Болезни Военный билет Призыв

Чем массивнее звезда главной последовательности тем. Внутреннее строение солнца и звезд главной последовательности



К главной последовательности относятся те звезды, которые находятся в основной фазе своей эволюции. Это, если сравнивать с человеком, период зрелости, период относительной устойчивости. Все звезды проходят эту фазу, одни быстрее (тяжелые звезды), другие - дольше (легкие звезды). В жизни каждой звезды этот период является самым продолжительным.

Е сли рассматривать диаграмму Герцшпрунга - Рессела, то звезды главной последовательности располагаются по диагонали из верхнего левого угла(высокие светимости) в нижний правый (низкие светимости). Положение звезд на диаграмме Герцшпрунга - Ресселла зависит от массы, химического состава звёзд и процессов выделения энергии в их недрах. Звёзды на Главной последовательносте имеют одинаковый источник энергии (термоядерные реакции горения водорода, так что их светимость и температура (а следовательно, положение на Главной последовательносте) определяются главным образом массой; самые массивные звёзды (М~50M Солнца) располагаются в верхней (левой) части Главной последовательности, а с продвижением вниз по Главной последовательносте массы звёзд убывают до М~0,08M Солнца.

Н а Главную последовательность звёзды попадают после стадии гравитационного сжатия, приводящего к появлению в недрах звезды термоядерного источника энергии. Начало стадии Главной последовательности определяется как момент, когда потери энергии химически однородной звезды на излучение полностью компенсируются выделением энергии в термоядерных реакциях. Звёзды в этот момент находятся на левой границе Главной последовательности, именуемой начальной Главной последовательностью или Главной последовательностью нулевого возраста. Окончание стадии Главной последовательности соответствует образованию у звезды однородного гелиевого ядра. Звезда уходит с Главной последовательности и становится гигантом. Разброс звёзд на наблюдаемой Главной последовательносте обусловлен, кроме эффектов эволюции, различиями в начальном химическом составе, вращением и возможной двойственностью звезды.

У звёзд с М<0,08M Солнца время гравитационного сжатия превышает время жизни Галактики, и поэтому они не достигли Главной последовательности и находятся несколько правее неё. У звёзд с массами 0,08M Солнца стадия термоядерного горения водорода столь продолжительна, что они за время жизни Галактики не успели покинуть Главной последовательности. У более массивных звёзд время жизни на Главной последовательносте ~90% всего времени их эволюции. Именно этим объясняется преимущественная концентрация звезд в области Главной последовательности.


А нализ Главной последовательности играет особенно важную роль при исследовании звёздных групп и скоплений, т. к. по мере увеличения их возраста точка, в которой Главная последовательность скопления начинает заметно отклоняться от начальной Главной последовательности, смещается в область меньших светимостсй и более поздних спектральных классов, и поэтому положение точки поворота Главной последовательности может служить индикатором возраста звездного скопления.

В 1910 г. двое астрономов — датчанин Эйнар Герцшпрунг и американец Генри Ресселл — независимо друг от друга решили выяснить, как зависит светимость звезды от ее спектрального класса или цвета. Для этого они нанесли на график данные обо всех известных в то время спектральных классах и светимостях звезд. В левой части диаграммы расположились горячие белые и голубые звезды, в правой — «холодные» красные, вверху — те, что излучают много энергии, внизу — те, которые «скупятся» на излучение. Если бы зависимость спектр- светимость была однозначной, на диаграмме образовалась бы прямая линия, если бы никакой зависимости вообще не существовало, точки расположились бы по всему полю диаграммы.

Получилось нечто совсем иное: точки, соответствующие тем или иным звездам, сгруппировались в различных областях. Больше всего их (около 90 %) разместилось на диагонали, проведенной из левого верхнего угла (звезды классов О и В, излучающие много энергии) к правому нижнему углу (слабые красные звезды). Эту диагональ астрономы назвали «главной последовательностью». Выше горизонтально протянулась последовательность звезд с наибольшей светимостью, которые назвали гигантами, так как для того, чтобы излучать столько энергии, звезда должна иметь очень большую поверхность. Еще выше, над последовательностью гигантов, расположились гипергиганты и сверхгиганты, а между гигантами и главной последовательностью — субгиганты.

Заполненной оказалась еще одна область — в левом нижнем углу разместились горячие звезды малой светимости, которые называют белыми карликами — ведь для того, чтобы излучать мало энергии, горячая звезда должна быть очень маленькой.

Ученым поначалу казалось, что на протяжении своей жизни звезды проходят путь вдоль главной последовательности — постепенно теряя энергию и остывая. Однако в действительности все выглядит сложнее. «Новорожденная» звезда почти сразу «садится» на главную последовательность, а ее место в ней зависит прежде всего от массы — чем больше масса, тем более высокое место она занимает. Там звезда и проводит большую часть своей жизни. Потому-то на главной последовательности и «собралось» наибольшее количество звезд.

Но когда водородное «горючее» подходит к концу, звезда начинает менять свой облик. Ее оболочка начинает разбухать, звезда стремительно увеличивается и переходит в класс красных гигантов, меняя место на диаграмме. Затем остывающая оболочка сбрасывается — и остается только раскаленное ядро звезды. На свет появляется новый белый карлик.

Так живут звезды главной последовательности, в том числе и наше Солнце. У других типов звезд «биография» и сложнее, и богаче событиями.

С помощью диаграммы Герцшпрунга-Ресселла нередко удается определять и возраст удаленных звездных скоплений. Если все звезды скопления лежат на главной последовательности — скопление молодое, если часть звезд уже покинула главную последовательность — его возраст на порядок больше.

Строение Солнца

Мы не можем непосредственно заглянуть внутрь Солнца, поэтому представление о его внутреннем строении получаем только на основе теоретического анализа, используя наиболее общие законы физики и такие характеристики Солнца, как масса, радиус, светимость.

Солнце не расширяется и не сжимается, оно находится в гидростатическом равновесии, так как силе гравитации, стремящейся сжать Солнце, препятствует сила газового давления изнутри.

Расчеты показывают, что для поддержания гидростатического равновесия температура в центре Солнца должна быть примерно 15 10 6 К На расстоянии 0,7R температура падает до порядка 10 6 К. Плотность вещества в центре Солнца около 1,5 10 5 кг/м 3 , что более чем в 100 раз выше его средней плотности.

Термоядерные реакции протекают в центральной области Солнца радиусом, примерно равным 0,3R . Эта область получила название ядра. Вне ядра температура недостаточна для протекания термоядерных реакций.

Энергия, выделившаяся в ядре Солнца, переносится наружу, к поверхности, двумя способами: лучистым и конвективным переносами. В первом случае энергия переносится излучением; во втором - при механических движениях нагретых масс вещества.

Лучистый перенос энергии происходит в ядре до расстояний (0,6-0,7) R от центра Солнца, далее к поверхности энергия переносится конвекцией. Проявление конвекции наблюдается в виде грануляции в фотосфере. Полное время, которое требуется энергии, выделившейся в ядре, чтобы достигнуть поверхности Солнца, составляет около 10 млн лет. Так что тот свет и тепло, которые согревают и освещают нашу Землю сегодня, были выработаны в термоядерных реакциях в центре Солнца 10 млн лет назад.

Конечно, астрономы ищут способы заглянуть внутрь Солнца и проверить теоретические представления о его строении. На этом пути им на помощь пришли физики, изучающие элементарные частицы. Дело в том, что при термоядерных реакциях синтеза гелия из водорода наряду с выделением энергии происходит рождение элементарных частиц - нейтрино. В отличие от излучения нейтрино практически не задерживается веществом. Возникая в недрах Солнца и распространяясь со скоростью, близкой к скорости света, они через 2 с покидают поверхность Солнца и через 8 мин достигают Земли. Для наблюдений солнечных нейтрино был построен специальный нейтринный телескоп, который в течение многолетних наблюдений и зарегистрировал ожидаемый поток нейтрино от Солнца. Эти наблюдения окончательно подтвердили правильность наших теоретических моделей строения Солнца как звезды. Поэтому мы в полной мере можем использовать полученные результаты для разработки моделей других звезд. Другие звезды главной последовательности по строению во многом похожи на Солнце.


Красные гиганты и сверхгиганты

Отличительной особенностью этих звезд является отсутствие ядерных реакций в самом центре, несмотря на высокие температуры. Ядерные реакции протекают в тонких слоях вокруг плотного центрального ядра. Так как температура звезды уменьшается к поверхности, то в каждом слое идет определенный тип термоядерных реакций. В самых внешних слоях ядра, где температура составляет около 15 10 6 К, из водорода образуется гелий; глубже, где температура выше, из гелия образуется углерод; далее из углерода - кислород, и в самых глубоких слоях у очень массивных звезд при термоядерных реакциях образуется железо. Более тяжелые химические элементы образовываться с выделением энергии не могут. Наоборот их образование требует затраты энергии. Итак, в красных гигантах и сверхгигантах формируются слоевые источники энергии и образуется большинство химических элементов вплоть до атомов железа.

Белые карлики

Эти звезды были названы белыми карликами, так как сначала среди них были обнаружены звезды белого цвета, а значительно позже - желтого и других цветов. Размеры их небольшие, всего лишь тысячи и десятки тысяч километров, т. е. сравнимые с размерами Земли. Но их массы близки к массе Солнца, и поэтому их средняя плотность сотни килограммов в кубическом сантиметре. Примером такой звезды служит спутник Сириуса, обозначаемый обычно как Сириус В. У этой звезды спектрального класса А с температурой 9000 К диаметр лишь в 2,5 раза превышает диаметр Земли, а масса равна солнечной, так что средняя плотность превышает 100 кг/см 3 .


Пульсары и нейтронные звезды

В 1967 г. астрономы с помощью радиотелескопов обнаружили удивительные радиоисточники, которые испускали периодические импульсы радиоизлучения. Эти объекты получили название пульсары. Периоды импульсов пульсаров, которых сейчас известно свыше 400, заключены в пределах от нескольких секунд до 0,001 с. Удивляла высокая стабильность повторения импульсов; так, первый открытый пульсар, который обозначается как PSR 1919, расположенный в неприметном созвездии Лисички, имел период Т = 1,33 730 110 168 с (рис. 16.3). Высокая стабильность периода, доступная только при измерении современными атомными часами, заставила вначале предположить, что астрономы имеют дело с сигналами, посылаемыми внеземными цивилизациями. В конце концов было доказано, что явление пульсации возникает в результате быстрого вращения нейтронных звезд, причем период следования импульсов равен периоду вращения нейтронной звезды.

Эти необычные звезды имеют радиусы около 10 км и массы, сравнимые с солнечной. Плотность нейтронной звезды фантастическая и равна 2 10 17 кг/м 3 . Она сравнима с плотностью вещества в ядрах атомов. При такой плотности вещество звезды состоит из плотно упакованных нейтронов. По этой причине такие звезды получили название нейтронных звезд .



Черные дыры

В конце XVIII в. известный астроном и математик П. Лаплас (1749-1827) привел простые, основанные на теории тяготения Ньютона рассуждения, которые позволили предсказать существование необычных объектов, получивших название черные дыры. Известно, что для преодоления притяжения небесного тела массой М и радиусом R нужна вторая космическая (параболическая) скорость При меньшей скорости тело станет спутником небесного тела, при ν ≥ ν 2 оно навсегда покинет небесное тело и никогда не вернется к нему Для Земли ν 2 = 11,2 км/с, на поверхности Солнца ν 2 = 617 км/с. На поверхности нейтронной звезды массой, равной массе Солнца, и радиусом около 10 км ν 2 = 170 000 км/с и составляет всего около 0,6 скорости света. Как видно из формулы, при радиусе небесного тела, равном R = 2GM/c 2 , вторая космическая скорость будет равна скорости света с = 300 000 км/с. При еще меньших размерах вторая космическая скорость будет превышать скорость света. По этой причине даже свет не сможет покинуть такое небесное тело и дать информацию о процессах, происходящих на его поверхности, нам - далеким наблюдателям.

Если такие объекты во Вселенной существуют, то они являются как бы дырами, куда все проваливается и откуда ничего не выходит. Поэтому в современной литературе за ними укоренилось такое название - черные дыры.

В настоящее время обнаружены черные дыры в составе двойных звездных систем. Так, в созвездии Лебедя наблюдается тесная двойная система, одна из звезд, излучающая видимый свет, - обычная звезда спектрального класса В, другая - невидимая звезда малого размера - излучает рентгеновские лучи и имеет массу около 10М . Эта невидимая звезда представляет собой черную дыру с размерами около 30 км. Рентгеновское излучение испускает не сама черная дыра, а нагретый до нескольких миллионов градусов диск, вращающийся вокруг черной дыры. Этот диск состоит из вещества, которое черная дыра своим тяготением вытягивает из яркой звезды (рис. XV на цветной вклейке).

Теоретические представления о внутреннем строении звезд главной последовательности были подтверждены прямыми наблюдениями потоков нейтрино из солнечного ядра.
В некоторых двойных звездных системах обнаружены черные дыры.

Эволюция звезд: рождение, жизнь и смерть звезд

В Млечном Пути наблюдаются газопылевые облака. Некоторые из них настолько плотные, что начинают сжиматься под действием собственного тяготения. По мере сжатия плотность и температура облака повышается, и оно начинает обильно излучать в инфракрасном диапазоне спектра. На этой стадии сжатия облако получило название протозвезда . Когда температура в недрах протозвезды повышается до нескольких миллионов кельвинов, в них начинаются термоядерные реакции превращения водорода в гелий и протозвезда превращается в обычную звезду главной последовательности. Продолжительность пребывания звезд на главной последовательности определяется мощностью излучения звезды (светимостью) и запасами ядерной энергии.

После выгорания водорода в недрах звезды она раздувается и становится красным гигантом или сверхгигантом в зависимости от массы.

Раздувшаяся оболочка звезды небольшой массы уже слабо притягивается ее ядром и, постепенно удаляясь от него, образует планетарную туманность (рис. X на цветной вклейке). После окончательного рассеяния оболочки остается лишь горячее ядро звезды - белый карлик. От звезды типа Солнца останется углеродный белый карлик.

Эволюция массивных звезд происходит более бурно. В конце своей жизни такая звезда может взорваться сверхновой звездой, а ее ядро, резко сжавшись, превратиться в сверхплотный объект - нейтронную звезду или даже в черную дыру. Сброшенная оболочка, обогащенная гелием и другими тяжелыми элементами, образовавшимися в недрах звезды, рассеивается в пространстве и служит материалом для формирования звезд нового поколения. В частности, есть основания полагать, что Солнце - звезда второго поколения.

Звезды являются наиболее интересными астрономическими объектами, и представляют собой наиболее фундаментальные строительные блоки галактик. Возраст, распределение и состав звезд в галактике позволяет определить ее историю, динамику и эволюцию. Кроме того, звезды несут ответственность за производство и распределение в космическом пространстве тяжелых элементов, таких как углерод, азот, кислород, а их характеристики тесно связаны с планетарными системами, которые они образуют. Поэтому изучение процесса рождения, жизни и смерти звезд занимает центральное место в астрономической области.

Рождение звезд

Звезды рождаются в облаках пыли и газа, которые разбросаны в большинстве галактик. Ярким примером распределения такого облака является туманность Ориона.

Представленное изображение сочетает в себе изображения в видимо и инфракрасном диапазоне волн, полученные от космического телескопа Hubble и Spitzer. Турбулентность в глубине этих облаков приводит к созданию узлов с достаточной массы для начала процесса разогревания материала в центре этого узла. Именно это горячее ядро, более известное как протозвезда однажды сможет стать звездой.

Трехмерное компьютерное моделирование процесса формирования звезд показывает, что вращающиеся газовопылевые облака могут разрушиться на две или три части; это объясняет, почему большинство звезд в Млечном пути находятся в парах или небольших группах.

Не весь материл, из газопылевого облака попадает в будущую звезду. Оставшийся материал может образовать планеты, астероиды, кометы или просто остаться в виде пыли.

Главная последовательность звезд

Звезде размером с наше Солнце требуется порядка 50 миллионов лет чтобы созреть с момента образования до взрослого состояния. Наше Солнце будет находиться в этой фазе зрелости в течении примерно 10 миллиардов лет.

Звезды питаются энергией выделяемой в процессе ядерного синтеза водорода с образованием гелия в своих недрах. Отток энергии их центральных областей звезды обеспечивает необходимое давление для предотвращения коллапса звезды под действием собственности силы тяжести.

Как показано в диаграмме Герцшпрунга-Рассела, главная последовательность звезд охватывает широкий спектр светимости и цвета звезд, которые могут быть классифицированы в соответствии с этими характеристиками. Самые маленькие звезды известны как красные карлики, имеют массу около 10% массы Солнца и излучают только 0.01 % энергии по сравнению с нашим светилом. Температура их поверхности не превышает 3000-4000 К. Несмотря на свои миниатюрные размеры, красные карлики являются на сегодняшний день самым многочисленным типом звезд во Вселенной и имеют возраст десятки миллиардов лет.

С другой стороны, наиболее массивные звезды, известные как гипергиганты, могут иметь массу в 100 или более раз, больше массы Солнца и температуру поверхности более 30 000 К. Гипергиганты выделяют в сотни тысяч раз больше энергии, чем Солнце, но имеют время жизни всего несколько миллионов лет. Столь экстремальные звезды, как полагают ученые были широко распространены в ранней Вселенной, сегодня же они встречаются крайне редко - во всем Млечном пути известно несколько гипергигантов.

Эволюция звезды

В общих чертах, чем больше звезда, тем короче ее продолжительность жизни, хотя все кроме сверхмассивных звезд живут миллиарды лет. Когда звезда полностью вырабатывает водород в своем ядре, ядерные реакции в ее недрах прекращаются. Лишенное энергии ядро, необходимое для своего поддержания, начинает разрушаться в себя и становиться намного горячее. Оставшийся водород за пределами ядра продолжает поддерживать ядерную реакцию за пределами ядра. Все более и более горячее ядро начинает выталкивать внешние слои звезды наружу, заставляя звезду расширяться и охлаждаться, превращая ее в красного гиганта.

Если звезда достаточно массивна, процесс коллапса ядра может довести его температуру до достаточного уровня чтобы поддерживать более экзотические ядерные реакции, которые потребляют гелий и производят различные тяжелые элементы, вплоть до железа. Тем не менее, такие реакции дают только временную отсрочку от глобальной катастрофы звезды. Постепенно, внутренние ядерные процессы звезды становятся все более нестабильными. Эти изменения вызывают пульсацию внутри звезды, которая в дальнейшем приведет к сбросу внешних оболочки, окружая себя облаком газа и пыли. Что происходит дальше зависит от размера ядра.

Дальнейшая судьба звезды в зависимости от массы ее ядра

Для средних звезд, подобных Солнцу, процесс освобождения ядра от внешних слоев продолжается до тех пор, пока весь окружающий е материал не будет выброшен. Оставшееся, сильно разогретое ядро называется белый карлик.

Белые карлики имеющие размер сравнимой с Землей, имеет массу полноценной звезды. До недавнего времени они оставались загадкой для астрономов - почему не происходит дальнейшее разрушение ядра. Квантовая механика разрешила эту загадку. Давление быстро движущихся электронов спасает звезду от коллапса. Чем массивнее ядро, тем более плотный карлик образуется. Таким образом, чем меньше размер белого карлика, тем более он массивен. Эти парадоксальные звезды довольно часто встречаются во Вселенной - наше Солнце через несколько миллиардов лет тоже превратиться в белого карлика. Ввиду отсутствия внутреннего источника энергии, белые карлики со временем остывают и исчезают в бескрайних просторах космического пространства.

Если белый карлик образовался в двойной или кратной звездной системе, окончание его жизни может быть более насыщенным известным как образование новой звезды. Когда астрономы данному событию дали такое название, они действительно думали что происходит образование новой звезды. Однако сегодня известно что на самом деле речь идет о очень старых звездах - белых карликах.

Если белый карлик находится достаточно близко к звезде компаньону, его гравитация может перетянуть на себя водород из внешних слоев атмосферы своего соседа и создать свой собственных поверхностный слой. Когда собирается достаточное количество водорода на поверхности белого карлика, происходит взрыв ядерного топлива. Это приводит к увеличению его яркости и сбрасывания оставшегося материала с поверхности. В течении нескольких дней, яркость звезды падает и цикл начинается снова.

Иногда, особенно у массивных белых карликов (масса которых больше 1,4 массы Солнца) может обрастать настолько большим количеством материала, что во время взрыва они разрушаются полностью. Этот процесс известен как рождение сверхновой звезды.

Звездам главной последовательности с массой около 8 и более масс Солнца суждено умереть в результате мощного взрыва. Этот процесс называют рождением сверхновой звездой.

Сверхновая звезда это не просто большая новая звезда. В новой звезде взрываются только поверхностные слои, в то время как в сверхновой происходит коллапс самого ядра звезды. В результате происходит высвобождение колоссального количества энергии. В период от нескольких дней до нескольких недель, сверхновая может затмить своим светом целую галактику.

Термины Новая и Сверхновая звезда не совсем точно определяют суть процесса. Как мы уже знаем, физически, образование новых звезд не происходит. Происходит разрушение уже существующих звезд. Объясняет подобное заблуждение несколько исторических случаев, когда на небе появлялись яркие звезды, которые до этого времени были практически или полностью невидны. Этот эффект и появления новой звезды и повлиял на терминологию.

Если в центре сверхновой звезды расположено ядро с массой от 1,4 до 3 масс Солнца, разрушение ядра будет продолжаться до тех пор пока электроны и протоны не объединятся и не создадут нейтроны, которые впоследствии образуют нейтронную звезду.

Нейтронный звезды являются невероятно плотными космическими объектами — их плотность сопоставима с плотностью атомного ядра. Так как большое количество массы упаковано в маленьком объеме, гравитация на поверхности нейтронной звезды просто запредельна

Нейтронные звезды имеют большие магнитные поля, которые могут ускорить атомные частицы вокруг ее магнитных полюсов производя мощные пучки радиации. Если такой пучок ориентирован в сторону Земли, то мы можем регистрировать регулярные импульсы в рентгеновском диапазоне от этой звезды. В таком случае она называется пульсаром.

Если ядро звезды более 3 солнечных масс, то в процессе его коллапса образуется черная дыра: бесконечно плотный объект, гравитация которого настолько сильна, что даже свет не может покинуть ее. Так как фотоны это единственный инструмент, благодаря которому мы может изучать вселенную, обнаружение черных дыр напрямую невозможно. О их существовании можно узнать только косвенно.

Одним из главных косвенных факторов указывающих на существовании в определенной области черной дыры является ее огромная гравитация. Если рядом с черной дырой расположен какой-либо материал — чаще всего это звезды-компаньоны — он будет захвачен черной дырой и притянут к ней. Притянутая материя будет двигаться в сторону черной дыры по спирали образуя вокруг нее диск, который нагревается до огромных температур, испуская обильное количество рентгеновских и гамма-лучей. Именно их обнаружение, косвенно указывает на существование рядом со звездой черной дыры.

Полезные статьи которые ответят на большинство интересных вопросов о звездах.

Объекты глубокого космоса

В задаче Звездное равновесие обсуждалось, что на диаграмме Герцшпрунга - Рассела (связывающей цвет и светимость звезд) большая часть звезд попадает в «полосу», которую принято называть главной последовательностью. Большую часть своей жизни звезды проводят именно там. Характерной особенностью звезд главной последовательности является то, что их основное энерговыделение обусловлено «горением» водорода в ядре, в отличие от звезд типа Т Тельца или, к примеру, гигантов, речь о которых пойдет в послесловии.

Также обсуждалось, что различные цвета («температура» поверхности) и светимости (энергия, излученная в единицу времени) соответствуют различным массам звезд главной последовательности. Диапазон масс начинается от десятых долей массы Солнца (у карликовых звезд) и простирается до сотен масс Солнца (у гигантов). Но за массивность приходится расплачиваться весьма короткой жизнью на главной последовательности: гиганты проводят на ней всего лишь миллионы лет (и даже меньше), тогда как карлики могут находиться на главной последовательности до десяти триллионов лет.

В этой задаче мы «из первых принципов», используя результаты предыдущих задач (Звездное равновесие и Блуждание фотона), поймем, почему главная последовательность - это именно почти прямая линия на диаграмме, и как связаны на ней светимость и масса звезд.

Пусть u - это энергия фотонов на единицу объема (плотность энергии). По определению, светимость L - это энергия, излученная с поверхности звезды за единицу времени. По порядку величины \(L\sim \frac{V u}{\tau} \), где V - объем звезды, τ - некое характерное время переноса этой энергии наружу (то самое время, за которое фотон покидает недра звезды). В качестве объема, опять же по порядку величины, можно взять R 3 , где R - радиус звезды. Время переноса энергии можно оценить как R 2 /lc , где l - длина свободного пробега, которую можно оценить как 1/ρκ (ρ - плотность вещества звезды, κ - коэффициент непрозрачности).

В равновесии плотность энергии фотонов выражается по закону Стефана - Больцмана : u = aT 4 , где a - некая константа, а T - характерная температура.

Таким образом, опустив все константы, получаем, что светимость L пропорциональна величине \(\frac{T^4 R}{\rho\kappa}. \)

Также имеем, что давление P должно быть сбалансировано гравитацией: \(P\sim \frac{M\rho}{r}.\)

Сжатие звезд при их формировании останавливается тогда, когда в самом центре начинается интенсивное горение водорода, которое производит достаточное давление. Это происходит при определенной температуре T , которая ни от чего не зависит. Поэтому по большому счету, характерная температура (фактически, это температура в центре звезды, не путать с температурой поверхности!) у звезд главной последовательности одинаковая.

Задача

1) У звезд средних масс (0,5 < M /M ☉ < 10) давление обусловлено давлением газа P = νRT ~ ρT , а непрозрачность (для фотонов) вызвана томсоновским рассеянием на свободных электронах, из-за чего коэффициент непрозрачности постоянен: κ = const . Найдите зависимость светимости таких звезд от их массы. Оцените светимость звезды, которая в 10 раз массивнее Солнца (относительно светимости Солнца).

2) У маломассивных звезд, давление все еще обусловлено давлением газа, а коэффициент непрозрачности определяется в основном другими рассеяниями и задается приближением Крамерса: κ ~ ρ/T 7/2 . Решите ту же задачу для маломассивных звезд, оценив светимость звезды, которая в 10 раз легче Солнца.

3) У массивных звезд с массой больше нескольких десятков масс Солнца коэффициент непрозрачности обусловлен только томсоновскими рассеяниями (κ = const ), тогда как давление обусловлено давлением фотонов, а не газа (P ~ T 4). Найдите зависимость светимости от массы для таких звезд, и оцените светимость звезды, которая в 100 раз массивнее Солнца (будьте осторожны, с Солнцем здесь сравнивать нельзя, нужно сделать промежуточный шаг).

Подсказка 1

Приняв, что M ~ ρR 3 , воспользуйтесь приближенными выражениями для светимости и давления, а также выражением для плотности и коэффициента непрозрачности, чтобы избавиться от ρ. Характерная температура T везде одинаковая, как уже отмечалось выше, поэтому ее можно также везде опустить.

Подсказка 2

В последнем пункте для звезд солнечных масс одна зависимость, а для тяжелых — другая, поэтому сразу сравнивать с Солнцем нельзя. Вместо этого вначале посчитайте светимость для какой-нибудь промежуточной массы (например, 10 масс Солнца) по формуле для звезд средних масс, затем, используя формулу для массивных звезд, найдите светимость звезды в 100 раз тяжелее Солнца.

Решение

Для звезд, у которых давление, противодействующее гравитации, обеспечивается давлением идеального газа P ~ ρT , можно написать P ~ M ρ/R ~ ρ (приняв T за константу). Таким образом, для таких звезд получим, что M ~ R , чем мы и воспользуемся ниже.

Заметьте, что это выражение говорит о том, что звезда, которая в 10 раз массивнее Солнца, имеет примерно в 10 раз больший радиус.

1) Приняв κ и T за константы, а также положив ρ ~ M /R 3 и воспользовавшись полученным выше соотношением, получим для звезд средних масс L ~ M 3 . Это означает, что звезда в 10 раз массивнее Солнце будет излучать энергии в 1000 раз больше за единицу времени (при радиусе превосходящем солнечный всего в 10 раз).

2) С другой стороны, для маломассивных звезд, приняв κ ~ ρ/T 7/2 (T - все так же константа), имеем L ~ M 5 . То есть звезда, которая в 10 раз менее массивна чем Солнце, имеет светимость в 100 000 раз меньше солнечной (опять же, при радиусе меньше всего в 10 раз).

3) Для самых массивных звезд соотношение M ~ R уже не работает. Так как давление обеспечено давлением фотонов, P ~ M ρ/r ~ T 4 ~ const . Таким образом, M ~ R 2 , и L ~ M . С Солнцем сразу сравнивать нельзя, так как для звезд солнечных масс действует другая зависимость. Но мы уже выяснили, что звезда в 10 раз массивнее Солнца имеет светимость в 1000 раз больше. С такой звездой сравнить можно, это дает, что звезда в 100 раз массивнее Солнца, излучает примерно в 10 000 раз больше энергии за единицу времени. Все это и обуславливает форму кривой главной последовательности на диаграмме Герцшпрунга - Рассела (рис. 1).

Послесловие

В качестве упражнения давайте также оценим наклон кривой главной последовательности на диаграмме Герцшпрунга-Рассела. Для простоты рассмотрим случай L ~ M 4 - средний вариант между двумя, рассмотренными в решении.

По определению, эффективная температура («температура» поверхности) это

\[ \sigma T_{\mathrm eff}^4=\frac{L}{4\pi R^2}, \]

где σ - некоторая постоянная. Учитывая, что M ~ R (как мы находили выше), имеем для звезд главной последовательности (в среднем) \(L\sim T_{\rm eff}^8 \). То есть температура поверхности звезды, которая в 10 раз массивнее Солнца (и светит в 1000 раз интенсивнее), будет 15 000 К, а у звезды с массой в 10 раз меньше солнечной (которая светит в 100 000 раз менее интенсивно) - примерно 1500 К.

Подведем итог. В недрах звезд главной последовательности происходит «нагрев» с помощью термоядерного горения водорода. Такое горение является источником энергии, которой хватает на триллионы лет самым легким звездам, на миллиарды лет звездам солнечных масс и на миллионы лет самым тяжелым.

Эта энергия трансформируется в кинетическую энергию газа и энергию фотонов, которые, взаимодействуя друг с другом, переносят эту энергию на поверхность, а также обеспечивают достаточное давление для противодействия гравитационному сжатию звезды. (Но у самых легких звезд (M < 0,5M ☉) и тяжелых (M > 3M ☉) перенос также происходит с помощью конвекции.)

На каждой из диаграмм на рис. 3 изображены звезды из одного скопления, потому что звезды из одного и того же скопления предположительно были образованы в одно и то же время. На средней диаграмме показаны звезды скопления Плеяды. Как видно, скопление все еще очень молодое (его возраст оценивают в 75–150 млн нет), и основная часть звезд находится на главной последовательности.

На левой диаграмме изображено еще только сформировавшееся скопление (возрастом до 5 млн лет), в котором большинство звезд еще даже не «родилось» (если рождением считать вступление на главную последовательность). Эти звезды очень яркие, так как основная часть их энергии обусловлена не термоядерными реакциями, а гравитационным сжатием. Фактически, они все еще сжимаются, двигаясь постепенно вниз по диаграмме Герцшпрунга - Рассела (как показано стрелкой), пока температура в центре не вырастет достаточно, чтобы запустить эффективные термоядерные реакции. Тогда звезда окажется на главной последовательности (черная линия на диаграмме) и будет находиться там какое-то время. Стоит также отметить, что самые тяжелые звезды (M > 6M ☉) рождаются уже на главной последовательности, то есть когда они формируются температура, в центре уже достаточно высокая, чтобы инициировать термоядерное горение водорода. Из-за этого тяжелых протозвезд (слева) на диаграмме мы не видим.

На правой диаграмме показано старое скопление (возрастом 12,7 млрд лет). Видно, что большая часть звезд уже покинуло главную последовательность, двигаясь «вверх» по диаграмме и становясь красными гигантами. Более подробно про это, а также горизонтальную ветвь мы поговорим в другой раз. Однако здесь стоит отметить, что самые тяжелые звезды покидают главную последовательность раньше всех (мы уже отмечали, что за большую светимость приходится платить короткой жизнью), тогда как самые легкие звезды (справа от главной последовательности) продолжают находиться на ней. Таким образом, если для скопления известна «точка перегиба» - то место, где обрывается главная последовательность и начинается ветвь гигантов, можно достаточно точно оценить, сколько лет назад звезды сформировались, то есть найти возраст скопления. Поэтому диаграмма Герцшпрунга-Рассела приносит и пользу для идентификации очень молодых и очень старых скоплений звезд.