая полоса расширяется, а при данной ширине щели положение минимумов и максимумов зависит от l, т. е. расстояние между полосами тем больше, чем больше l. Поэтому в случае белого света имеет место совокупность соответствующих картин для разных цветов; гл. максимум будет общим для всех l и представляется в виде белой полоски, переходящей в цветные полосы с чередованием цветов от фиолетового к красному.
    В матем. отношении дифракция Фраунгофера проще дифракции Френеля. Идеи Френеля математически воплотил нем. физик Г. Кирхгоф (1882), к-рый развил теорию граничной Д. с., применяемую на практике. Однако в его теории не учитываются векторный характер световых волн и св-ва самого материала экрана. Математически корректная теория Д. с. на телах требует решения сложных граничных задач рассеяния эл.-магн. волн, имеющих решения лишь для частных случаев.
    Первое точное решение было получено нем. физиком А. Зоммерфельдом (1894) для дифракции плоской волны на идеально проводящем клине. На больших по сравнению с l расстояниях от острия клина результат Зоммерфельда предсказывает более глубокое проникновение света в область тени, чем это следует из теории Кирхгофа.
    Дифракц. явления возникают не только на резких границах тел, но и в протяжённых системах. Такая объёмная Д. с. обусловливается крупномасштабными по сравнению с l неоднородностями диэлектрич. проницаемости среды. В частности, объёмная Д. с. происходит при дифракции света на ультразвуке, в голограммах в турбулентной среде и нелинейных оптич. средах. Часто объёмная Д. с., в отличие от граничной, неотделима от сопутствующих явлений отражения и преломления света. В тех случаях, когда в среде нет резких границ и отражение играет незначит. роль в характере распространения света в среде, для дифракц. процессов применяют асимптотич. методы теории дифференциальных ур-ний. Для таких приближённых методов, к-рые составляют предмет диффузионной теории дифракции, характерно медленное (на размере Я) изменение амплитуды и фазы световой волны вдоль луча.
    В нелинейной оптике Д. с. происходит на неоднородностях показателя преломления, к-рые создаются самим распространяющимся через среду излучением. Нестационарный характер этих явлений дополнительно усложняет картину Д. с., в к-рой кроме углового преобразования спектра излучения возникает и частотное преобразование.

Одними из известных эффектов, которые подтверждают волновую природу света, являются дифракция и интерференция. Главная область их применения - спектроскопия, в которой для анализа спектрального состава электромагнитного излучения используют дифракционные решетки. Формула, которая описывает положение главных максимумов, даваемых этой решеткой, рассматривается в данной статье.

В чем заключаются явления дифракции и интерференции?

Прежде чем рассматривать вывод формулы дифракционной решетки, следует познакомиться с явлениями, благодаря которым это решетка оказывается полезной, то есть с дифракцией и интерференцией.

Вам будет интересно:

Дифракция - это процесс изменения движения волнового фронта, когда на своем пути он встречает непрозрачное препятствие, размеры которого сравнимы с длиной волны. Например, если через маленькое отверстие пропустить солнечный свет, то на стене можно наблюдать не маленькую светящуюся точку (что должно было произойти, если бы свет распространялся по прямой линии), а светящееся пятно некоторых размеров. Этот факт свидетельствует о волновой природе света.

Интерференция - еще одно явление, которое характерно исключительно для волн. Его суть заключается в наложении волн друг на друга. Если волновые колебания от нескольких источников согласованы (являются когерентными), тогда можно наблюдать устойчивую картину из чередующихся светлых и темных областей на экране. Минимумы на такой картине объясняются приходом волн в данную точку в противофазе (pi и -pi), а максимумы являются результатом попадания в рассматриваемую точку волн в одной фазе (pi и pi).

Оба описанных явления впервые объяснил англичанин Томас Юнг, когда исследовал дифракцию монохроматического света на двух тонких щелях в 1801 году.

Принцип Гюйгенса-Френеля и приближения дальнего и ближнего полей

Математическое описание явлений дифракции и интерференции является нетривиальной задачей. Нахождение точного ее решения требует выполнение сложных расчетов с привлечением максвелловской теории электромагнитных волн. Тем не менее в 20-е годы XIX века француз Огюстен Френель показал, что, используя представления Гюйгенса о вторичных источниках волн, можно с успехом описывать эти явления. Эта идея привела к формулировке принципа Гюйгенса-Френеля, который в настоящее время лежит в основе вывода всех формул для дифракции на препятствиях произвольной формы.

Тем не менее даже с помощью принципа Гюйгенса-Френеля решить задачу дифракции в общем виде не удается, поэтому при получении формул прибегают к некоторым приближениям. Главным из них является плоский волновой фронт. Именно такая форма волны должна падать на препятствие, чтобы можно было упростить ряд математических выкладок.

Следующее приближение заключается в положении экрана, куда проецируется дифракционная картина, относительно препятствия. Это положение описывается числом Френеля. Оно вычисляется так:

Где a - геометрические размеры препятствия (например, щели или круглого отверстия), λ - длина волны, D - дистанция между экраном и препятствием. Если для конкретного эксперимента F

Разница между дифракциями Фраунгофера и Френеля заключается в различных условиях для явления интерференции на маленьком и большом расстояниях от препятствия.

Вывод формулы главных максимумов дифракционной решетки, который будет приведен далее в статье, предполагает рассмотрение дифракции Фраунгофера.

Дифракционная решетка и ее виды

Эта решетка представляет собой пластинку из стекла или прозрачного пластика размером в несколько сантиметров, на которую нанесены непрозрачные штрихи одинаковой толщины. Штрихи расположены на постоянном расстоянии d друг от друга. Это расстояние носит название периода решетки. Две других важных характеристики прибора - это постоянная решетки a и число прозрачных щелей N. Величина a определяет количество щелей на 1 мм длины, поэтому она обратно пропорциональна периоду d.

Существует два типа дифракционных решеток:

  • Прозрачная, которая описана выше. Дифракционная картина от такой решетки возникает в результате прохождения через нее волнового фронта.
  • Отражающая. Она изготавливается с помощью нанесения маленьких бороздок на гладкую поверхность. Дифракция и интерференция от такой пластинки возникают за счет отражения света от вершин каждой бороздки.

Какой бы ни был тип решетки, идея ее воздействия на волновой фронт заключается в создании периодического возмущения в нем. Это приводит к образованию большого количества когерентных источников, результатом интерференции которых является дифракционная картина на экране.

Основная формула дифракционной решетки

Вывод этой формулы предполагает рассмотрение зависимости интенсивности излучения от угла его падения на экран. В приближении дальнего поля получается следующая формула для интенсивности I(θ):

I(θ) = I0*(sin(β)/β)2*2, где

α = pi*d/λ*(sin(θ) - sin(θ0));

β = pi*a/λ*(sin(θ) - sin(θ0)).

В формуле ширина щели дифракционной решетки обозначается символом a. Поэтому множитель в круглых скобках отвечает за дифракцию на одной щели. Величина d - это период дифракционной решетки. Формула показывает, что множитель в квадратных скобках, где появляется этот период, описывает интерференцию от совокупности щелей решетки.

Пользуясь приведенной формулой, можно рассчитать значение интенсивности для любого угла падения света.

Если находить значение максимумов интенсивности I(θ), то можно прийти к выводу, что они появляются при условии, что α = m*pi, где m является любым целым числом. Для условия максимумов получаем:

m*pi = pi*d/λ*(sin(θm) - sin(θ0)) =>

sin(θm) - sin(θ0) = m*λ/d.

Полученное выражение называется формулой максимумов дифракционной решетки. Числа m - это порядок дифракции.

Другие способы записи основной формулы для решетки

Заметим, что в приведенной в предыдущем пункте формуле присутствует член sin(θ0). Здесь угол θ0 отражает направление падения фронта световой волны относительно плоскости решетки. Когда фронт падает параллельно этой плоскости, то θ0 = 0o. Тогда получаем выражение для максимумов:

sin(θm) = m*λ/d.

Поскольку постоянная решетки a (не путать с шириной щели) обратно пропорциональна величине d, то через постоянную дифракционной решетки формула выше перепишется в виде:

sin(θm) = m*λ*a.

Чтобы не возникало ошибок при подстановке конкретных чисел λ, a и d в эти формулы, следует всегда использовать соответствующие единицы СИ.

Понятие об угловой дисперсии решетки

Будем обозначать эту величину буквой D. Согласно математическому определению, она записывается следующим равенством:

Физический смысл угловой дисперсии D заключается в том, что она показывает, на какой угол dθm сместится максимум для порядка дифракции m, если изменить длину падающей волны на dλ.

Если применить это выражение для уравнения решетки, тогда получится формула:

D = m/(d*cos(θm)).

Дисперсия угловая дифракционной решетки определяется по формуле выше. Видно, что величина D зависит от порядка m и от периода d.

Чем больше дисперсия D, тем выше разрешающая способность данной решетки.

Разрешающая способность решетки

Под разрешающей способностью понимают физическую величину, которая показывает, на какую минимальную величину могут отличаться две длины волны, чтобы их максимумы на дифракционной картине появлялись раздельно.

Разрешающая способность определяется критерием Рэлея. Он гласит: два максимума можно разделить на дифракционной картине, если расстояние между ними оказывается больше полуширины каждого из них. Угловая полуширина максимума для решетки определяется по формуле:

Δθ1/2 = λ/(N*d*cos(θm)).

Разрешающая способность решетки в соответствии с критерием Рэлея равна:

Δθm>Δθ1/2 или D*Δλ>Δθ1/2.

Подставляя значения D и Δθ1/2, получаем:

Δλ*m/(d*cos(θm))>λ/(N*d*cos(θm) =>

Δλ > λ/(m*N).

Это и есть формула разрешающей способности дифракционной решетки. Чем больше число штрихов N на пластинке и чем выше порядок дифракции, тем больше разрешающая способность для данной длины волны λ.

Дифракционная решетка в спектроскопии

Выпишем еще раз основное уравнение максимумов для решетки:

sin(θm) = m*λ/d.

Здесь видно, что чем больше длина волны падает на пластинку со штрихами, тем при больших значениях углов будут появляться максимумы на экране. Иными словами, если через пластинку пропустить немонохроматический свет (например, белый), то на экране можно видеть появление цветных максимумов. Начиная от центрального белого максимума (дифракция нулевого порядка), дальше будут появляться максимумы для более коротких волн (фиолетовый, синий), а затем для более длинных (оранжевый, красный).

Другой важный вывод из этой формулы заключается в зависимости угла θm от порядка дифракции. Чем больше m, тем больше значение θm. Это означает, что цветные линии будут сильнее разделены между собой на максимумах для высокого порядка дифракции. Этот факт уже был освящен, когда рассматривалась разрешающая способность решетки (см. предыдущий пункт).

Описанные способности дифракционной решетки позволяют использовать ее для анализа спектров излучения различных светящихся объектов, включая далекие звезды и галактики.

Пример решения задачи

Покажем, как пользоваться формулой дифракционной решетки. Длина волны света, которая падает решетку, равна 550 нм. Необходимо определить угол, при котором появляется дифракция первого порядка, если период d равен 4 мкм.

θ1 = arcsin(λ/d).

Переводим все данные в единицы СИ и подставляем в это равенство:

θ1 = arcsin(550*10-9/(4*10-6)) = 7,9o.

Если экран будет находиться на расстоянии 1 метр от решетки, то от середины центрального максимума линия первого порядка дифракции для волны 550 нм появится на расстоянии 13,8 см, что соответствует углу 7,9o.

Первые опыты и активные исследования природы света начались еще в далеком XVII веке, когда итальянский ученый Франческо Гримальди впервые открыл такое интересное физическое явление как дифракция света. Что же такое дифракция света? Это отклонение света от прямолинейного распространения в силу определенных препятствий на его пути. Более научное объяснение причинам дифракции света было дано в начале XIX века английским ученым Томасом Юнгом, согласно нему дифракция света возможна благодаря тому, что свет представляет собой волну, идущую от своего источника и естественным образом искривляющуюся при попадании на определенные препятствия. Им же была изобретена первая дифракционная решетка, представляющая собой оптический прибор, работающий на основе дифракции света, то есть специально искривляющий световую волну.

Дифракция и интерференция света

Изучая поведение монохроматического пучка света, Томас Юнг, разделив его пополам, получил дифракционную картину, которая представляла собой последовательное чередование ярких и темных полос на экране. Волновая теория природы света, сформированная Юнгом, прекрасно объясняла это явление. Будучи волной, пучок света при попадании на непрозрачное препятствие искривляется, меняет траекторию своего движения. Так появляется дифракция света, при которой свет может, как целиком огибать препятствия (если длина световой волны больше размеров препятствия) или искривлять свою траекторию (когда размеры препятствий сопоставимы с длиной световой волны). Примером тут может быть попадание света через узкие щели или небольшие отверстия, как на фото ниже.

Луч света в пещере, наглядная иллюстрация дифракции света в природе.

А тут на картинке показано более схематическое изображение дифракции.

Физическое явление дифракции света дополняет еще одно важное свойство световой волны – интерференция света. Суть интерференции света заключается в накладывании одних световых волн на другие. В результате может происходить искривление синусоидальной формы результирующей волны.

Так схематически выглядит интерференция.

При этом, волны, которые накладываются, могут, как усиливать мощь общей световой волны (при совпадении амплитуд), так и наоборот погасить ее.

Как мы писали выше, дифракционная решетка представляет собой простой оптический прибор, который искривляет световую волну.

Вот так она выглядит.

Или еще чуть более маленький экземпляр.

Также дифракционную решетку можно охарактеризовать тремя параметрами:

  • Период d. Он представляет собой расстояние между двумя щелями, через которые проходит свет. Так как длина световой волны обычно находится в диапазоне нескольких десятых микрометра, то величина d обычно имеет 1 микрометр.
  • Постоянная решетка а. Это количество прозрачных щелей на длине 1 мм поверхности решетки. Эта величина обратно пропорциональна периоду дифракционной решетки d. Обычно имеет 300-600 мм -1
  • Общее количество щелей N. Высчитывается путем умножения длины дифракционной решетки на ее постоянную а. Обычно длина решетки имеет несколько сантиметров, а количество щелей при этом составляет 10-20 тысяч.

Виды дифракционных решеток

На самом деле есть целых два вида дифракционных решеток: прозрачная и отражающая.

Прозрачная решетка представляет собой прозрачную тонкую пластину из стекла или прозрачного пластика, на которую нанесены штрихи. Штрихи эти как раз и являются препятствиями для световой волны, сквозь них она не может пройти. Ширина штриха – это и есть, по сути, период дифракционной решетки d. А оставшиеся между штрихами прозрачные зазоры – это щели. Такие решетки наиболее часто применяются при выполнении лабораторных работ.

Отражающая дифракционная решетка – это либо пластиковая и отполированная пластина. Вместо штрихов на нее нанесены бороздки определенной глубины. Период d соответственно это расстояние между этими бороздками. Простым примером отражающей дифракционной решетки может быть оптический CD диск.

Такие решетки часто используют при анализе спектров излучения, так как благодаря их дизайну можно удобно распределить интенсивность максимумов дифракционной картины на пользу максимумов более высокого порядка.

Принцип работы дифракционной решетки

Представим, что на нашу решетку падает свет, имеющий плоский фронт. Это важный момент, так как классическая формула будет верна при условии, что волновой фронт является плоским и параллельным самой пластинке. Штрихи решетки будут вносить в этот световой фронт возмущение и как результат на выходе из решетки создаться ситуация будто бы работает множество когерентных (синхронных) источников излучения. Эти источники и являются причиной дифракции.

От каждого источника (по сути щели между штрихами решетки) будут распространяться световые волны, которые будут когерентными (синхронными) друг другу. Если на некотором расстоянии от решетки поместить экран, то мы сможем увидеть на нем яркие полосы, между которыми будет тень.

Формула дифракционной решетки

Яркие полосы, которые мы увидим на экране можно также назвать максимумами решетки. Если рассматривать условия усиления световых волн, то можно вывести формулу максимума дифракционной решетки, вот она.

sin(θ m) = m*λ/d

Где θ m это углы между перпендикуляром к центру пластинки и направлением на соответствующую линию максимума на экране. Величина m называется порядком дифракционной решетки. Она принимает целые значения и ноль, то есть m = 0, ±1, 2, 3 и так далее. λ – длина световой волны, а d – период решетки.

Разрешающая способность дифракционной решетки

Разрешающей способностью называют способность решетки разделить две волны с близкими значениями длины λ на два отдельных максимума на экране.

Применение дифракционной решетки

Какое же практическое применение дифракционной решетки, в чем ее конкретная польза? Дифракционная решетка является важным и незаменимым инструментов в спектроскопии, так с ее помощью можно узнать, например, химический состав далекой звезды. Свет, идущий от этой звезды, собирают зеркалами и направляют на решетку. Измеряя значения θ m можно узнать все длины волн спектра, а значит и химические элементы, которые их излучают.

Дифракция света и дифракционная решетка, видео

И в завершение интересное образовательное видео по теме нашей статьи от заслуженного учителя Украины – Павла Виктора, на наш взгляд его видео лекции на Ютубе по физике могут быть очень полезными для всех, кто изучает этот предмет.


При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту [email protected] или в Фейсбук, с уважением автор.

ОПРЕДЕЛЕНИЕ

Дифракционной решеткой называют спектральный прибор, который является системой некоторого количества щелей, разделенных непрозрачными промежутками.

Очень часто на практике используют одномерную дифракционную решетку, состоящую из параллельных щелей одинаковой ширины, находящихся в одной плоскости, которые разделяют равными по ширине непрозрачными промежутками. Такую решетку изготавливают при помощи специальной делительной машины, которая наносит на пластине из стекла параллельные штрихи. Количество таких штрихов может быть более чем тысяча на один миллиметр.

Лучшими считаются отражательные дифракционные решетки. Это совокупность участков, которые отражают свет с участками, которые свет отражают. Такие решетки представляют собой отшлифованную металлическую пластину, на которой рассеивающие свет штрихи нанесены резцом.

Картина дифракции на решетке — это результат взаимной интерференции волн, которые идут ото всех щелей. Следовательно, при помощи дифракционной решетки реализуется многолучевая интерференция когерентных пучков света, которые подверглись дифракции и которые идут от всех щелей.

Допустим, что на дифракционной решетке ширина щели будет a, ширина непрозрачного участка — b, тогда величина:

называется периодом (постоянной) дифракционной решетки.

Картина дифракции на одномерной дифракционной решетке

Представим, что нормально к плоскости дифракционной решетки падает монохроматическая волна. Вследствие того, что щели расположены на равных расстояниях друг от друга, то разности хода лучей (), которые идут от пары соседних щелей, для избранного направления будут одинаковы для всей данной дифракционной решетки:

Главные минимумы интенсивности наблюдаются в направлениях, определенных условием:

Помимо главных минимумов, в результате взаимной интерференции лучей света, которые посылает пара щелей, в некоторых направлениях они гасят друг друга, это значит, что появляются дополнительные минимумы. Они возникают в направлениях, где разность хода лучей составляют нечетное число полуволн. Условие дополнительных минимумов записывают как:

где N - число щелей дифракционной решетки; k’ принимает любые целые значения кроме 0, . Если решетка имеет N щелей, то между двумя главными максимумами находятся дополнительный минимум, которые разделяют вторичные максимумы.

Условием главных максимумов для дифракционной решетки служит выражение:

Так как величина синуса не может быть больше единицы, то количество главных максимумов:

Если через решетку пропускать белый свет, то все максимумы (кроме центрального m=0), будут разложены в спектр. При этом фиолетовая область данного спектра будет обращена к центру картины дифракции. Данное свойство дифракционной решетки применяется для изучения состава спектра света. Если известен период решетки, то вычисление длины волны света можно свести к нахождению угла , который соответствует направлению на максимум.

Примеры решения задач

ПРИМЕР 1

Задание Каков максимальный порядок спектра, который можно получить при помощи дифракционной решетки с постоянной м, если на нее перпендикулярно поверхности падает монохроматический пучок света с длиной волны м?
Решение В качестве основы для решения задачи используем формулу, которая является условием наблюдения главных максимумов для дифракционной картины, полученной при прохождении света сквозь дифракционную решетку:

Максимальным значением является единица, поэтому:

Из (1.2) выразим , получим:

Проведем вычисления:

Ответ

ПРИМЕР 2

Задание Через дифракционную решетку пропускают монохроматический свет с длиной волны . На расстоянии L от решетки поставлен экран. На него при помощи линзы, находящейся около решетки, создают проекцию дифракционной картины. При этом первый максимум дифракции находится на расстоянии l от центрального. Каково количество штрихов на единицу длины дифракционной решетки (N), если свет падает на нее нормально?
Решение Сделаем рисунок.