Болезни Военный билет Призыв

Приборы созданные на основе бионики. Каталог файлов по биологии. Изучение инструментов используемых человеком

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

БИОНИКА - направление в биологии и кибернетике; изучает особенности строения и жизнедеятельности организмов с целью создания новых приборов, механизмов, систем и совершенствования существующих.

Человек часто учится от природы, создавая инструменты и приборы, которыми природа пользуется на протяжении многих лет, оттачивая свое мастерство в процессе эволюции. Мы часто пользуемся такими инструментами как клещи, молотки, расчески, щетки и многое другое и не задумываемся, как они появились. Первоначально этим создателем была природа. Это она имеет множество инструментов, только они сделаны еще лучше, качественней и являются наиболее точными, чем инструменты техники. Они изготовлены не из металла, а например, из хитина, как у насекомых. Изучая науку - Бионику - возникали вопросы. А многие ли знают про эту науку? А какими приборами и инструментами созданными природой, мы пользуемся дома? Может ли человек обойтись без этих инструментов?

Гипотеза: Мы предположили, что человек часто использует в своей повседневной жизни инструменты, созданные природой, и не может без них обойтись.

Цель работы : Изучение инструментов находящихся в квартире средней статистической семьи.

Задачи исследования:

  1. Посмотреть на разнообразие инструментов в квартире и изучить, как природа первоначально использовала данный объект.
  2. Определить для каких целей используются инструменты и можно ли без них обойтись.
  3. Провести опрос среди обучающихся на знание науки - БИОНИКИ, объектов ее исследования и применения знаний на практике.
  4. Создание брошюры с целью ознакомления обучающихся с наукой - БИОНИКОЙ.

Объект исследования :инструменты используемые человеком.

Предмет исследования : знания о природе, используемые человеком, при создании инструментов.

Методы исследования: социологический опрос, исследованиеинструментов используемых человеком, создание брошюры.

ЛИТЕРАТУРНЫЙ ОБЗОР

1.1 Наука - БИОНИКА - сформировалась во второй половине 20-го века. Бионика - «БИОлогия» и «техНИКА», что означает «учиться у природы технике завтрашнего дня», которая принесет большую пользу человеку и природе, чем техника существующая сегодня.(интернет ресурс)

У бионики есть символ: скрещенные скальпель, паяльник и знак интеграла.

БИОНИКА - наука, пограничная между биологией и техникой, решающая инженерные задачи на основе моделирования структуры и жизнедеятельности организма

С развитием авиации совершенствовались и летательные аппараты. Однако, длительное время страшным бичом скоростной авиации был флаттер - внезапно возникающие на определённой скорости вибрации крыльев, которые приводили к тому, что самолёты самых прочных конструкций разваливались в воздухе за несколько секунд. После многочисленных аварий конструкторы научились бороться с этим бедствием: крылья стали делать с утолщением на конце. И уже потом нашли точно такие же хитиновые утолщения на концах крыльев бабочек.

Наблюдая за ракообразными и за тем, как они хватают клешнями, учёные придумали удобные медицинские зажимы, которыми пользуются и сейчас.

Моделирование органа медузы, улавливающего инфразвуки, позволило создать техническое устройство, предупреждающее за много часов о наступления шторма и указывающее направление, откуда он придёт.

Обтекаемая форма акулы и её внешнее строение стало прототипом современных подводных лодок. Кальмар, забирая в себя воду, с силой её выталкивает. Это помогает ему двигаться с большой скоростью. Данный принцип человек применил для создания реактивного двигателя [ 2 ].

Летучая мышь во время полёта ориентируется по отражению непрерывно создаваемых ею звуковых волн. Локационный аппарат мышей обладает большей точностью, чем созданные человеком радио- и гидролокаторы.

Густав Эйфель в 1889 году построил чертёж Эйфелевой башни. Это сооружение считается одним из самых ранних очевидных примеров использования бионики в инженерии. Херман фон Мейер исследовал костную структуру головки бедренной кости в том месте, где она изгибается и под углом входит в сустав.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объект исследования :наука - БИОНИКА.

2.1Проведение социологического опроса

Для проведения школьного социологического опроса были составлены 8 вопросов с выбором ответа (Приложение 1.).

Опрос проводился среди обучающихся с 5-го по 9-й класс. Всего 126 респондента. Результаты опроса таблица №1 (Приложение 2.)

Первый вопрос раскрывал представление о самой науке - бионике. По формулировке вопроса почти все обучающиеся сориентировались верно, ответив на него - 95.5%. Хотя многие утверждали, что не представляют, что изучает данная наука. Мы раскрыли понятие - БИОНИКА, а затем продолжили отвечать на вопросы. Хуже всех справились пятиклассники - 63.8%, а лучше всех ответили 9 -е классы - 93%. Это говорит, о большом багаже знаний полученных за 9 лет обучения в школе. Но по ответам (приложение 2. таблица №2) можно проследить и увидеть, что для всех самый легкий вопрос был №5, почти все ответили правильно. И так же самым затруднительным вопросом оказался №8. Только 9 - ки многие смогли на него правильно ответить, так как изучили анатомию человека в полном объеме.

2.2 Изучение инструментов используемых человеком.

2.2.1 Инструмент : Комбинированные клещи (Приложение 3. табл. №1)

Природный объект : Клещи муравьиного льва - муравьиный лев питается личинками насекомых. Он разрывает воронки в песке, если в эту ловушку попадает муравей, то муравьиный лев бросает ему вслед песок, тем самым мешает выбраться обратно. При этом он использует свои клещи в качестве совка для песка. Когда он высасывает содержимое своей жертвы, он выбрасывает пустую оболочку из воронки. Клещи муравьиного льва могут сыпать песок, хватать добычу и впиваться в нее; они действуют как шприц, маленький всасывающий насос или инструмент для броска. Таким образом, они представляют вид комбинированных клещей, обладающий шестью функциями.[ 1 ]

Использование инструмента: Чаще всего при работе используют клещи, способные выполнять четыре функции. Их захватывающие концы имеют рифленые контактные поверхности и поэтому, например, могут удерживать лист жести. В выемке этих клещей имеются зубчики, которые позволяют вращать трубку. С боков изгибы инструмента пересекаются, и это делает возможным перекусывание проволоки. Так же ими можно забивать гвозди.

Вывод: Комбинированные клещи удобны в применении, так как заменяют несколько инструментов.

2.2.2 Инструмент: Пинцет (Приложение 3. табл. №2)

Природный объект : Веретенники - крупный кулик из семейства бекасовых с очень длинным клювом и длинными ногами. Своим длинным 15-сантиметровым клювом они ощупывают землю, втыкая его в мягкую почву. При этом кончик клюва птица в нужный момент открывает и закрывает. Таким образом, ей легко хватать маленьких червяков и другую добычу.

Клюв - это комбинированный инструмент. До захвата пищи клюв сжат и служит в качестве ковыряющего и ищущего инструмента. Только глубоко в земле он открывается, словно две створки пинцета, выполняя в этом случае функцию точно работающего хватающего механизма.[ 1 ]

Использование инструмента : Острые концы пинцета легко проникают под верхний слой предметов. Сжав пальцами обе половинки пинцета, можно захватить даже самые мелкие предметы. Если отпустить их, пинцет разожмется и выпустит предмет.

Вывод : Пинцет необходим для работы с мелкими предметами, так как пальцы человека не могут производить точные манипуляции с такими предметами.

2.2.3 Инструмент: Складной нож (Приложение 2. табл. №3)

Природный объект: Навозный жук живет в мягкой земле и навозе. Для своего продвижения он использует специальные лопатки, которые находятся на его голени. Когда они не нужны жуку, он может, поместить свою ножку в желобке голени и затем голень вложить в нишу бедра. Таким образом, его инструменты размещаются, экономя место.[ 1 ]

Использование инструмента: Складной нож состоит из множества отдельных частей: большого и малого лезвий, ножниц, штопора, ножа для открывания бутылок, отвертки, зубочистки и т.д. все эти элементы размещены в небольшом пространстве. Такой нож можно положить в карман брюк,и не поранившись им. Таким образом, человек разработал целую систему, экономящую пространство, как это сделал маленький навозный жук со своими копающими лопатками.

Вывод: Складной нож вмещает в себя несколько разных инструментов, при этом очень компактен и занимает мало места.

2.2.4Инструмент: Дрели (Приложение 3. табл. №4)

Природный объект: О са рогохвоста хвойного. Яйцеклад осы рогохвоста хвойного большого, когда готовиться отложить яйца, она ползет по ветке до самого ствола дерева,

поворачивает к нему заднюю часть своего туловища, выпускает из него яйцеклад и удобно устанавливает его. Насекомое «просверливает» в дереве мельчайшие дырочки примерно на глубину двух сантиметров. Если дерево хвойное, ему потребуется около 20 минут. Когда дырка готова, оса через свой длинный полый яйцеклад, подобный сверлу, помещает туда яйца.[ 1 ]

Использование инструмента: Для того чтобы высверлить дырки под дюбели, болты и винты, используют сверла, которые по виду и принципу действия похожи на яйцеклад осы рогохвоста хвойного большого. В отличии от яйцеклада осы рогохвоста хвойного большого, технические сверла выполняют только одну функцию - они могут лишь сверлить.

Вывод: Дрель необходима и очень удобна для просверливания отверстий в различных строительных материалах (дерево, бетон, металл).

2.2.5Инструмент: Застежка липучка (Приложение 3. табл. №5)

Природный объект: Репейник. Плоды репейника показывают, как необходимы, бывают крючки. У плодов репейника существует множество способов распространения семян самими растениями. Его плоды, которые имеют более 200 крючков, прикрепляются к шерсти животных. Животные уносят их с собой и затем стряхивают.[ 1 ]

Использование инструмента: С их помощью можно, например, застегивать спортивные ботинки; в этом случаи шнурки уже не нужны. Кроме этого, длину можно легко регулировать - в этом одно из его преимуществ.

Вывод: Липучка очень удобна. Экономит время для застегивания обуви и одежды т.д. Даже малыш может надеть обувь без помощи взрослого.

2.2.6Инструмент: Технические присоски (Приложение 3. табл. №6)

Природный объект: Осьминог изобрел изощренный метод охоты на свою жертву: он охватывает ее щупальцами и присасывается сотнями присосок, целые ряды которых находятся на щупальцах. Также они помогают ему передвигаться по скользким поверхностям, не съезжая вниз.[ 1 ]

Использование инструмента: Там, где есть гладкие поверхности, часто используют присоски. В быту их используют, прежде всего, на кухне и в ванной. Когда крючок с присоской прижимают к кафельной плитке ванной комнаты, создается вакуумное пространство.

Вывод: Технические присоски очень удобны в быту, без применения гвоздей и клея, могут держать различные предметы (крючки для полотенец, мыльница, коврики в ванную и т.д.).

2.2.7Инструмент: Батарейка (Приложение 3. табл. №7)

Природный объект: Электрический угорь может испускать электрические разряды до 700 вольт, с помощью которых он может оглушать или убивать врагов и свою добычу. Электрический орган, который генерирует напряжение, состоит из особой мускулатуры. Напряжение, как и в батарее, создается потоком ионов и разряжается серией ударов, быстро следующих одним за другим.[ 1 ]

Использование инструмента В каждом доме есть огромное количество приборов, которые работают на батарейках (часы, карманный фонарик).

Вывод: Батарейка незаменима для многих электрических бытовых приборов, даже если отключили электричество - нас спасет батарейка!

2.2.8 Инструмент: Игла для инъекций (Приложение 3. табл. №8)

Природный объект: Оса. Осиное жало. Длина жала осы не превышает 3 мм, а толщины 0,001 мм. Если осе угрожает опасность, она применяет его для защиты. Жало с легкостью впитывается в кожу человека, превращаясь в крошечный кинжал. Одновременно оно является инъекционным шприцом.[ 1 ]

Использование инструмента: Внутривенные и внутримышечные инъекции.

Вывод: У многих в домашней аптечке хранятся инъекционные шприцы для экстренной помощи.

ЗАКЛЮЧЕНИЕ

В ходе работы были опрошены обучающиеся на представление о науке -Бионике. Как выяснилось, многие не знают эту науку, но по подсказке в выборе ответа, могут представить, чем она занимается.

Так же были исследованы инструменты, которые находятся в квартире и используются по назначению. Эти инструменты и приспособления создал человек, используя знания о природе.

Так в основе изобретения комбинированных клещей лежит принцип работы клещей муравьиного льва. Этот инструмент многофункциональный, и удобен при ремонте квартиры. Пинцет повторяет клюв веретенника , очень удобен при работе с мелкими предметами. Складной нож имитирует ножку с лопатками навозного жука - компактен и многофункционален. Он не заменим в походе, поездке и в хранении и переносе, соблюдается техника безопасности. Дрель ,подобно я йцеклад у осы рогохвоста хвойного , необходима и очень удобна для просверливания отверстий в различных строительных материалах (дерево, бетон, металл) при строительстве и ремонте. Застежки липучки такие же липкие как плоды репейника . Очень удобны для застегивания сумок, обуви и одежды. А особенно они экономят время мам маленьких детей, ведь малышу легче справиться с липучкой на обуви, чем со шнурками. В красивом кафеле всегда жаль делать отверстие сверлом, выход из положения технические присоски. Они незаменимы в ванной, так как прочно прикрепляют крючки, мыльницы, полочки без клея и гвоздей, как присоски осьминога . Невозможно представить любую квартиру, дом без батареек , их используют в часах, телефонах, фонариках, да мало ли где! А принцип работы батарейки повторяет электрический орган электрического угря. У многих в домашней аптечке хранятся инъекционные шприцы для экстренной помощи. Не техника, а природа создает самые эффективные и тончайшие инъекционные шприцы, как жало осы . К сожалению, техника не создала еще игл, подобных жалу, которые не гнутся и не ломаются. Если бы удалось создать такие инъекционные шприцы, то прививки, например, стали бы почти безболезненными.

Изучив, как человек применяет свои знания о природе, создавая инструменты. И исследуя инструменты в квартире, как их использует человек. Мы подтвердили свою гипотезу, действительно, человек часто использует в своей повседневной жизни инструменты, созданные природой, и не может без них обойтись.

По итогам работы была создана брошюра, которую можно использовать на уроках окружающего мира. И дать представление обучающимся о науке - БИОНИКЕ.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

  1. Воронцова З.С. Мастерская природы. - М.: «Изобразительное искусство», 1981г - 32 открытки.
  1. Нахтигаль В.Н. Большая серия знаний. БИОНИКА. - М.: ООО «Мир книги», 2003 г. - 128 с..

Интернет - сайт:

  1. Словари и энциклопедии на АКАДЕМИКЕhttps://dic.academic.ru/
  2. http://www.microarticles.ru/

3.https://www.google.ru/search?q=символ+бионики

Приложение 1.

Вопросы социологического опроса:

  1. Как называется наука, цель которой - использовать биологические знания для решения инженерных задач и развития техники?

а) конструирование; б) планирование; в) бионика +

  1. Что изучал основоположник аэродинамики Н.Е. Жуковский? На основании его исследований и появилась авиация.

а) физику; б) кораблестроение;

  1. Более совершенным летательным аппаратом в природе обладают…

а) насекомые +; б) рептилии; в) листья деревьев

  1. По аналогии с принципом, лежащим в основе с эхолокации у летучих мышей, конструируются…

б) радары; в) другая техника

  1. Какие животные обладают электрической активностью?

а) рыбы +; б) мыши; в) кроты

  1. Применение бионики в медицине это…

а) создание медикаментов; б) строительство медицинских учреждений;

  1. Какое строение копируют современные многоэтажные дома, в которых проживают люди?

а) стеблей злаков +; б) травы; в) кустов

  1. Какой принцип стоит в основе строения Эйфелевой башни?

Приложение 2.

Результаты социологического опроса

таблица №1

Вопрос

Ответ

1. Как называется наука, цель которой - использовать биологические знания для решения инженерных задач и развития техники?

а) конструирование;

б) планирование;

в) бионика +

Общее - 95.5%

2. Что изучал основоположник аэродинамики Н.Е. Жуковский? На основании его исследований и появилась авиация.

а) физику;

б) кораблестроение;

в) механизм полета птиц и условия, позволяющие им свободно парить в воздухе +

Общее - 86%

3. Более совершенным летательным аппаратом в природе обладают…

а) насекомые +;

б) рептилии;

в) листья деревьев

Общее - 88.7%

4. По аналогии с принципом, лежащим в основе с эхолокации у летучих мышей, конструируются…

а) модели приборов-локаторов для слепых +;

б) радары;

в) другая техника

Общее - 54%

5. Какие животные обладают электрической активностью?

а) рыбы +;

Общее - 94.7%

6. Применение бионики в медицине это…

а) создание медикаментов;

б) строительство медицинских учреждений;

в) создание искусственных органов, способных функционировать в симбиозе с организмом человека +

Общее - 83%

7. Какое строение копируют современные многоэтажные дома, в которых проживают люди?

а) стеблей злаков +;

в) кустов

Общее - 73%

8. Какой принцип стоит в основе строения Эйфелевой башни?

а) принцип строения стебля растений;

б) принцип строения человеческих костей +;

в) принцип строения скелета насекомых

Общее - 40%

Сравнительная таблица результатов социологического опроса

таблица №2

5 класс

(38 человек)

7 класс

(35 человек)

8 класс

(25 человек)

9 класс

(28 человек)

1. вопрос - 82%

2. вопрос - 68%

3. вопрос - 74%

4. вопрос - 55%

5. вопрос - 95%

6. вопрос - 78%

7. вопрос - 32%

8. вопрос - 26%

Итог - 63.8%

1. вопрос - 100 %

2. вопрос - 89 %

3. вопрос - 89 %

4. вопрос - 37%

5. вопрос - 84%

6. вопрос - 79%

7. вопрос - 89 %

8. вопрос - 26%

Итог - 74%

1. вопрос - 100 %

2. вопрос - 92%

3. вопрос - 92%

4. вопрос - 32%

5. вопрос - 100%

6. вопрос - 84%

7. вопрос - 80%

8. вопрос - 36%

Итог - 77%

1. вопрос - 100 %

2. вопрос - 96%

3. вопрос - 100 %

4. вопрос - 92%

5. вопрос - 100%

6. вопрос - 92%

7. вопрос - 92%

8. вопрос - 72%

Итог - 93%

Приложение 3 .

Бионика, появившаяся в научных кругах во второй половине двадцатого века? Бионика содержит в своей основе материалы наблюдения за естественными природными системами для создания на их базе современных технологий.

Слово "бионика" в переводе с английского означает "знание о живых организмах". Ее основная задача (как было сказано ранее) - это выявление закономерностей живой природы и применение их в системе человеческой деятельности. Впервые проблемы бионики, ее цели и функции были определены на дайтонском симпозиуме в США. Тогда в 1960 году смело было выдвинуто утверждение о том, что только биологические механизмы могут быть истинными прототипами технического развития.

Основные проблемы и задачи бионики

  1. Наблюдение и изучение функций и особенностей отдельных систем и органов живых организмов (например, нервной системы, сердца или кожи) для использования полученных знаний в качестве базиса для создания новейших технических достижений: средств передвижения, вычислений и т.д.
  2. Изучение биоэнергетического потенциала живых организмов для создания на их основе двигателей, способных действовать подобно мышцам, чтобы с помощью этого экономить электроэнергию.
  3. Исследование биохимических синтезирующих процессов для развития отраслей химии для получения новых моющих средств и лекарственных препаратов.

Связь бионики с другими областями человеческих знаний

«Бионика считается связующим звеном, проложенным между множеством технических (электронная, транспортная, информационные технологии) и естественных наук (медициной, биологией, химией)».

Специалисты утверждают, что объединение в определенное единство совокупности имеющихся знаний с целью их рационального практического применения – это наиболее необходимый процесс для современного мира. Бионика появилась тогда, когда специализация отдельных отраслей знания усилилась, лишая науку жизненно необходимого единства.

Так бионика в биологии представляет собой необходимый компонент, позволяющий применять полученные знания в их качественном объединении с математикой, техникой и химией. Установление аналогичных связей между информационными, техническими и природными ресурсами – неотъемлемая часть бионического исследования.

Если в своем широком понимании бионика – средство «заимствования» у природы гениальных идей для новейших научных разработок, то в более узком смысле можно говорить о данной науке как о теснейшей связи биологии с аэронавтикой, кибернетикой, материаловедением, строительством, бизнесом, медициной, химией, архитектурой и даже искусством. Специалист-бионик должен обладать чрезмерной наблюдательностью, а также аналитическим складом ума для способности адекватного сопоставления имеющегося и вновь обновляющегося посредством эволюции материала и технических возможностей, предоставленных развитием человечества.

Продолжая беседу об узком значении бионики, можно говорить о такой ее задаче, как разработка новейших методов добычи природных ресурсов и полезных ископаемых для использования их в производстве.

Несмотря на то, что бионика – это наука о том, как лучше и рациональнее использовать то, что дает нам природа, одной из ее основополагающих функций выступает защита природного материала как неисчерпаемого источника ресурсов и идеи для непрерывного прогресса общества. Для этого специалистами-биониками используются три основных подхода.

  1. Функциональный математический программный подход (изучение схемы происходящего процесса, его структуры, истоков и результатов). Данный подход дает возможность конструирования новой модели с помощью уже имеющихся средств.
  2. Физико-химический подход (изучение биохимических процессов). Этот подход предоставляет исследователям возможность синтезирования новых веществ с помощью изученных механизмов.
  3. Прямое применение биологических систем в структуре технологий, называемое обратным моделированием. Если в предыдущих подходах речь шла об использовании биологического материала для создания новых технических средств, то здесь мы можем говорить о решении задач и вопросов техники с помощью поиска ответов и необходимых ресурсов в биологической среде.

Итак, на вопрос о том, что изучает наука бионика, лучше всего ответить следующим образом. Бионика – это поиск путей, средств и возможностей связи биологических аспектов существования и технического прогресса с целью увеличения научного прогресса и одновременного сохранения существующих природных ресурсов.

Создание модели в бионике – это половина дела. Для решения конкретной практической задачи необходима не только проверка наличия интересующих практику свойств модели, но и разработка методов расчета заранее заданных технических характеристик устройства, разработка методов синтеза, обеспечивающих достижения требуемых в задаче показателей.

И поэтому многие бионические модели, до того как получают техническое воплощение, начинают свою жизнь на компьютере. Строится математическое описание модели. По ней составляется компьютерная программа – бионическая модель . На такой компьютерной модели можно за короткое время обработать различные параметры и устранить конструктивные недостатки.

Именно так, на основе программного моделирования , как правило, проводят анализ динамики функционирования модели; что же касается специального технического построения модели, то такие работы являются, несомненно, важными, но их целевая нагрузка другая. Главное в них – изыскание лучшей основы, на которой эффективнее и точнее всего можно воссоздать необходимые свойства модели. Накопленный в бионике практический опыт моделирования чрезвычайно сложных систем имеет общенаучное значение. Огромное число ее эвристических методов, совершенно необходимых в работах такого рода, уже сейчас получило широкое распространение для решения важных задач экспериментальной и технической физики, экономических задач, задач конструирования многоступенчатых разветвленных систем связи и т.п.

Сегодня бионика имеет несколько направлений.

Архитектурно-строительная бионика изучает законы формирования и структурообразования живых тканей, занимается анализом конструктивных систем живых организмов по принципу экономии материала, энергии и обеспечения надежности. Нейробионика изучает работу мозга, исследует механизмы памяти. Интенсивно изучаются органы чувств животных, внутренние механизмы реакции на окружающую среду и у животных, и у растений.

Яркий пример архитектурно-строительной бионики - полная аналогия строения стеблей злаков и современных высотных сооружений. Стебли злаковых растений способны выдерживать большие нагрузки и при этом не ломаться под тяжестью соцветия. Если ветер пригибает их к земле, они быстро восстанавливают вертикальное положение. В чем же секрет? Оказывается, их строение сходно с конструкцией современных высотных фабричных труб - одним из последних достижений инженерной мысли. Обе конструкции полые. Склеренхимные тяжи стебля растения играют роль продольной арматуры. Междоузлия стеблей - кольца жесткости. Вдоль стенок стебля находятся овальные вертикальные пустоты. Стенки трубы имеют такое же конструктивное решение. Роль спиральной арматуры, размещенной у внешней стороны трубы в стебле злаковых растений, выполняет тонкая кожица. Однако к своему конструктивному решению инженеры пришли самостоятельно, не «заглядывая» в природу. Идентичность строения была выявлена позже.

В последние годы бионика подтверждает, что большинство человеческих изобретений уже «запатентовано» природой. Такое изобретение ХХ века, как застежки «молния» и «липучки», было сделано на основе строения пера птицы. Бородки пера различных порядков, оснащенные крючками, обеспечивают надежное сцепление.

Известные испанские архитекторы М. Р. Сервера и Х. Плоз, активные приверженцы бионики, с 1985 года начали исследования «динамических структур», а в 1991 году организовали «Общество поддержки инноваций в архитектуре». Группа под их руководством, в состав которой вошли архитекторы, инженеры, дизайнеры, биологи и психологи, разработала проект «Вертикальный бионический город-башня». Через 15 лет в Шанхае должен появиться город-башня (по прогнозам ученых, через 20 лет численность Шанхая может достигнуть 30 млн человек). Город-башня рассчитан на 100 тысяч человек, в основу проекта положен «принцип конструкции дерева».

Башня-город будет иметь форму кипариса высотой 1128 м с обхватом у основания 133 на 100 м., а в самой широкой точке 166 на 133 м. В башне будет 300 этажей, и расположены они будут в 12 вертикальных кварталах по 80 этажей. Между кварталами - перекрытия-стяжки, которые играют роль несущей конструкции для каждого уровня-квартала. Внутри кварталов - разновысокие дома с вертикальными садами. Эта тщательно продуманная конструкция аналогична строению ветвей и всей кроны кипариса. Стоять башня будет на свайном фундаменте по принципу гармошки, который не заглубляется, а развивается во все стороны по мере набора высоты - аналогично тому, как развивается корневая система дерева. Ветровые колебания верхних этажей сведены к минимуму: воздух легко проходит сквозь конструкцию башни. Для облицовки башни будет использован специальный пластичный материал, имитирующий пористую поверхность кожи. Если строительство пройдет успешно, планируется построить еще несколько таких зданий-городов.

В архитектурно-строительной бионике большое внимание уделяется новым строительным технологиям. Например, в области разработок эффективных и безотходных строительных технологий перспективным направлением является создание слоистых конструкций. Идея заимствована у глубоководных моллюсков. Их прочные ракушки, например у широко распространенного «морского уха», состоят из чередующихся жестких и мягких пластинок. Когда жесткая пластинка трескается, то деформация поглощается мягким слоем и трещина не идет дальше. Такая технология может быть использована и для покрытия автомобилей.

Основными направлениями нейробионики являются изучение нервной системы человека и животных и моделирование нервных клеток-нейронов и нейронных сетей. Это дает возможность совершенствовать и развивать электронную и вычислительную технику.

Нервная система живых организмов имеет ряд преимуществ перед самыми современными аналогами, изобретенными человеком:

    Гибкое восприятие внешней информации, независимо от формы, в которой она поступает (почерк, шрифт, цвет, тембр и т. д.).

    Высокая надежность: технические системы выходят из строя при поломке одной или нескольких деталей, а мозг сохраняет работоспособность при гибели даже нескольких сотен тысяч клеток.

    Миниатюрность. Например, транзисторное устройство с таким же числом элементов, как головной мозг человека, занимало бы объем около 1000 м3, тогда как наш мозг занимает объем 1,5 дм 3 .

    Экономичность потребления энергии - разница просто очевидна.

    Высокая степень самоорганизации - быстрое приспособление к новым ситуациям, к изменению программ деятельности.

Эйфелева башня и берцовая кость

К 100-й годовщине Великой французской революции в Париже была организована всемирная выставка. На территории этой выставки планировалось воздвигнуть башню, которая символизировала бы и величие Французской революции, и новейшие достижения техники. На конкурс поступило более 700 проектов, лучшим был признан проект инженера-мостовика Александра Гюстава Эйфеля. В конце ХIХ столетия башня, названная именем своего создателя, поразила весь мир ажурностью и красотой. 300-метровая башня стала своеобразным символом Парижа. Ходили слухи, будто бы построена башня по чертежам неизвестного арабского ученого. И лишь спустя более чем полстолетия биологи и инженеры сделали неожиданное открытие: конструкция Эйфелевой башни в точности повторяет строение большой берцовой кости, легко выдерживающей тяжесть человеческого тела. Совпадают даже углы между несущими поверхностями. Это еще один показательный пример бионики в действии.

Бионика - это наука, изучающая живую природу с целью использования полученных знаний в практической деятельности человека. Проблемы бионики: изучение закономерностей структуры и функции отдельных частей живых организмов (нервной системы, анализаторов, крыльев, кожи) с целью создания на этой основе нового типа вычислительных машин, локаторов, летательных, плавательных аппаратов и т. д.; изучение биоэнергетики для создания экономичных двигателей, подобных мышце; исследование процессов биосинтеза веществ с целью развития соответствующих отраслей химии. Бионика тесно связана с техническими (электроника, связь, морское дело и др.) и естественнонаучными ( , медицина) дисциплинами, а также с кибернетикой (см.).

Бионика (англ. bionics, от bion - живое существо, организм; греч. Bioo - живу)- наука, изучающая живую природу с целью использования полученных знаний в практической деятельности человека.

Термин бионика впервые появился в 1960 г., когда специалисты различных профилей, собравшиеся на симпозиум в Дайтоне (США), выдвинули лозунг: «Живые прототипы - ключ к новой технике». Бионика явилась своеобразным мостом, связавшим биологию с математикой, физикой, химией и техникой. Одна из важнейших целей бионики - установить аналогии между физико-химическими и информационными процессами, встречающимися в технике, и соответствующими процессами в живой природе. Специалиста-бионика привлекает все многообразие «технических идей», выработанных живой природой за многие миллионы лет эволюции. Особое место среди задач бионики занимают разработка и конструирование систем управления и связи на основе использования знаний из биологии. Это - бионика в узком смысле слова. Бионика имеет важное значение для кибернетики, радиоэлектроники, аэронавтики, биологии, медицины, химии, материаловедения, строительства и архитектуры и др. К задачам бионики относятся также освоение биологических методов добычи полезных ископаемых, технологии производства сложных веществ органической химии, строительных материалов и покрытий, которые использует живая природа. Бионика учит искусству рационального копирования живой природы, изысканию технических условий целесообразного использования биологических объектов, процессов и явлений.

Один из возможных путей здесь - функциональное (математическое, или программное) моделирование, заключающееся в изучении структурной схемы процесса, функций объекта, числовых характеристик этих функций, их назначения и изменения во времени. Такой подход дает возможность изучать интересующий процесс математическими средствами, а техническое воплощение модели осуществить тогда, когда в принципе установлена ее эффективность и осталось проверить экономические, энергетические и другие возможности конструирования такого рода модели имеющимися техническими средствами. Существует и другой путь - физико-химическое моделирование, когда специалист в области бионики изучает биохимические и биофизические процессы с целью исследования принципов превращения (включая разложение и синтез) веществ, происходящих в живом организме. Этот путь более всего примыкает к химико-технологической проблематике и открывает новые возможности в развитии энергетики и химии полимеров. Третий подход, развиваемый бионикой,- это непосредственное использование живых систем и биологических механизмов в технических системах. Такой подход принято называть методом обратного моделирования, так как в этом случае специалист-бионик изыскивает возможности и условия приспособления живых систем для решения чисто инженерных задач, иначе говоря, пытается моделировать на биологическом объекте техническое устройство или процесс. Возникшая в ответ на запросы практики, бионика послужила началом исследований, основанных на применении биологических знаний во всех областях техники. Основной ее результат заключается в установлении первых путей для все большего технического освоения биологии.

О применении в технических устройствах и системах принципов организации, свойств, функций и структур живой природы, то есть формы живого в природе и их промышленные аналоги.

Различают:

  • биологическую бионику, изучающую процессы, происходящие в биологических системах;
  • теоретическую бионику, которая строит математические модели этих процессов;
  • техническую бионику, применяющую модели теоретической бионики для решения инженерных задач.

См. также

Литература

  • Моделирование в биологии, пер. с англ., под ред. Н. А. Бернштейна, М., 1963.
  • Парин В. В. и Баевский Р. М., Кибернетика в медицине и физиологии, М., 1963.
  • Вопросы бионики. Сб. ст., отв. ред. М. Г. Гаазе-Рапопорт, М., 1967.
  • Мартека В., Бионика, пер. с англ., М., 1967.
  • Крайзмер Л. П., Сочивко В. П., Бионика, 2 изд., М., 1968.
  • Брайнес С. Н., Свечинский В. Б., Проблемы нейрокибернетики и нейробионики, М., 1968.
  • Библиографический указатель по бионике, М., 1965.
  • Игнатьев М. Б. «Артоника» Статья в словаре-справочнике "Системный анализ и принятие решений"изд. Высшая школа, М., 2004.
  • Мюллер, Т., Биомиметика: National Geographic Россия, май 2008, с. 112-135.
  • Lakhmi C. Jain; N.M. Martin Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms: Industrial Applications. - CRC Press, CRC Press LLC, 1998
  • Емельянов В. В., Курейчик В. В., Курейчик В. Н. Теория и практика эволюционного моделирования. - М: Физматлит, 2003.
  • Архитектурная бионика. Под редакцией Ю. С. Лебедева.-М.:Стройиздат, 1990. 269с.
  • Г. В. Васильков. Эволюционная теория жизненного цикла механических систем. Теория сооружений.-М.Издательство ЛКИ, 2008. 320с.

Примечания

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Бионика" в других словарях:

    - [Словарь иностранных слов русского языка

    - [от био... и (электро) ника], наука, изучающая живые организмы с целью использования результатов познания механизмов их функционирования при конструировании машин и создании новых техничеких систем. Например, данные бионики, полученные при… … Экологический словарь

    бионика - Этимология. Происходит от греч. biо жизнь. Категория. Научная дисциплина. Специфика. Изучает принципы функционирования живых систем для использования их в области инженерной практики. Начала свое формирование в 60 х гг. ХХ в. Основным методом… … Большая психологическая энциклопедия

    БИОНИКА, направление в биологии и кибернетике; изучает особенности строения и жизнедеятельности организмов с целью создания новых приборов, механизмов, систем и совершенствования существующих. Сформировалась во 2 й половине 20 в. Для решения… … Современная энциклопедия