Болезни Военный билет Призыв

Бионика определение. Что изучает бионика. Изучение инструментов используемых человеком

Ароматические углеводороды составляют важную часть циклического ряда органических соединений. Простейшим представителем таких углеводородов является бензол. Формула этого вещества не только выделила его из ряда остальных углеводородов, но и дала толчок в развитии нового направления органической химии.

Открытие ароматических углеводородов

Ароматические углеводороды были открыты в начале 19 века. В те времена наиболее распространенным топливом для уличного освещения являлся светильный газ. Из его конденсата великий английский физик Майкл Фарадей выделил в 1825 году три грамма маслянистого вещества, подробно описал его свойства и назвал так: карбюрированный водород. В 1834 году немецкий ученый, химик Митчерлих, нагревая бензойную кислоту с известью, получил бензол. Формула, по которой протекала данная реакция, представлена ниже:

C6 H5 COOH + CaO сплавление C6 H6 + CaCO3.

В то время редкую бензойную кислоту получали из смолы бензое, которую могут выделять некоторые тропические растения. В 1845 году новое соединение было обнаружено в каменноугольной смоле, которая являлась вполне доступным сырьем для получения нового вещества в промышленных масштабах. Другим источником бензола является нефть, полученная в некоторых месторождениях. Чтобы обеспечить потребность промышленных предприятий в бензоле, его получают также путем ароматизации некоторых групп ациклических углеводородов нефти.

Современный вариант названия предложил немецких ученый Либих. Корень слова «бензол» следует искать в арабских языках - там оно переводится как «ладан».

Физические свойства бензола

Бензол является бесцветной жидкостью со специфическим запахом. Это вещество кипит при температуре 80,1 о С, отвердевает при 5,5 о С и превращается при этом в белый кристаллический порошок. Бензол практически не проводит тепло и электричество, плохо растворяется в воде и хорошо - в различных маслах. Ароматические свойства бензола отражают суть структуры его внутреннего строения: относительно устойчивое бензольное ядро и неопределенный состав.

Химическая классификация бензола

Бензол и его гомологи - толуол и этилбензол - представляют собой ароматический ряд циклических углеводородов. Строение каждого из этих веществ содержит распространенную структуру, названную бензоловым кольцом. Структура каждого из вышеперечисленных веществ содержит особую циклическую группировку, созданную шестью атомами углерода. Она получила название бензольного ароматического ядра.

История открытия

Установление внутреннего строения бензола растянулось на несколько десятилетий. Основные принципы строения (кольцевая модель) были предложены в 1865 году химиком А. Кекуле. Как рассказывает легенда, немецкий ученый увидел формулу этого элемента во сне. Позднее было предложено упрощенное написание структуры вещества, называемого так: бензол. Формула этого вещества представляет собой шестиугольник. Символы углерода и водорода, которые должны быть расположены в углах шестиугольника, опускаются. Таким образом, получается простой правильный шестиугольник с чередующимися одинарными и двойными линиями на сторонах. Общая формула бензола представлена на рисунке ниже.

Ароматические углеводороды и бензол

Химическая формула этого элемента позволяет утверждать, что для бензола реакции присоединения нехарактерны. Для него, как и для других элементов ароматического ряда, типичны реакции замещения атомов водорода в бензольном кольце.

Реакция сульфирования

При обеспечения взаимодействия концентрированной серной кислоты и бензола, повышая температуру реакции, можно получить бензосульфокислоту и воду. Структурная формула бензола в этой реакции выглядит следующим образом:

Реакция галогенирования

Бром или хром в присутствии катализатора взаимодействует с бензолом. При этом получаются галогенопроизводные. А вот реакция нитрирования проходит с использованием концентрированной азотной кислоты. Конечным итогом реакции является азотистое соединение:

С помощью нитрирования получают известное всем взрывчатое вещество - тротил, или тринитотолуол. Мало кто знает, что в основе тола лежит бензол. Многие другие нитросоединения на основе бензольного кольца также могут быть использованы как взрывчатые вещества

Электронная формула бензола

Стандартная формула бензольного кольца не совсем точно отражает внутренне строение бензола. Согласно ей, бензол должен обладать тремя локализованными п-связями, каждая из которых должна взаимодействовать с двумя атомами углерода. Но, как показывает опыт, бензол не обладает обычными двойными связями. Молекулярная формула бензола позволяет увидеть, что все связи в бензольном кольце равноценны. Каждая из них имеет длину около 0,140 нм, что является промежуточным значением между длиной стандартной простой связи (0,154 нм) и двойной этиленовой связи (0,134 нм). Структурная формула бензола, изображенная с чередованием связей, несовершенна. Более правдоподобна трехмерная модель бензола, которая выглядит так, как показано на картинке ниже.

Каждый из атомов бензольного кольца находится в состоянии sp 2 -гибридизации. Он затрачивает на образование сигма-связей по три валентных электрона. Эти электроны охватывают два соседних атома углевода и один атом водорода. При этом и электроны, и связи С-С, Н-Н находятся в одной плоскости.

Четвертый валентный электрон образует облако в форме объемной восьмерки, расположенное перпендикулярно плоскости бензольного кольца. Каждое такое электронное облако перекрывается над плоскостью бензольного кольца и непосредственно под ней с облаками двух соседних атомов углерода.

Плотность облаков п-электронов этого вещества равномерно распределена между всеми углеродными связями. Таким путем образуется единое кольцевое электронное облако. В общей химии такая структура получила название ароматического электронного секстета.

Равноценность внутренних связей бензола

Именно равноценностью всех граней шестиугольника объясняется выравненность ароматических связей, обуславливающих характерные химические и физические свойства, которыми обладает бензол. Формула равномерного распределения п-электронного облака и равноценность всех его внутренних связей показана ниже.

Как видно, вместо чередующихся одинарных и двойных черт внутреннюю структуру изображают в виде окружности.

Сущность внутренней структуры бензола дает ключ к пониманию внутреннего строения циклических углеводородов и расширяет возможности практического применения этих веществ.

. Бензол играет чрезвычайно важную роль в разнообразных отраслях хим. промышленности. Впервые бензол был открыт в легких фракциях каменноугольного дегтя Фарадеем в 1825 г. Особенные свойства бензола и его производных нашли свое выражение в формуле строения, предложенной в 1865 г. Кекуле, в виде замкнутой цепи из шести углеродных атомов, при которых имеется по одному атому водорода. Однако такое строение не вполне согласуется со свойствами различных веществ, получающихся из бензола, и потому с течением времени различными исследователями в формулу строения бензола были внесены некоторые видоизменения, касающиеся гл. обр. распределения сил сродства внутри углеродного цикла. Главным источником добывания бензола служат продукты, получающиеся при переработке каменного угля на кокс и светильный газ. В последнее время были сделаны попытки получения бензола из нефти путем ее пирогенетического разложения, но они не привели еще к выработке достаточно рентабельных способов. Из газов коксовых печей, которые содержат главную массу бензола, он извлекается различными растворителями или адсорбируется твердыми телами. Обычно для растворения применяют фракцию каменноугольного дегтя, которая в пределах 200-300° дает не менее 80% дистиллята; иногда вместо каменноугольного масла применяют погоны нефти, известные под названием солярового масла. При хорошем масле можно извлечь из газа до 98% всего заключающегося в нем бензола.

Коксовый газ, пройдя через холодильники, смолоотделители и аммиачные промыватели, имея температуру не выше 20°, поступает в скруббера, где промывается поглотительным маслом, растворяющим бензол. Скруббера представляют собой высокие круглые башни, внутри которых делается насадка, способствующая более тесному перемешиванию газа с поглотительным маслом. Масло, насыщенное бензолом с содержанием последнего около 3%, поступает на регенерацию в колонные аппараты, где отгоняется так называемый сырой бензол, имеющий до 65% чистого бензола. Масло, освобожденное от бензола, охлаждается и идет снова на скруббера для промывания газа. Сырой бензол содержит большое число различных углеродистых соединений и неодинаков по составу. Колебания в составе в зависимости от характера производства видны из следующей таблицы:

Кроме указанных веществ, в состав сырого бензола входят также нафталин, кумол, тиотолен, фенол, крезолы, пиридин, кумароны. На заводах Донбасса содержание чистого бензола в сыром продукте в среднем составляет около 52%. Для получения чистого бензола сырой продукт подвергается очистке и ректификации. Первая ректификация дает 90%-ный бензол, который затем поступает на очистку и дальнейшую ректификацию для получения чистого бензола. Очистка заключается в последовательном промывании бензола раствором щелочи, кислоты и водой. Если бензол содержит основания и фенолы, то сначала его промывают разбавленной серной кислотой, чем достигается удаление оснований, а щелочь затем растворяет все кислые вещества. Сероуглерод, тиофен, ненасыщенные алифатические углеводороды удаляются обработкой крепкой серной кислотой 60-66° Вè, которая сульфирует и осмоляет все непредельные и сернистые соединения, переводя их в растворимые и легко вымываемые щелочью вещества. Очистка производится в особых аппаратах - мешалках, снабженных внутри приспособлениями для механического перемешивания жидкости, чтобы обеспечить возможно быструю и полную очистку. Бензол, освобожденный от примесей и сернистых соединений (для этой цели приходится прибегать к повторной обработке кислотой), поступает на окончательную ректификацию для получения чистого продукта. Совершенно чистый бензол - бесцветная, прозрачная, легко подвижная, очень горючая жидкость, которая затвердевает при 5,483° (по водородному термометру) и кипит при 80,08° (760 мм Hg). Удельный вес бензола D 25 = 0,87345, D 4 15,5 = 0,8845, он изменяется с температурой; по Коппу, v t =1+0,001171626t+0,00000127755t 2 +0,00000080648t 3 . Коэффициент лучепреломления n D 8,2 = 1,50808. Удельный объем при 20° - 0,67171. Удельная теплота чистого бензола, по Треену (Тгehin) при 16,2° - 0,402, 20,2° - 0,412, 30,0° - 0,419, 42,8° - 0,429, 50,4° - 0,437, 58,1°- 0,449; удельная теплота продажного бензола, очищенного вымораживанием, при 18,3° - 0,414, 22,7° - 0,418, 31,8° - 0,425, 40,3° - 0,439; 52,0° - 0,452.

Теплота горения при постоянном объеме 10,014 Cal. Бензол при 22° растворим в воде в количестве 0,082 объема на 100 объемов воды. Вода растворяется в бензоле в зависимости от температуры следующим образом (в %%):

Бензол является превосходным растворителем жиров, смол, каучука и других органических соединений.

Химические свойства . Бензол трудно реагирует с веществами, которые вступают во взаимодействие с этиленом и его производными. В присутствии катализаторов - никеля, палладия или платины - бензол присоединяет 6 атомов водорода и переходит в гексогидробензол или гексаметилен. Водородные атомы бензола могут быть заменены галоидами с образованием соответствующих галоидопроизводных. Крепкие серная и азотная кислоты при действии на бензол дают соответствующие сульфо-и нитропроизводные. Рыночные сорта бензола обычно не являются чистым бензолом, а содержат еще толуол и ксилол в различных количествах. По Крамеру и Шпилькеру, различают следующие сорта продажного бензола (в зависимости от %-ного содержания в нем веществ, отгоняющихся до 100°):

Области применения бензола весьма разнообразны. Большие количества бензола в настоящее время идут как примесь к моторному бензину, что значительно улучшает качество последнего. В Англии National Benzol Association предъявляет к моторному бензолу следующие требования: удельный вес 0,870-0,885; при перегонке бензол должен давать до 100° - 75%, 120° - 90%, 125° - 100%; содержание в нем серы не должно превышать 0,4%; бензол не должен содержать воды; степень очистки: при встряхивании 90 см 3 бензола с 10 см 3 90%-ной H 2 SО 4 в течение 5 минут кислота должна окраситься в цвет не темнее светло-коричневого; бензол не должен содержать кислот, щелочей и сероводорода; должен замерзать не ниже -14°.

Бензол применяют в качестве растворителя и для целей экстракции в различных производствах: для приготовления лаков и линолеума, для обезжиривания костей, для экстракции воска и канифоли , для химической чистки различных материалов. Бензол является одним из наиболее употребительных растворителей на резиновых фабриках. Он служит также исходным материалом для приготовления красителей, взрывчатых и душистых веществ, фармацевтических и фотографических препаратов. Огромные количества бензола перерабатываются на нитро- и динитробензол, из которых восстановлением получаются анилин , нитроанилин и фенилендиамин - важные продукты технологии органических веществ, служащие гл. образом исходным материалом при изготовлении целого ряда разнообразных анилиновых красителей. Сульфированием из бензола приготовляют моно- и дисульфокислоты, перерабатываемые далее на фенол и резорцин.

В довоенное время производство бензола в России было развито чрезвычайно слабо. С началом войны и, следовательно, с возрастанием потребности в бензоле, который шел на приготовление различных взрывчатых веществ, спешно пришлось организовать коксобензольные установки. Планомерное и успешное развитие бензольной промышленности началось с момента организации в СССР Акционерного общества «Коксобензол», и в настоящее время количество вырабатываемого ежегодно бензола значительно превышает наиболее производительные годы довоенного времени.

Профессиональные отравления бензолом . Бензол является одним из наиболее сильных профессиональных ядов. Отравление бензолом рабочих возможно: в коксобензольном производстве, при перегонке каменноугольной смолы; на химических и фармацевтических заводах при производстве различных веществ ароматического ряда; в процессах производства различных органических красок; в производстве взрывчатых веществ; при извлечении жиров из костей и кокосовых орехов; на клееваренных заводах, где бензол применяется в качестве растворителя смол, лаков, жиров, йода, фосфора и серы; в резиновом производстве; при изготовлении непромокаемых тканей, линолеума, целлулоида; при окраске различных предметов быстро высыхающими красками и лаками (в частности, аэропланных крыльев); при карбюрации светильного и водяного газа; в химических красильнях и при очистке от жиров тканей, одежды и т. п.; при обслуживании двигателей внутреннего сгорания, и т. д. В последнее время на Западе выпускается множество патентованных фабрикатов, содержащих бензол (лаки, краски, составы для очистки разных предметов) под самыми различными названиями и вызывающих серьезные отравления рабочих.

Бензол проникает в организм гл. образом через дыхательные пути и через легкие проникает в кровь. Вместе с тем бензолом может всасываться также и через неповрежденную кожу. Бензол значительно ядовитее бензина (по Леману и Кравкову, - в 4 раза, по Кону-Абресту, - в 10 раз). Содержание в воздухе 10 мг паров бензола на 1л (по объему 3-4 ч. на 1000 ч.) уже вызывает неприятные ощущения; присутствие в 1 л воздуха 20-30 мг бензола обычно вызывает потерю сознания на несколько часов. Иногда, однако, даже содержание в воздухе 0,001 бензола по объему вызывало смерть. Чтобы предупреждать и медленное действие на рабочих длительного вдыхания паров бензола, не следует допускать их содержания в рабочей атмосфере выше 1:10000, или, примерно, 0,25 мг/л (хотя, по данным специальной американской комиссии, опубликовавшей свой отчет в 1927 г., даже при этих условиях нельзя вовсе избежать воздействия бензола на организм).

Отравление бензолом может иметь острый и хронический характер. В последние годы в медицинской литературе был опубликован ряд смертельных случаев либо немедленно после однократного вдыхания значительного количества паров бензола, либо в результате остро протекающего заболевания после короткого периода работы в атмосфере со значительным количеством паров бензола в воздухе. Немедленная смерть наступает обычно при работе в недостаточно проветренных цистернах, баках и т. п. вместилищах, а также при разрывах сосудов или труб и при незамеченных неисправностях в аппаратуре. Серьезные заболевания, нередко кончающиеся смертью, обычно имеют место при недостаточной кубатуре помещения, отсутствии вентиляции и особенно при высокой температуре помещения. Острые отравления, не кончающиеся немедленной смертью, при вдыхании больших доз вызывают тяжелые изменения со стороны центральной нервной системы: дрожание, судороги, сильное побледнение, расстройства чувствительности, обмороки, а также нередко и злокачественное малокровие (поражающее особенно женщин). Более легкие случаи вызывают головокружение, головную боль, шум в ушах, рвоту. Большей частью скоро наступает состояние как бы опьянения и общей эйфории, в результате чего отравленный теряет правильное восприятие происходящего, не замечает опасности, не уходит с места выделения паров и, при отсутствии помощи со стороны, может стать жертвой дальнейшего отравления. При хроническом отравлении, тянущемся месяцами и даже годами, помимо нервной системы, поражаются в первую очередь органы кровообращения и кроветворения, в результате чего, помимо сильного малокровия, появляются многочисленные мелкие кровоизлияния, как в слизистых оболочках различных внутренних органов, так и в коже. В результате - так наз. «пятнистая болезнь» и напоминающие цингу изменения слизистой оболочки во рту. У женщин появляются обычно сильные маточные кровотечения. Выздоровление наступает редко и даже в благоприятных случаях весьма затягивается. Столь тяжелое действие бензола объясняется тем, что он является сильным ядом, действующим на протоплазму всех клеток организма и на основные окислительные процессы. Мероприятия по предупреждению отравления бензолом в основном те же, как и при отравлении бензином . Необходимо добавить, что всюду, где возможно, следует заменять бензол гораздо менее ядовитыми ксилолом, толуолом, тетрахлоруглеродом или бензином и на работы с бензолом не следует допускать женщин.


БЕНЗОЛ

Бензо́л (C6H6) - органическое химическое соединение, бесцветная жидкость с приятным сладковатым запахом. Ароматический углеводород. Бензол входит в состав бензина, широко применяется в промышленности, является исходным сырьём для производства лекарств, различных пластмасс, синтетической резины, красителей. Хотя бензол входит в состав сырой нефти, в промышленных масштабах он синтезируется из других её компонентов.

Биологическое действие

При непродолжительном вдыхании паров бензола не возникает немедленного отравления, поэтому до недавнего времени порядок работ с бензолом особо не регламентировался. В больших дозах бензол вызывает тошноту и головокружение, а в некоторых тяжёлых случаях отравление может повлечь смертельный исход. Пары бензола могут проникать через неповрежденную кожу. Если организм человека подвергается длительному воздействию бензола в малых количествах, последствия также могут быть очень серьёзными. В этом случае хроническое отравление бензолом может стать причиной лейкемии (рака крови) и анемии (недостатка гемоглобина в крови). Токсичен, cильный канцероген.


Применение

Бензол входит в десятку важнейших веществ химической промышленности.

Большую часть получаемого бензола используют для синтеза других продуктов:
  • около 50 % бензола превращают в этилбензол (алкилирование бензола этиленом);

  • около 25 % бензола превращают в кумол (алкилирование бензола пропиленом);

  • приблизительно 10-15 % бензола гидрируют в циклогексан;

  • около 10 % бензола расходуется на производство нитробензола;

  • 2-3 % бензола превращают в линейные алкилбензолы;

  • приблизительно 1 % бензола используется для синтеза хлорбензола.

В существенно меньших количествах бензол используется для синтеза некоторых других соединений. Изредка и в крайних случаях, ввиду высокой токсичности, бензол используется в качестве растворителя. Кроме того, бензол входит в состав бензина. Ввиду высокой токсичности его содержание новыми стандартами ограничено введением до 1 %.

Производные бензола


Этилбензол


Этилбензол - органическое вещество класса углеводородов.

Свойства

Бесцветная жидкость; почти нерастворим в воде, растворяется в спирте, бензоле, эфире, четыреххлористом углероде.

Получение

Этилбензол содержится в нефти и каменноугольной смоле. В промышленности получают главным образом из бензола и этилена (по реакции Фриделя - Крафтса). Второй по значимости метод - выделение из С8-фракции продуктов риформинга.

Применение

При пропускании паров этилбензола над катализаторами образуется стирол, являющийся сырьём при производстве важных промышленных продуктов - некоторых видов пластмасс (см. Полистирол) и синтетических каучуков. Этилбензол используют также в органическом синтезе, например для получения ацетофенона жидкофазным каталитическим окислением, как растворитель и компонент высокооктановых бензинов.


Стирол C8H8 (фенилэтилен, винилбензол) - бесцветная жидкость со специфическим запахом. Практически нерастворима в воде, хорошо растворима в органических растворителях, хороший растворитель полимеров.

Получение

Большую часть стирола (около 85 %) в промышленности получают дегидрированием этилбензола при температуре 600-650°С, атмосферном давлении и разбавлении перегретым водяным паром в 3 - 10 раз. Используются оксидные железо-хромовые катализаторы с добавкой карбоната калия.

Стирол применяют почти исключительно для производства полимеров. Многочисленные виды полимеров на основе стирола включают полистирол, модифицированные стиролом полиэфиры, пластики АБС (акрилонитрил-бутадиен-стирол) и САН (стирол-акрилонитрил).


Полистирол

Полистирол

Полистирол - продукт полимеризации стирола (винилбензола) относится к полимерам класса термопластов.

Имеет химическую формулу вида: [-СН2-С(С6Н5)Н-]n-

Промышленное производство полистирола основано на радикальной полимеризации стирола. Различают 3 основных способа его получения:
  • Эмульсионный (ПСЭ),

  • Суспензионный (ПСС),

  • Блочный или получаемый в массе (ПСМ).



Применение

Применение

Широкое применение полистирола (ПС) и пластиков на его основе базируется на его невысокой стоимости, простоте переработки и огромном ассортименте различных марок. Наиболее широкое применение (более 60% производства полистирольных пластиков) получили ударопрочные полистиролы, представляющие собой сополимеры стирола с бутадиеновым и бутадиен-стирольным каучуком. В настоящее время созданы и другие многочисленные модификации сополимеров стирола.

Основные методы переработки: экструзия, литьё под давлением. Диапазон температур переработки лежит в пределах 190-240 °С. Из полистиролов производят широчайшую гамму изделий, которые в первую очередь применяются в бытовой сфере деятельности человека (одноразовая посуда, упаковка, детские игрушки и т. д.), а также строительной индустрии (теплоизоляционные плиты, несъемная опалубка, сандвич панели), облицовочные и декоративные материалы (потолочный багет, потолочная декоративная плитка, полистирольные звукопоглощающие элементы, клеевые основы, полимерные концентраты), медицинское направление (части систем переливания крови, чашки Петри, вспомогательные одноразовые инструменты).

Вспенивающийся полистирол после высокотемпературной температурной обработки водой или паром может использоваться в качестве фильтрующего материала (фильтрующей насадки) в колонных фильтрах при водоподготовке и очистке сточных вод.

Высокие электротехнические показатели полистирола в области сверхвысоких частот позволяют применять его в производстве: диэлектрических антенн, опор коаксиальных кабелей. Могут быть получены тонкие пленки (до 100 мкм), а в смеси с со-полимерами (стирол-бутадиен-стирол) до 20 мкм, которые также успешно применяются в упаковочной и кондитерской индустрии, а также производстве конденсаторов.

Ударопрочный полистирол и его модификации получили широкое применение в сфере бытовой техники и электроники (корпусные элементы бытовых приборов).


Кумо́л - изопропилбензол C6H5CH(CH3)2, ароматическое органическое соединение, бесцветная горючая жидкость.

Физико-химические свойства

Бесцветная горючая жидкость, практически нерастворимая в воде (менее 0,01 %), смешивается со спиртом, эфиром, бензолом.

Способ получения

Жидкофазное (катализатор: хлорид алюминия(III)) или парофазное (катализатор: цеолиты, фосфорная кислота на кизельгуре) алкилирование бензола пропиленом.

Применение

Кумол является промежуточным продуктом при получении фенола и ацетона одним из промышленных способов.

Побочными продуктами разложения являются α-метилстирол, ацетофенон, диметилфенилкарбинол.





Ацето́н (диметилкето́н, систематическое наименование: пропано́н-2) - простейший представитель кетонов. Формула: CH3-C(O)-CH3. Бесцветная легкоподвижная летучая жидкость с характерным запахом. Он полностью смешивается с водой и большинством органических растворителей. Ацетон хорошо растворяет многие органические вещества (ацетилцеллюлозу и нитроцеллюлозу, жиры, воск, резину и др.), а также ряд солей (хлорид кальция, иодид калия). Является одним из метаболитов, производимых человеческим организмом.

Применение

Сырьё для синтеза многих важных химических продуктов: уксусного ангидрида, кетена, диацетонового спирта, окиси мезитила, метилизобутилкетона, метилметакрилата, дифенилпропана, изофорона, бифенола А и др.;

(CH3)2CO + 2 C6H5OH → (CH3)2C(C6H4OH)2 + H2O

Широко применяется при синтезе поликарбонатов, полиуретанов и эпоксидных смол.

Лабораторное применение

В органической химии в качестве полярного апротонного растворителя, в частности в реакции алкилирования

ArOH + RHal + K2CO3 → ArOR + KHal + KHCO3

для окисления спиртов в присутствии алкоголятов алюминия по Оппенауэру

RR`CHOH + CH3C(O)CH3 → RR`C=O + CH3CH(OH)CH3

Для приготовления охлаждающих бань в смеси с «сухим льдом» и жидким азотом до температуры−78 C.

Для мытья химической посуды, благодаря низкой цене, малой токсичности высокой летучести и легкой растворимости в воде.

Для быстрой сушки посуды и неорганических веществ


Фено́л (оксибензол, устар. карболовая кислота) C6H5OH - бесцветные игольчатые кристаллы, розовеющие на воздухе из-за окисления, приводящего к образованию окрашенных веществ. Обладают специфическим запахом гуаши. Растворим в воде (6 г на 100 г воды), в растворах щелоче́й, в спирте, в бензоле, в ацетоне. 5 % раствор в воде-антисептик, широко применяемый в медицине.

По данным на 2009 год мировое потребление фенола имеет следующую структуру:

    44 % фенола расходуется на производство бисфенола А, который, в свою очередь, используется для производства поликарбона и эпоксидных смол;

  • 30 % фенола расходуется на производство фенолформальдегидных смол;

  • 12 % фенола гидрированием превращается в циклогексанол, используемый для получения искусственных волокон - нейлона и капрона;

  • остальные 14 % расходуются на другие нужды, в том числе на производство антиоксидантов (ионол), неионогенных ПАВ - полиоксиэтилированных алкилфенолов (неонолы), других фенолов (крезолов), лекарственных препаратов (аспирин), антисептиков (ксероформа) и пестицидов.

  • 1,4% фенола применяется в медицине(орасепт), как обезболивающее и антисептическое средство.

Фенол и его производные обуславливают консервирующие свойства коптильного дыма.

Нитробензол

Нитробензол - токсичное органическое вещество, имеющее миндальный запах. Формула C6H5NO2. Внешний вид - ярко-желтые кристаллы или маслянистая жидкость, не растворимая в воде.

Применение

Применяется, как растворитель и мягкий окислитель. В основном используется, как полупродукт для производства анилина.

Исходное сырьё в производстве анилина, ароматических азотсодержащих соединений (бензидин, хинолин, азобензол), растворитель эфиров целлюлозы, компонент полировальных составов для металлов.


Анили́н (фениламин) - органическое соединение с формулой С6H5NH2, простейший ароматический амин. Представляет собой бесцветную маслянистую жидкость с характерным запахом, немного тяжелее воды и плохо в ней растворим, хорошо растворяется в органических растворителях. На воздухе быстро окисляется и приобретает красно-бурую окраску. Ядовит.

В настоящий момент в мире основная часть (85 %) производимого анилина используется для производства метилдиизоцианатов, (MDI) используемых затем для производства полиуретанов. Анилин также используется при производстве искусственных каучуков (9 %), гербицидов (2 %) и красителей (2 %).

В России он в основном применяется в качестве полупродукта в производстве красителей, взрывчатых веществ и лекарственных средств (сульфаниламидные препараты), но в связи с ожидаемым ростом производства полиуретанов возможно значительное изменение картины потребителей в среднесрочной перспективе.


Лекарственные препараты

Сульфаниловая кислота HO3S-C6H4- NH2- твердое вещество, выпадающее при кристаллизации из горячей воды в виде блестящих чешуек. Важнейшее производное сульфаниловой кислоты – её амид Н2N- C6H4-SO2- NH2. Это бесцветное кристаллическое вещество, малорастворимое в холодной воде и хорошо - в горячей, является основой важного класса лекарственных веществ – сульфамидных препаратов. Их лекарственное действие открыто в начале 30-х годов. С тех пор синтезировано более шести тысяч соединений этой группы. Сульфамидные препараты широко применяют при лечении различных инфекционных заболеваний. Например, норсульфазол, сульфадимезин, этазол, стрептоцид применяют для лечения заболеваний дыхательных путей, фталазол – при лечении желудочно-кишечных инфекций.


Хлорбензол

Хлорбензол (фенилхлорид) - ароматическое органическое соединение, имеющее формулу C6H5Cl, бесцветная горючая жидкость с характерным запахом.

Получение

Хлорбензол был открыт в 1851 году как продукт реакции фенола с хлоридом фосфора(V) и так он обычно получается в лаборатории. В промышленности хлорбензол получают хлорированием бензола при 80-85 °C в реакторах колонного типа, заполненых железными кольцами:

Выделяют его ректификацией после промывки, нейтрализации и азеотропной сушки реакционной массы.

Применение

Хлорбензол является важным органическим растворителем, кроме того он применяется в органическом синтезе, например он применяется в синтезе пестицидов (например ДДТ может быть получен реакцией его с хлоралем (трихлорацетальдегидом)). Также применяется в производстве фенола:

C6H5Cl + NaOH → C6H5OH + NaCl

Хлорбензол также является полупродуктом в производстве дихлорбензолов и некоторых красителей.


Инсектициды




    Инсектици́ды (от лат. insectum - насекомое и лат. caedo - убиваю) - химические препараты для уничтожения вредных насекомых. Инсектициды различны по химическому составу: хлорорганические (ДДТ, гексахлоран и др.), фосфорорганические (тиофос, карбофос, метилмеркаптофос, дихлофос, диазинон и др.), производные карбаминовой кислоты (метилкарбамат), природные пиретрины и синтетические пиретроиды, препараты, содержащие мышьяк (арсениты кальция и натрия, арсенат кальция), препараты серы, минеральные масла, яды растительного происхождения, содержащие алкалоиды (анабазин, никотин и др.)


Материал из ЭНЭ

Бензол

или бензин (старинное, ныне оставленное название) - углеводород состава С 6 Н 6 , представитель ароматических , или бензольных , соединений (см. это сл.). Вещество это представляет бесцветную, прозрачную, сильно преломляющую свет и легкоподвижную жидкость с характерным «ароматическим» запахом, уд. веса 0,899 (при 0° Ц.) и 0,885 (при 15°), кипит при 80°,5 и застывает на холоде в кристаллическую массу, плавящуюся при +6°; легко растворим в эфире, спирте, хлороформе и других обыденных растворителях, за исключением воды; бензол представляет прекрасное растворяющее средство для жиров, смол, масел, асфальта, алкалоидов, серы, фосфора, иода; на воздухе горит светлым, сильно коптящим пламенем и дает весьма легко воспламеняющиеся пары. Бензол был открыт в г. Фарадеем при исследовании газообразных продуктов сухой перегонки жирных масел; Митчерлих получил его при перегонке бензойной кислоты с известью и назвал бензином , а Либих переименовал вещество это в бензол. Синтетически углеводород был получен Бертело в г. нагреванием ацетилена в трубке над ртутью при температуре размягчения стекла. Присутствие бензола в каменноугольном дегте доказано А. В. Гофманом в г., а ученик Гофмана, Мансфильд, в г. изолировал его из дегтя в значительных количествах и выработал необходимые для этого практические методы. Выходы бензола зависят не только от состава каменноугольного дегтя, но и от способов обработки его, перегонки и хранения. Из 100 килогр. лондонского дегтя получается 1,1 % бензола (50-процентного), а на рейнских заводах добывают до 1 % очищенного вещества, идущего на приготовление анилина. У нас очень хороший бензол готовится на заводах товарищества "В. И. Рогозин и К ° " из газовой смолы, образующейся при добывании газа для освещения и отопления (исследование П. Голубева). В торговле имеются три сорта бензола: 30-, 50 - и 90-процентный; при этом необходимо иметь в виду, что бензолом здесь считается все то, что гонится ниже 100°, и что количество его выражается в объемных процентах: из 50-процентного бензола получается половинный объем жидкости, кипящей до 100°. Таким образом, продажный бензол не представляет химически чистого соединения, а содержит в виде примеси главным образом толуол и ксилол , затем углеводороды жирного ряда, сероуглерод , тиофен и др. вещества. Большинство этих примесей удаляется фракционированной перегонкой в особо устроенных сложных аппаратах, обработкой едкой щелочью и концентрированной серной кислотой, кристаллизацией на холоду и отжиманием затвердевшего продукта. Обработанный таким образом бензол представляет уже почти чистый углеводород и идет на приготовление чистого анилина; но в нем все-таки еще есть примесь более легких углеводородов (которые остаются неизмененными при нитровании) и тиофен. Этот последний легко открывается при помощи очень чувствительной реакции с раствором изатина в серной кислоте; бензол, содержащий даже следы тиофена, окрашивается упомянутым реактивом в интенсивный голубой цвет. Эта реакция (открытая Байером) и навела Виктора Мейера на мысль искать примесь особого соединения в очищенном бензоле, считавшемся прежде за химически чистое вещество. Тщательным взбалтыванием с крепкой серной кислотою (1/20 по объему) В. Мейеру в г. удалось извлечь новое соединение: обработав 2000 килогр. бензола, он получил 1944 гр. чистого тиофена, C 4 H 4 S. Этот последний кипит при 84°, а потому, понятно, и не может быть выделен из Б. самой тщательной фракционировкой.

Относительно химических свойств бензола необходимо заметить, что он сильно сопротивляется действию как окислителей, так и восстановляющих веществ. Галоиды в зависимости от условий или прямо присоединяются, или же дают продукты субституции . При действии хлора на кипящий бензол получается смесь нескольких продуктов присоединения, между которыми наиболее хорошо изучен шестихлористый бензол C 6 Cl 6 , кристаллическое вещество, плавящееся при 157° и распадающееся при температуре кипения (288°) на соляную кислоту и трихлорбензол C 6 H 3 Cl 3 . С бромом на солнечном свете образуется аналогичный продукт, шестибромистый бензол, - С 6 Br 6 . Хлорноватистая кислота присоединяется в количестве трех частиц и дает кристаллическое вещество состава С 6 Н 3 (СlОН) 3 . При пропускании сухого хлористоводородного газа в бензольный раствор хлористого алюминия образуется непрочное жидкое соединение галоидного металла с бензолом состава 6С 6 Н 6 ·Al 2 Cl 6 . Бромистый алюминий в подобных же условиях дает 6С 6 Н 6 ·Al 2 Br 6 . Образованием такого рода соединений обусловливается наступление многих синтетических реакций, идущих в присутствии галоидных солей алюминия (Г. Г. Густавсон). При нагревании до 280° с крепкой иодистоводородной кислотой к бензолу присоединяются шесть атомов водорода, причем получается углеводород гексагидробензол C 6 H 12 (Вреден Кижнер). Продукты замещения водорода в бензоле образуются также при действии галоидов, напр., хлора, всего лучше в присутствии некоторых веществ, играющих роль передатчиков хлора, каковы, напр., иод и пятихлористая сурьма . В реакцию вступают, по всей вероятности, высшие хлористые соединения названных элементов, которые затем, отдав свой хлор , переходят в низшие соединения, потом вновь присоединяют галоид, передают его бензолу, и таким путем этот сложный процесс длится все время до самого конца:

С 6 H 6 + JCl 3 = C 6 H 5 Cl + HCl + JCl.

При такого рода реакциях образуются, конечно, продукты различной степени замещения, дву-, трех-, четырех-, пяти-, шестизамещенные бензолы, которые все известны. Из них гексахлорбензол , или перхлорбензол, C 6 Cl 6 (не представляющий изомерных форм) получается при полном хлорировании бензола в присутствии пятихлористой сурьмы . Иодбензол образуется при нагревании бензола с иодом в присутствии иодноватой кислоты или серной (Истрати). Относительно действия азотной кислоты было упомянуто выше. Серная кислота в зависимости от концентрации, количества и температуры дает сульфобензид , моно- и дисульфокислоты. При нагревании бензола с металлическим калием до 250° часть водорода замещается металлом, при чем образуется С 6 Н 5 К и С 6 Н 4 К 2 . Соединение воспламеняется на воздухе со взрывом.

Литература общая - см. Бензольные соединения , а также Roscoe u. Schorlemmer , «Ausfürliches Lehrbuch der Chemie» (IV т., ); специальная и технич.; Gustav Schultz , «Die Chemie des Steinkohlentheers» (2-е изд.); «Muspratt’s Theoretische, prakt. und analytische Chemie v. Stohmann und Bruno Kerl» (4-е издание).

Бензол фальсифицируется чаще всего петрольным эфиром (бензином); примесь эту легко узнать или при помощи перегонки, так как точка кипения бензина ниже точки кипения бензола, или при помощи азотной кисл. Берут 2 части концентрированной серной кислоты и смешивают ее с 1 частью крепкой азотной кислоты; удельн. вес. 1,84; к такой смеси, предварительно сильно охлажденной, прибавляют одну часть испытуемого бензола, маленькими порциями. Когда весь бензол влит, то осторожно нагревают всю смесь до 60°, погрузив сосуд, в котором ведут испытание, в горячую воду (при 70-80°). После этого смеси дают остынуть и выливают ее в ледяную воду. Если был чистый бензол, то от такой обработки он весь превращается в тяжелое жидковатое масло, нитробензол, которое упадет на дно сосуда, и над ледяной водой никакого слоя не будет; если же к бензолу был примешан петрольный эфир , то он останется без изменения и как более легкий, чем вода, поднимется наверх и над ледяной водой получится слой жидкости.

В статье воспроизведен материал из Большого энциклопедического словаря Брокгауза и Ефрона .

Бензол , С 6 Н 6 , углеводород, родоначальник ряда ароматических соединений . Бензол - бесцветная, легко подвижная жидкость с характерным запахом, кипит при "80°, застывает на холоде в кристаллическую массу, плавящуюся при +5,4°. Легко растворим во многих

Бензол (также бензол) — первый представитель гомологического ряда ароматических углеводородов, молекулярная формула C 6 H 6. Бесцветная летучая жидкость с характерным запахом. Впервые получен Майклом Фарадеем из конденсата пиролиза китового жира в 1825 году.

Промышленно бензол добывали из фракций каменноугольной смолы, но с середины 20-го века практически весь промышленный объем бензола производится дегидрогенизации нефтяного сырья. Бензол имеет ценные свойства как растворитель, но из-за его высокой токсичности и канцерогенности такое использование пока очень ограничено. Это соединение является сырьем для промышленного органического синтеза, более двух третей бензола идет на производство циклогексана, кумола и етилбензену.

История исследования

Бензол — первый из открытых человеком аренов. В чистом виде он был выделен Майклом Фарадеем путем дистилляции кристаллизации из светящегося газа, является продуктом высокотемпературного разложения китового жира, и использовался в уличных фонарях. Тогда же была установлена ​​относительная плотность его паров и количественное соотношение между атомами элементов, входящих в его состав, на основе этих данных Фарадей подсчитал эмпирическую формулу — C 2 H 2. Ошибка в формуле была сделана из-за того, что в то время считалось, что атомная масса углерода составляет 6 а.о.м.. 1834 Митчерлих выделил бенезен путем сухой дистилляции бензойной кислоты с известью, он установил правильную эмпирическую формулу (C 6 H 6) и назвал это соединение «бензином» от бензойной кислоты Однако Либих предложил использовать название бензол, окончание которой взято из слова нем. Öl — масло. Современное название «бензол» рекомендуется к использованию IUPAC в связи с тем, что суффикс -ол соответствует спиртам. 1860 Кекуле назвал бензол и другие соединения с подобными свойствами ароматическими, потому, что большинство из них имели приятный запах.

На установке правильной эмпирической формулы бензола написания структурных формул органических соединений еще не было принятым в химии. Однако даже после того, как для многих алифатических углеводородов были предложены структурные формулы, для бензола это было сделать сложнее: формула C 6 H 6 свидетельствовала о принадлежности этого соединения до непредельных углеводородов, однако бензол в отличие от алкенов и алкинов лучше вступает в реакции замещения чем присоединение. В 1865 году Кекуле предложил для бензола структурную формулу в виде шестичленного цикла с тремя двойными связями, чередующиеся с одинарными. Широко известны утверждение о том, что идея циклической структуры бензола пришла к Кекуле, когда ему приснился змей, кусающая себя за хвост. В более поздних описаниях сна упоминается о шести обезьян, которые держат друг друга за задние лапы. На самом деле циклическую структуру бенезну впервые опубликовал в своей книге австрийский химик Йозеф Лошмидт 1861 и Кекуле видел это издание.

Формулы Кекуле не могли объяснить некоторые особенности бензола, например того, что не было двух разных изомеров 1,2-диметилбензену. 1872 ученый опубликовал статью, в которой отмечал, что хотя для бензола можно предположить существование двух различных валентных изомеров, реальная соединение является средним между этими двумя вследствие осцилляции (перехода) двойных связей. Однако даже такое дополнение не могло объяснить отличие бензола от известных ненасыщенных углеводородов, поэтому другие ученые продолжали предлагать альтернативные варианты структуры этого вещества. Среди них можно отметить формулы Дьюара 1867 и призматическую структуру Ладенбурга (1869). Сейчас известно, что такие соединения действительно можно синтезировать, они валентными изомерами бензола.

Из объяснений свойств бензола предложенных к открытию природы ковалентной связи, в ближайшее к современному является теория «парциальных валентностей» (от лат. Partialis — частичный) предложена Тиле в 1899 году. Согласно ей атомы углерода в ненасыщенных соединениях имеют частичные свободные валентности, которые в молекуле бензола «замыкаются» между собой, в результате чего разница между одинарными и двойными связями исчезает. Создание теории ковалентной связи позволило лучше понять структуру бенезену, в 1926 году Ингольд предположил, что в молекуле этого соединения электроны π-связей смещены к простым σ-связей, вследствие чего они не существуют в изолированном состоянии, а выравниваются между одинарными. Позже Лайнус Полинг исходя из квантово-механических представлений, предложил считать, что в молекуле бензола отсутствуют отдельные π-связи, а все их электроны объединены в сплошную π-облако.

В научной литературе для обозначения бензола используют как формулу Полинга, так и формулы Кекуле, хотя последние и не отражают структуру этой молекулы корректно.

Физические свойства

Бензол — бесцветная жидкость со своеобразным запахом. Плотность — 0.88 г / см³. При температуре 80.1 ° C кипит, а за 5.5 ° C замерзает в белую кристаллическую массу.

Бензол благодаря своей симметричности является неполярной веществом, поэтому не растворяется в воде, однако образует с ней азеотропную смесь (91.17 масс%) с температурой кипения 69.25 ° C. С большинством неполярных растворителей смешивается в любых отношениях, сам является хорошим растворителем для многих органических веществ.

В ультрафиолетовой области спектра поглощения проявляется рядом полос тонкой структуры с расстоянием между ними 5-6 нм (наиболее интенсивно оно наблюдается в диапазоне 170-120 нм и меньше в диапазоне — 270-240 нм).

Строение

Молекулярная формула — C 6 H 6. Рентгенографическими методами установлено, что молекула бензола имеет форму плоского шестиугольника с атомами углерода в вершинах. Все C-C связи имеют одинаковую длину, что составляет 0.140 нм. Это больше чем у двойного (0.134 нм) связи и меньше чем в одинарного (0.154 нм) связи. Бензол является неполярной соединением с нулевым дипольным моментом (μ).

Все атомы углерода в молекуле бензола находятся в состоянии sp 2 гибридизация. Tри гибридные орбитали расположены под углом 120 °, образуя C-C и C-H σ-связи. Hегибридни p-орбитали расположены перпендикулярно к плоскости молекулы, образуя сплошное электронное кольцо. С точки зрения теории валентных связей это кольцо можно рассматривать как суперпозицию двух резонансных структур воображаемого 1,3,5-циклогексатриену с изолированными двойными C = C связями. С точки зрения теории молекулярных орбиталей его можно рассматривать как результат делокализации вдоль шести атомов углерода трех π-орбиталей двойных C = C связей. Следствием делокализации является меньшая свободная энергия (большая стабильность) бензола по сравнению с 1,3,5-циклогексатриеном. Эта разница в энергии называется энергией сопряжения, делокализации или резонанса. Ее можно вычислить опираясь на теплоты гидрирования циклогексен и бензола:

  • теплота гидрирования циклогексену составляет 120 кДж / моль;
  • тогда ожидаемая теплота гидрирования 1,3,5-циклогексатриену должен составлять около 3 × 120 кДж / моль = 360 кДж / моль;
  • на самом деле теплота гидрирования бензола составляет 208 кДж / моль;
  • тогда энергия сопряжения составляет 360 кДж / моль — 208 кДж / моль = 152 кДж / моль.

Образование сплошной π-облака, содержащего шесть электронов, придает молекуле бензола так называемого ароматического характера. Карбоновый скелет молекулы бензола с таким характером связи называют бензольного кольцом, или бензольного ядра.

Химические свойства

Вследствие значительной устойчивости π-облака для бензола, в отличие от неароматических непредельных углеводородов, характерные реакции замещения, а не присоединения, поскольку они должны приводить к потере ароматичности, однако реакции присоединения также могут происходить за достаточно жестких условий. Замещение происходит электрофильным механизмом. Также бензол вступает в реакции окисления.

Реакции электрофильного замещения

Бензол вступает в реакции электрофильного замещения, происходящих по такому механизму: на первой стадии происходит образование π-комплекса между электрофилом (в форме катиона или сильно поляризованной молекулы E σ + -Nu σ-) и молекулой бензола, в результате перекрывания НСМО Электрофиль с ВЗМО (π-облаком) бензола. После этого пара p-электронов выходит из сопряженного бензольного кольца и участвует в образовании σ-связи с электрофилом, таким образом π-комплекс превращается в σ-комплекс или интермедиат Уэлланда. Эта промежуточное соединение имеет положительный заряд и лишена ароматического характера, из-за чего менее устойчивой по сравнению с ароматическим кольцом, в которое обычно быстро превращается в результате отщепления протона (этот этап происходит через еще один промежуточный π-комплекс).

Алкилирование и ацилирование по Фриделем-Крафтса

Алкилирование бензола осуществляется алкилгалогенидами, алкенами и спиртами, ацилирование — карбоновыми кислотами, галогенангидриды и ангидридами, оба типа реакций катализируемых кислотами Льюиса. Эти реакции назван в честь их первооткрывателей Шарля Фриделя и Джеймса Крафтса.

Роль катализатора в этом типе реакций заключается в том, что он взаимодействует с алкилирующие или ацилюючим реагентом и обеспечивает образование карбкатион или поляризованного комплекса. Например, при взаимодействии Хлорметан и алюминий хлорида образуется комплекс с усиленной електрофильнистю атома углерода:

Примером реакции алкилирование может быть этилирования бензола хлорэтан.

Однако в промышленности етилбензен чаще получают реакцией с этиленом, которая также проходит в присутствии оксида алюминия, фосфорной или серной кислоты:

Продуктами реакций ацилирования бензола являются ароматические кетоны. Примером может быть реакция с ацетилхлоридом, продуктом которой является метиларилкетон:

Галогенирования

В отличие от ненасыщенных углеводородов бензол НЕ обесцвечивает бромную воду. Но для него характерны реакции галогенирования, происходящих по механизму электрофильного замещения, в присутствии кислот Льюиса. Например, при взаимодействии с бромом образуется бромбензол:

Нитрования

Характерной для бензола реакция нитрования использующая нитрующей смесь, которая состоит из концентрированной азотной кислоты и концентрированной серной кислоты как водоотнимающих средства. В этой реакции образуется нитробензен, что является предшественником в синтезе анилина

Сульфирование

При воздействии на бензол концентрированной серной кислоты происходит его сульфирования с образованием бензосульфоновои кислоты, может быть предшественником в синтезе фенола:

Реакции присоединения

Бензол вступает и в реакции присоединения, но значительно труднее, чем в реакции замещения. При этом он проявляет свойства непредельных углеводородов. Так, в присутствии никелевого катализатора и при нагревании происходит реакция гидрирования бензола с образованием циклогексана:

При этом атомы водорода присоединяются молекулой бензола за счет разрыва двойных связей. Бензол вступает также в реакцию присоединения одной, двух или трех молекул хлора. Эта реакция происходит свободнорадикальным механизмом для образования радикалов хлора необходимо ультрафиолетовый свет (достигается облучением ртутно-кварцевой лампой). Продуктом полного присоединения является гексахлорциклогексан:

Реакции окисления

На воздухе бензол горит сильно копоти пламенем, поскольку содержание углерода в нем значений. Смесь пары бензола с воздухом взрывная. Благодаря ароматическом характера бензол устойчив к воздействию окислителей: не окисляется раствором перманганата калия и азотной кислотой. В присутствии катализатора ванадий (V) оксида реагирует с молекулярным кислородом, в результате чего образуется малеиновый ангидрид:

Также бензол окисляется озоном, эта реакция исторически использовалась для установления его строения.

Получение и производство

На сегодняшний день существует несколько принципиально разных способов производства бензола.

  1. Коксования каменного угля. Этот процесс исторически был первым и служил основным источником бензола до Второй мировой войны. В последнее время доля бензола, получаемого этим способом, составляет менее 10%. Следует добавить, что бензол, получаемый из каменноугольной смолы, содержит значительное количество тиофена, что делает такой бензол сырьем, непригодным для ряда технологических процессов.
  2. Каталитический риформинг (аромайзинг) бензиновых фракций нефти. Этот процесс является основным источником бензола в США. В Западной Европе, России и Японии этим способом получают 40-60% от общего количества соединения. В этом процессе кроме бензола образуются толуол и ксилолы. Учитывая то, что толуол образуется в количествах, превышающих спрос на него, его также частично перерабатывают в: бензол — методом гидродеалкилирування; смесь бензола и ксилолов — методом диспропорционирования;
  3. Пиролиз бензиновых и более тяжелых нефтяных фракций. До 50% бензола производится этим методом. Наряду с бензолом образуются толуол и ксилолы. В некоторых случаях всю эту фракцию направляют на стадию деалкилирування, где и толуол, и ксилолы превращаются в бензол.
  4. тримеризация ацетилена

При пропускании ацетилена при 600 ° C над активированным углем с хорошим выходом образуется бензол и другие ароматические углеводороды (реакция Н. Д. Зелинского):

3С 2 Н 2 → С 6 H 6

Применение

Бензол является важным сырьем для химической промышленности. Большие количества его идут для получения нитробензола, который по реакции М. М. Зинина восстанавливают в анилин:

В технике эту реакцию проводят при воздействии на бензол соляной кислоты в присутствии железных стружек. Железо, реагируя с кислотой, образует водород, который в момент выделения восстанавливает нитробензен. С анилина синтезируют самые органические красители и фармацевтические препараты. Значительные количества бензола используют для синтеза фенола, который идет на производство фенолформальдегидных смол. Гексахлорциклогексан, получаемый из бензола (реакция приведена выше), под названием гексахлоран применяется в сельском хозяйстве как один из самых эффективных средств для уничтожения насекомых. Кроме того, бензол используют для синтеза многих других органических соединений и как растворитель

Получение Вещество Применение
+ Cl 2 / AlCl 3 → C 6 H 5 Cl + Cl 2 / AlCl 3 → 1,4-дихлорбензен 1,4-дихлорбензен Инсектицид
+ NaOH / Cu → Фенол Фенол Растворитель, реагент для органического синтеза, пластмассы, красители, лекарства, взрывчатка
+ H 2 SO 4 → Бензосульфонова кислота (C 6 H 5 -SO 2 OH) + NaOH → Фенол
+ Пропен (CH 3 -CH = CH 2) → Кумены (C 6 H 5 -CH (CH 3) 2) + O 2 → Гидроперокисид Кумены (C 6 H 5 -C (CH 3) 2 -OOH) → Фенол + ацетон
+ HNO 3 → нитробензола + 6H → анилин Анилин (C 6 H 5 -NH 2) Красители, лекарства
+ H 2 / Ni → Циклогексан → Капролактам Капролактам Синтетические волокна
+ O 2 / V 2 O 5 → Малеиновая кислота → Малеиновый ангидрид Малеиновый ангидрид Полиэфиры
+ Этилен (CH 2 = CH 2) → Етилбензен (C 6 H 5 -CH 2 -CH 3) + ZnO → стирени (C 6 H 5 -CH = CH 2) + H 2 Стирен Пластмассы, синтетические каучуки
+ HOSO 2 Cl → Бензосульфанилхлорид (C 6 H 5 -SO 2 Cl) → Бензосульфаниламид Бензосульфаниламид Лекарства, красители

Ниже приведены процентное соотношение использования

  • Около 50% бензола превращают в этилбензол (алкилирование бензола этиленом)
  • около 25% бензола превращают в кумол (алкилирование бензола пропиленом)
  • примерно 10 — 15% бензола гидрируют в циклогексан;
  • около 10% бензола расходуется на производство нитробензола;
  • 2 — 3% бензола превращают в линейные алкилбензолы;
  • примерно 1% бензола используется для синтеза хлорбензола.

В существенно меньших количествах бензол используется для синтеза других соединений. Изредка и в крайних случаях, из-за высокой токсичности, бензол используется в качестве растворителя. Кроме того, бензол входит в состав бензина. Ввиду высокой токсичности его содержание новым стандартам ограничена введением до 5%.

Гомологи бензола

Бензол, как и другие углеводороды, образует свой ​​гомологический ряд, имеет общую формулу C n H 2n-6. Гомологи бензола можно рассматривать как продукты замещения одного или нескольких атомов водорода в молекуле бензола различными углеводородными радикалами, образующие боковые цепи.

Самым простым гомологом бензола является метилбензен — продукт замещения атома водорода в молекуле бензола метильной группой — СН 3

Метилбензен, имеющий техническое название толуол, представляет собой бесцветную жидкость с характерным запахом. Температура кипения 110,6 ° C. Плотность 0,867 г / см По своим химическим свойствам метилбензен, или толуол, как другие гомологи бензола, очень близок к бензола. Так, при действии концентрированной азотной кислоты, в присутствии серной кислоты он легко поддается нитрования с образованием тринитротолуену — сильно взрывчатого вещества

Метилбензен (толуол) добывают из каменноугольной смолы и коксового газа вместе с бензола, а затем отделяют путем дробной перегонки. Метилбензен, или толуол применяют главным образом для производства взрывчатых веществ — тринитротолуену, который называют еще тротилом и толом. Кроме того, толуол служит сырьем для производства красителей и других органических продуктов.

Видео по теме