Болезни Военный билет Призыв

С 25 приведение многочленов к стандартному виду. Приведение одночлена к стандартному виду, примеры, решения. Разложение многочленов на множители

Инструкция

Раскройте все скобки выражения. Для этого воспользуйтесь формулами, например, (а+b)^2=a^2+2ab+b^2. Если вы не знаете формул, или их трудно применить к данному выражению, раскрывайте скобки последовательно. Для этого умножайте первый член первого выражения на каждый член второго выражения, затем второй член первого выражения на каждый член второго и т.д. В результате все элементы обоих скобок будут перемножены между собой.

Если перед вами три выражения в скобках, сначала перемножьте первые две, оставляя третье выражение не тронутым. Упростив результат, получившийся в результате преобразования первых скобок, перемножьте его с третьим выражением.

Внимательно следите за соблюдением знаков перед множителями-одночленами. Если вы перемножаете два члена с одним знаком (например, оба положительны или оба отрицательны), одночлен будет со знаком «+». Если же один член имеет перед собой «-», не забудьте перенести его на произведение.

Приведите все одночлены к стандартному виду. То есть переставьте местами множители внутри и упростите. Например, выражение 2х*(3,5х) будет равно (2*3,5)*х*х=7х^2.

Когда все одночлены будут стандартизированы, попробуйте упростить многочлен. Для этого сгруппируйте члены, у которых одинакова часть с переменными, например, (2х+5х-6х)+(1-2). Упростив выражение, вы получите х-1.

Чтобы преобразовать в многочлен выражение, содержащее корень, выведите под ним выражение, которое будет возведено в квадрат. Например, воспользуйтесь формулой a^2+2ab+b^2 =(а+b)^2, затем уберите знак корня вместе с четной степенью. Если избавиться от знака корня невозможно, преобразовать выражение в многочлен стандартного вида не удастся.

Источники:

  • преобразование многочлена калькулятор

Краткость, как говорится, - сестра таланта. Каждому хочется блеснуть талантом, но вот его сестра - штука сложная. Гениальные мысли почему-то сами собой облекаются в сложноподчинённые предложения со множеством деепричастных оборотов. Однако в ваших силах упростить свои предложения и сделать их понятными и доступными всем.

Инструкция

Чтобы облегчить адресату (будь то слушатель или читатель) , постарайтесь заменять причастные и деепричастные обороты короткими придаточными предложениями, особенно если вышеуказанных оборотов слишком много в одном предложении. "Пришедший домой кот, только что съевший мышь, громко мурлыча, ласкался к хозяину, пытаясь заглянуть ему в глаза, надеясь выпросить рыбу, принесённую из магазина" - не пойдёт. Разбейте подобную конструкцию на несколько частей, не торопитесь и не пытайтесь сказать всё одним предложением, вам счастье.

Если вы задумали гениальное высказывание, но в нём оказалось слишком много придаточных предложений (тем более с одним ), то лучше разбить высказывание на несколько отдельных предложений или опустить какой-то элемент. "Мы решили, что он расскажет Марине Васильевне, что Катя скажет Вите, что..." - можно продолжать бесконечно. Вовремя остановитесь и вспомните о том , кто будет это читать или выслушивать.

Обозначайте разные подобные члены по-разному. Для этого лучше подчеркивайте одинарными, двойными и тройными линиями, используйте цвет и другие формы линий.

Проследите за выполнением второго условия, требующегося для записи многочлена в стандартной форме: каждый его участник должен быть изображен в виде одночлена в стандартном виде: на первом месте – числовой множитель, на втором – переменная или переменны, следующие в уже обозначенном порядке. При этом имеет буквенная последовательность, задаваемая алфавитом. Убывание степеней учитывается во вторую очередь. Так, стандартным видом одночлена является запись 7xy2, в то время как y27x, x7y2, y2x7, 7y2x, xy27 не требованиям.

Видео по теме

Математическая наука изучает различные структуры, последовательности чисел, отношений между ними, составление уравнений и их решение. Это формальный язык, которым можно четко описать приближенные к идеальным свойства реальных объектов, изучаемых в других областях науки. Одной из таких структур является многочлен.

Инструкция

Многочлен или (от греч. «поли» - много и лат. «номен» - имя) – элементарных функций классической алгебры и алгебраической геометрии. Это функция одной переменной, которая имеет вид F(x) = c_0 + c_1*x + … + c_n*x^n, где c_i – фиксированные коэффициенты, x – переменная.

Многочлены применяются во многих разделах, в том числе рассмотрении нуля, отрицательных и комплексных чисел, теории групп, колец, узлов, множеств и т.д. Использование полиномиальных вычислений значительно упрощает выражение свойств разных объектов.

Основные определения :
Каждое слагаемое полинома называется или мономом.
Многочлен, состоящий из двух одночленов, называют двучленом или биномом.
Коэффициенты полинома – вещественные или комплексные числа.
Если коэффициент равен 1, то называют унитарным (приведенным).
Степени переменной в каждом одночлене – целые неотрицательные числа, максимальная степень определяет степень многочлена, а его полной степенью называется целое число, равное сумме всех степеней.
Одночлен, соответствующий нулевой степени, называется свободным членом.
Многочлен, все которого имеют одинаковую полную степень, называется однородным.

Некоторые часто используемые многочлены названы по фамилии ученого, который их определил, а также функции, которые они задают. Например, Бином Ньютона – это для разложения полинома на отдельные слагаемые для вычисления степеней. Это известные из школьной программы записи квадратов суммы и разности (a + b)^2 – a^2 + 2*a*b + b^2, (a – b)^2 = a^2 – 2*a*b + b^2 и разность квадратов (a^2 – b^2) = (a - b)*(a + b).

Если допустить в записи многочлена отрицательные степени, то получится многочлен или ряд Лорана; многочлен Чебышева используется в теории приближений; многочлен Эрмита – в теории вероятностей; Лагранжа – для численного интегрирования и интерполяции; Тейлора – при аппроксимации функции и т.д.

Обратите внимание

Бином Ньютона часто упоминают в книгах («Мастер и Маргарита») и фильмах («Сталкер»), когда герои решают математические задачи. Этот термин на слуху, поэтому считается самым известным многочленом.

Преобразование выражений чаще всего производится с целью их упрощения. Для этого используются специальные соотношения, а также правила сокращения и приведения подобных.

Вам понадобится

  • - действия с дробями;
  • - формулы сокращенного умножения;
  • - калькулятор.

Инструкция

Простейшим преобразованием является приведение подобных. Если есть слагаемых, которые представляют собой одночлены с одинаковыми сомножителями, коэффициент при них можно сложить, с учетом знаков, которые стоят перед этими коэффициентами. Например, выражение 2 n-4n+6n-n=3 n.

Если есть возможность, используйте формулы сокращенного умножения. К наиболее популярным куб и квадрат суммы или разности двух чисел. Они представляют собой частный случай Ньютона. К формулам сокращенного умножения также квадратов двух чисел. Например, чтобы найти 625-1150+529=(25-23)?=4. Или 1296-576=(36+24) (36-24)=720.

Когда нужно преобразовать выражение , которое представляет собой натуральную дробь, выделите из числителя и знаменателя общий множитель и сократите на него числитель и знаменатель. Например, сократите дробь 3 (a+b)/(12 (a?-b?)). Для этого преобразуйте ее в вид 3 (a+b)/(3 4 (a-b) (a+b)). Сократите это выражение на 3 (a+b), получите 1/(4 (a-b)).

Любая десятичная дробь может быть записана в виде a ,bc ... · 10 k . Такие записи часто встречается в научных расчетах. Считается, что работать с ними еще удобнее, чем с обычной десятичной записью.

Сегодня мы научимся приводить к такому виду любую десятичную дробь. Заодно убедимся, что подобная запись - это уже «перебор», и никаких преимуществ в большинстве случаев она не дает.

Для начала - небольшое повторение. Как известно, десятичные дроби можно умножать не только между собой, но и на обычные целые числа (см. урок « »). Особый интерес представляет умножение на степени десятки. Взгляните:

Задача. Найдите значение выражения: 25,81 · 10; 0,00005 · 1000; 8,0034 · 100.

Умножение выполняется по стандартной схеме, с выделением значащей части у каждого множителя. Кратко опишем эти шаги:

Для первого выражения: 25,81 · 10.

  1. Значащие части: 25,81 → 2581 (сдвиг вправо на 2 цифры); 10 → 1 (сдвиг влево на 1 цифру);
  2. Умножаем: 2581 · 1 = 2581;
  3. Суммарный сдвиг: вправо на 2 − 1 = 1 цифру. Выполняем обратный сдвиг: 2581 → 258,1.

Для второго выражения: 0,00005 · 1000.

  1. Значащие части: 0,00005 → 5 (сдвиг вправо на 5 цифр); 1000 → 1 (сдвиг влево на 3 цифры);
  2. Умножаем: 5 · 1 = 5;
  3. Суммарный сдвиг: вправо на 5 − 3 = 2 цифры. Выполняем обратный сдвиг: 5 → ,05 = 0,05.

Последнее выражение: 8,0034 · 100.

  1. Значащие части: 8,0034 → 80 034 (сдвиг вправо на 4 цифры); 100 → 1 (сдвиг влево на 2 цифры);
  2. Умножаем: 80 034 · 1 = 80 034;
  3. Суммарный сдвиг: вправо на 4 − 2 = 2 цифры. Выполняем обратный сдвиг: 80 034 → 800,34.

Давайте немного перепишем исходные примеры и сравним их с ответами:

  1. 25,81 · 10 1 = 258,1;
  2. 0,00005 · 10 3 = 0,05;
  3. 8,0034 · 10 2 = 800,34.

Что происходит? Оказывается, умножение десятичной дроби на число 10 k (где k > 0) равносильно сдвигу десятичной точки вправо на k разрядов. Именно вправо - ведь число увеличивается.

Аналогично, умножение на 10 −k (где k > 0) равносильно делению на 10 k , т.е. сдвигу на k разрядов влево, что приводит к уменьшению числа. Взгляните на примеры:

Задача. Найдите значение выражения: 2,73 · 10; 25,008: 10; 1,447: 100;

Во всех выражениях второе число - степень десятки, поэтому имеем:

  1. 2,73 · 10 = 2,73 · 10 1 = 27,3;
  2. 25,008: 10 = 25,008: 10 1 = 25,008 · 10 −1 = 2,5008;
  3. 1,447: 100 = 1,447: 10 2 = 1,447 · 10 −2 = ,01447 = 0,01447.

Отсюда следует, что одну и ту же десятичную дробь можно записать бесконечным числом способов. Например: 137,25 = 13,725 · 10 1 = 1,3725 · 10 2 = 0,13725 · 10 3 = ...

Стандартный вид числа - это выражения вида a ,bc ... · 10 k , где a , b , c , ... - обычные цифры, причем a ≠ 0. Число k - целое.

  1. 8,25 · 10 4 = 82 500;
  2. 3,6 · 10 −2 = 0,036;
  3. 1,075 · 10 6 = 1 075 000;
  4. 9,8 · 10 −6 = 0,0000098.

Для каждого числа, записанного в стандартном виде, рядом указана соответствующая десятичная дробь.

Переход к стандартному виду

Алгоритм перехода от обычной десятичной дроби к стандартному виду очень прост. Но перед тем как его использовать, обязательно повторите, что такое значащая часть числа (см. урок «Умножение и деление десятичных дробей »). Итак, алгоритм:

  1. Выписать значащую часть исходного числа и поставить после первой значащей цифры десятичную точку;
  2. Найти образовавшийся сдвиг, т.е. на сколько разрядов сместилась десятичная точка по сравнению с исходной дробью. Пусть это будет число k ;
  3. Сравнить значащую часть, которую мы выписали на первом шаге, с исходным числом. Если значащая часть (с учетом десятичной точки) меньше исходного числа, дописать множитель 10 k . Если больше - дописать множитель 10 −k . Это выражение и будет стандартным видом.

Задача. Запишите число в стандартном виде:

  1. 9280;
  2. 125,05;
  3. 0,0081;
  4. 17 000 000;
  5. 1,00005.
  1. 9280 → 9,28. Сдвиг десятичной точки на 3 разряда влево, число уменьшилось (очевидно, 9,28 < 9280). Результат: 9,28 · 10 3 ;
  2. 125,05 → 1,2505. Сдвиг - на 2 разряда влево, число уменьшилось (1,2505 < 125,05). Результат: 1,2505 · 10 2 ;
  3. 0,0081 → 8,1. В этот раз сдвиг произошел вправо на 3 разряда, поэтому число увеличилось (8,1 > 0,0081). Результат: 8,1 · 10 −3 ;
  4. 17000000 → 1,7. Сдвиг - на 7 разрядов влево, число уменьшилось. Результат: 1,7 · 10 7 ;
  5. 1,00005 → 1,00005. Сдвига нет, поэтому k = 0. Результат: 1,00005 · 10 0 (бывает и такое!).

Как видите, в стандартном виде представляются не только десятичные дроби, но и обычные целые числа. Например: 812 000 = 8,12 · 10 5 ; 6 500 000 = 6,5 · 10 6 .

Когда применять стандартную запись

По идее, стандартная запись числа должна сделать дробные вычисления еще проще. Но на практике заметный выигрыш получается только при выполнении операции сравнения. Потому что сравнение чисел, записанных в стандартном виде, выполняется так:

  1. Сравнить степени десятки. Наибольшим будет то число, у которого эта степень больше;
  2. Если степени одинаковые, начинаем сравнивать значащие цифры - как в обычных десятичных дробях. Сравнение идет слева направо, от старшего разряда к младшему. Наибольшим будет то число, в котором очередной разряд окажется больше;
  3. Если степени десятки равны, а все разряды совпадают, то сами дроби тоже равны.

Разумеется, все это верно только для положительных чисел. Для отрицательных чисел все знаки меняются на противоположные.

Замечательно свойство дробей, записанных в стандартном виде, заключается в том, что к их значащей части можно приписывать любое количество нулей - как слева, так и справа. Аналогичное правило существует для других десятичных дробей (см. урок «Десятичные дроби »), но там есть свои ограничения.

Задача. Сравните числа:

  1. 8,0382 · 10 6 и 1,099 · 10 25 ;
  2. 1,76 · 10 3 и 2,5 · 10 −4 ;
  3. 2,215 · 10 11 и 2,64 · 10 11 ;
  4. −1,3975 · 10 3 и −3,28 · 10 4 ;
  5. −1,0015 · 10 −8 и −1,001498 · 10 −8 .
  1. 8,0382 · 10 6 и 1,099 · 10 25 . Оба числа положительные, причем у первого степень десятки меньше, чем у второго (6 < 25). Значит, 8,0382 · 10 6 < 1,099 · 10 25 ;
  2. 1,76 · 10 3 и 2,5 · 10 −4 . Числа снова положительные, причем степень десятки у первого из них больше, чем у второго (3 > −4). Следовательно, 1,76 · 10 3 > 2,5 · 10 −4 ;
  3. 2,215 · 10 11 и 2,64 · 10 11 . Числа положительные, степени десятки совпадают. Смотрим на значащую часть: первые цифры тоже совпадают (2 = 2). Различие начинается на второй цифре: 2 < 6, поэтому 2,215 · 10 11 < 2,64 · 10 11 ;
  4. −1,3975 · 10 3 и −3,28 · 10 4 . Это отрицательные числа. У первого степень десятки меньше (3 < 4), поэтому (в силу отрицательности) само число будет больше: −1,3975 · 10 3 > −3,28 · 10 4 ;
  5. −1,0015 · 10 −8 и −1,001498 · 10 −8 . Снова отрицательные числа, причем степени десятки совпадают. Также совпадают и первые 4 разряда значащей части (1001 = 1001). На 5 разряде начинается отличие, а именно: 5 > 4. Поскольку исходные числа отрицательные, заключаем: −1,0015 · 10 −8 < −1,001498 · 10 −8 .

Мы сказали, что имеют место как многочлены стандартного вида, так и не стандартного. Там же мы отметили, что можно любой многочлен привести к стандартному виду . В этой статье мы для начала выясним, какой смысл несет в себе эта фраза. Дальше перечислим шаги, позволяющие преобразовать любой многочлен в стандартный вид. Наконец, рассмотрим решения характерных примеров. Решения будем описывать очень подробно, чтобы разобраться со всеми нюансами, возникающими при приведении многочленов к стандартному виду.

Навигация по странице.

Что значит привести многочлен к стандартному виду?

Сначала нужно четко понимать, что понимают под приведением многочлена к стандартному виду. Разберемся с этим.

Многочлены, как и любые другие выражения, можно подвергать тождественным преобразованиям . В результате выполнения таких преобразований, получаются выражения, тождественно равные исходному выражению. Так выполнение определенных преобразований с многочленами не стандартного вида позволяют перейти к тождественно равным им многочленам, но записанным уже в стандартном виде. Такой переход и называют приведением многочлена к стандартному виду.

Итак, привести многочлен к стандартному виду – это значит заменить исходный многочлен тождественно равным ему многочленом стандартного вида, полученным из исходного путем проведения тождественных преобразований.

Как привести многочлен к стандартному виду?

Давайте поразмыслим, какие преобразования нам помогут привести многочлен к стандартному виду. Будем отталкиваться от определения многочлена стандартного вида.

По определению каждый член многочлена стандартного вида является одночленом стандартного вида , и многочлен стандартного вида не содержит подобных членов. В свою очередь многочлены, записанные в виде, отличном от стандартного, могут состоять из одночленов в не стандартном виде и могут содержать подобные члены. Отсюда логически вытекает следующее правило, объясняющее как привести многочлен к стандартному виду :

  • сначала нужно привести к стандартному виду одночлены, из которых состоит исходный многочлен,
  • после чего выполнить приведение подобных членов.

В итоге будет получен многочлен стандартного вида, так как все его члены будут записаны в стандартном виде, и он не будет содержать подобных членов.

Примеры, решения

Рассмотрим примеры приведения многочленов к стандартному виду. При решении будем выполнять шаги, продиктованные правилом из предыдущего пункта.

Здесь заметим, что иногда все члены многочлена сразу записаны в стандартном виде, в этом случае достаточно лишь привести подобные члены. Иногда после приведения членов многочлена к стандартному виду не оказывается подобных членов, следовательно, этап приведения подобных членов в этом случае опускается. В общем случае приходится делать и то и другое.

Пример.

Представьте многочлены в стандартном виде: 5·x 2 ·y+2·y 3 −x·y+1 , 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 и .

Решение.

Все члены многочлена 5·x 2 ·y+2·y 3 −x·y+1 записаны в стандартном виде, подобных членов он не имеет, следовательно, этот многочлен уже представлен в стандартном виде.

Переходим к следующему многочлену 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 . Его вид не является стандартным, о чем свидетельствуют члены 2·a 3 ·0,6 и −b·a·b 4 ·b 5 не стандартного вида. Представим его в стандартном виде.

На первом этапе приведения исходного многочлена к стандартному виду нам нужно представить в стандартном виде все его члены. Поэтому, приводим к стандартному виду одночлен 2·a 3 ·0,6 , имеем 2·a 3 ·0,6=1,2·a 3 , после чего – одночлен −b·a·b 4 ·b 5 , имеем −b·a·b 4 ·b 5 =−a·b 1+4+5 =−a·b 10 . Таким образом, . В полученном многочлене все члены записаны в стандартном виде, более того очевидно, что в нем нет подобных членов. Следовательно, на этом завершено приведение исходного многочлена к стандартному виду.

Осталось представить в стандартном виде последний из заданных многочленов . После приведения всех его членов к стандартному виду он запишется как . В нем есть подобные члены, поэтому нужно провести приведение подобных членов :

Так исходный многочлен принял стандартный вид −x·y+1 .

Ответ:

5·x 2 ·y+2·y 3 −x·y+1 – уже в стандартном виде, 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 =0,8+1,2·a 3 −a·b 10 , .

Зачастую приведение многочлена к стандартному виду является лишь промежуточным этапом при ответе на поставленный вопрос задачи. Например, нахождение степени многочлена предполагает его предварительное представление в стандартном виде.

Пример.

Приведите многочлен к стандартному виду, укажите его степень и расположите члены по убывающим степеням переменной.

Решение.

Сначала приводим все члены многочлена к стандартному виду: .

Теперь приводим подобные члены:

Так мы привели исходный многочлен к стандартному виду, это нам позволяет определить степень многочлена , которая равна наибольшей степени входящих в него одночленов. Очевидно, она равна 5.

Осталось расположить члены многочлена по убывающим степеням переменных. Для этого нужно лишь переставить местами члены в полученном многочлене стандартного вида, учитывая требование. Наибольшую степень имеет член z 5 , степени членов , −0,5·z 2 и 11 равны соответственно 3 , 2 и 0 . Поэтому многочлен с расположенными по убывающим степеням переменной членами будет иметь вид .

Ответ:

Степень многочлена равна 5 , а после расположения его членов по убывающим степеням переменной он принимает вид .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с. : ил. - ISBN 978-5-09-022771-1.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Мы отметили, что любой одночлен можно привести к стандартному виду . В этой статье мы разберемся, что называют приведением одночлена к стандартному виду, какие действия позволяют осуществить этот процесс, и рассмотрим решения примеров с подробными пояснениями.

Навигация по странице.

Что значит привести одночлен к стандартному виду?

С одночленами удобно работать, когда они записаны в стандартном виде . Однако достаточно часто одночлены задаются в виде, отличном от стандартного. В этих случаях всегда можно перейти от исходного одночлена к одночлену стандартного вида, выполнив тождественные преобразования . Процесс проведения таких преобразований называют приведением одночлена к стандартному виду.

Обобщим приведенные рассуждения. Привести одночлен к стандартному виду – это значит выполнить с ним такие тождественные преобразования, чтобы он принял стандартный вид.

Как привести одночлен к стандартному виду?

Пришло время разобраться с тем, как приводить одночлены к стандартному виду.

Как известно из определения, одночлены нестандартного вида представляют собой произведения чисел, переменных и их степеней, причем, возможно, повторяющихся. А одночлен стандартного вида может содержать в своей записи только одно число и неповторяющиеся переменные или их степени. Теперь осталось понять, как произведения первого вида привести к виду вторых?

Для этого нужно воспользоваться следующим правилом приведения одночлена к стандартному виду , состоящим из двух шагов:

  • Во-первых, выполняется группировка числовых множителей, а также одинаковых переменных и их степеней;
  • Во-вторых, вычисляется произведение чисел и применяется .

В результате применения озвученного правила любой одночлен будет приведен к стандартному виду.

Примеры, решения

Осталось научиться применять правило из предыдущего пункта при решении примеров.

Пример.

Приведите одночлен 3·x·2·x 2 к стандартному виду.

Решение.

Сгруппируем числовые множители и множители с переменной x . После группировки исходный одночлен примет вид (3·2)·(x·x 2) . Произведение чисел в первых скобках равно 6 , а правило умножения степеней с одинаковыми основаниями позволяет выражение во вторых скобках представить как x 1 +2=x 3 . В итоге получаем многочлен стандартного вида 6·x 3 .

Приведем краткую запись решения: 3·x·2·x 2 =(3·2)·(x·x 2)=6·x 3 .

Ответ:

3·x·2·x 2 =6·x 3 .

Итак, для приведения одночлена к стандартному виду необходимо уметь проводить группировку множителей, выполнять умножение чисел, и работать со степенями.

Для закрепления материала решим еще один пример.

Пример.

Представьте одночлен в стандартном виде и укажите его коэффициент.

Решение.

Исходный одночлен имеет в своей записи единственный числовой множитель −1 , перенесем его в начало. После этого отдельно сгруппируем множители с переменной a , отдельно – с переменно b , а переменную m группировать не с чем, оставим ее как есть, имеем . После выполнения действий со степенями в скобках одночлен примет нужный нам стандартный вид , откуда виден коэффициент одночлена , равный −1 . Минус единицу можно заменить знаком минус: .