Болезни Военный билет Призыв

Однофакторный дисперсионный анализ пример графическое сравнение средних. Факторный и дисперсионный анализ в Excel с автоматизацией подсчетов. Многомерный дисперсионный анализ и структурное моделирование уравнений

В данной теме будет рассмотрен только однофакторный дисперсионный анализ, используемый для несвязанных выборок. Оперируя как основным понятием дисперсии, этот анализ базируется на расчете дисперсий трех типов:

Общая дисперсия, вычисленная по всей совокупности экспериментальных данных;

Внутригрупповая дисперсия, характеризующая вариативность признака в каждой выборке;

Межгрупповая дисперсия, характеризующая вариативность групповых средних.

Основное положение дисперсионного анализа гласит: общая дисперсия равна сумме внутригрупповой и межгруппповой дисперсий.

Это положение можно записать в виде уравнения:

где х ij - значения всех переменных, полученных в эксперименте; при этом индекс j меняется от 1 до р , где р - число сравниваемых выборок, их может быть три и больше; индекс i соответствует числу элементов в выборке (их может быть два и больше);

Общая средняя всей анализируемой совокупности данных;

Средняя j выборки;

N - общее число всех элементов в анализируемой совокупности экспериментальных данных;

р - число экспериментальных выборок.

Проанализируем это уравнение более подробно.

Пусть у нас имеется р групп (выборок). В дисперсионном анализе каждую выборку представляют в виде одного столбца (или строки) чисел. Тогда, для того чтобы можно было указать на конкретную группу (выборку), вводится индекс j , который меняется соответственно от j = 1 до j = р. Например, если у нас 5 групп (выборок), то р=5, а индекс j меняется соответственно от j= 1 до j= 5.

Пусть перед нами стоит задача - указать конкретный элемент (значение измерения) какой-либо выборки. Для этого мы должны знать номер этой выборки, например 4, и расположение элемента (измеренного значения) в этой выборке. Этот элемент может располагаться в выборке начиная с первого значения (первая строчка) до последнего (последняя строчка). Пусть наш искомый элемент расположен на пятой строчке. Тогда его обо значение будет таково: х 54 . Это значит, что выбран пятый элемент в строчке из четвертой выборки.

В общем случае в каждой группе (выборке) число составляющих ее элементов может быть различным - поэтому обозначим число элементов в j группе (выборке) через n j . Полученные в эксперименте значения признака в j группе обозначим через х ij , где i = 1, 2, ... n - порядковый номер наблюдения в j группе.

Дальнейшие рассуждения целесообразно проводить с опорой на таблицу 35. Отметим, однако, что для удобства дальнейших рассуждений, выборки в этой таблице представлены не как столбцы, а как строчки (что, однако, не принципиально).

В итоговой, последней строке таблицы даны: общий объем всей выборки - N, сумма всех полученных значений G и общая средняя всей выборки . Эта общая средняя получена как сумма всех элементов анализируемой совокупности экспериментальных данных, обозначенная выше как G, деленная на число всех элементов N.


В крайнем правом столбце таблицы представлены величины средних по всем выборкам. Например, в j выборке (строчка таблицы обозначенная символом j) величина средней (по всей j выборке) такова:

Дисперсионный анализ позволяет исследовать различие между группами данных, определять, носят ли эти расхождения случайный характер или вызваны конкретными обстоятельствами. Например, если продажи фирмы в одном из регионов снизились, то с помощью дисперсионного анализа можно выяснить, случайно ли снижение оборотов в этом регионе по сравнению с остальными, и при необходимости произвести организационные изменения. При выполнении эксперимента в разных условиях дисперсионный анализ поможет определить, насколько влияют внешние факторы на измерения, или отклонения носят случайный характер. Если на производстве для улучшения качества продукции изменяют режим процессов, то дисперсионный анализ позволяет оценить результаты воздействия данного фактора.

На этом примере мы покажем, как выполнять дисперсионный анализ экспериментальных данных.

Задание 1 . Имеются четыре партии сырья для текстильной промышленности. Из каждой партии отобрано по пять образцов и проведены испытания на определение величины разрывной нагрузки. Результаты испытаний приведены в таблице.

71" height="29" bgcolor="white" style="border:.75pt solid black; vertical-align:top;background:white">

Рис.1


> Откройте табличный процессор Microsoft Excel. Щелкните мышью на ярлыке Лист2 (Sheet2), чтобы перейти на другой рабочий лист.

> Введите данные для дисперсионного анализа, изображенные на рис.1.

> Преобразуйте данные в числовой формат. Для этого выберите команду меню Формат Ячейки. На экранe появится окно формат ячеек (Рис.2). Выберите Числовой формат и введенные данные преобразуются к виду, показанному на рис. 3

> Выберите команду меню Сервис Анализ данных (Тоо1s * Dаtа Апа1уsis). На экранe появится окно Анализ данных (Dаtа Апа1уsis) (Рис.4).

> Щелкните мышью на строке Однофакторный дисперсионный анализ (Аnоvа: Single Factor) в списке Инструменты анализа (Апа1уsis Тоо1s).

> Нажмите кнопку ОК, чтобы закрыть окно Анализ данных (Dаtа Апа1уsis). На экране появится окно Однофакторный дисперсионный анализ для проведения дисперсионного анализа данных (Рис.5).

https://pandia.ru/text/78/446/images/image006_46.jpg" width="311" height="214 src=">

Рис.5

> Если в группе элементов управления Входные данные (Input) не установлен переключатель по строкам, то установите его, чтобы программа Ехcel воспринимала группы данных по строкам - партиям.

> Установите флажок Метки в первой строке (Labels in Firts Rom) в группе элементов управления Входные данные (Input), если первый столбец выделенного диапазона данных содержит названия строк.

> В поле ввода Альфа (А1рhа) группы элементов управления Входные данные по умолчанию отображается величина 0,05, которая связана с вероятностью возникновения ошибки в дисперсионном анализе.

> Если в группе элементов управления Параметры вывода (Input options) не установлен переключатель Новый рабочий лист (Nev Worksheet Ply), то установите его, чтобы результаты дисперсионного анализа были помещены на новый рабочий лист

> Нажмите кнопку ОК, чтобы закрыть окно Однофакторный дисперсионный анализ (Аnоvа: Single Factor). На новом рабочем листе появятся результаты дисперсионного анализа (Рис. 6).

В диапазоне ячеек А4:Е6 расположены результаты описательной статистики. В строке 4 находятся названия параметров, в строках статистические значения, вычисленные по партиям.

В столбце Счет (Соunt) расположены количества измерений, в столбце Сумма - суммы величин, в столбце Среднее (Аvегаgе) - средние арифметические значения, в столбце Дисперсия (Vаriаnсе) - дисперсии.

Полученные результаты показывают, что наибольшая средняя разрывная нагрузка в партии №3, а наибольшая дисперсия разрывной нагрузки –в партии №1.

В диапазоне ячеек А11: G 16 отображается информация, касающаяся существенности расхождений между группами данных. В строке 12 находятся названия параметров дисперсионного анализа, в строке 13 - результаты межгрупповой обработки, в строке 14 - результаты внутригрупповой обработки, а в строке 16 – суммы значений упоминавшихся двух строк.

В столбце SS (Qi ) расположены величины варьирования, т. е. суммы квадратов по всем отклонениям. Варьирование, как и дисперсия, характеризует разброс данных. По таблице можно заметить, что межгрупповой разброс разрывной нагрузки существенно выше величины внутригруппового варьирования.

В столбце df (k ) находятся значения чисел степеней свободы. Данные числа указывают на количество независимых отклонений, по которым будет вычисляться дисперсия. Например, межгрупповое число степеней свободы равняется разности количеству групп данных и единицы. Чем больше число степеней свободы, тем выше надежность дисперсионных параметров. Данные степеней свобод в таблице показывают, что для внутригрупповых результатов надежность выше, чем для межгрупповых параметров.

В столбце MS (S 2 ) расположены величины дисперсии, которые определяются отношением варьирования и числа степеней свобод. Дисперсия характеризует степень разброса данных, но в отличие от величины варьирования, не имеет прямой тенденции увеличиваться с ростом числа степеней свобод. Из таблицы видно, что межгрупповая дисперсия значительно больше внутригрупповой дисперсии.

В столбце F находится, значение F -статистики , вычисляемое отношением межгрупповой и внутригрупповой дисперсий.

В столбце F критическое (F crit) расположено F-критическое значение, рассчитываемое по числу степеней свободы и величине Альфа (А1рhа). F-статистика и F-критическое значение используют критерий Фишера -Снедекора.

Если F-статистика больше F-критического значения, то можно утверждать, что различия между группами данных носят неслучайный характер. т. е. на уровне значимости α = 0,05 (с надежностью 0,95) нулевая гипотеза отвергается и принимается альтернативная: различие между партиями сырья оказывает существенное влияние на величину разрывной нагрузки.

В столбце Р-значение (Р-value) находится значение вероятности того, что расхождение между группами случайно. Так как в таблице данная вероятность очень мала, то отклонение между группами носит неслучайный характер.

2. Решение задач двухфакторного дисперсионного анализ без повторений

Microsoft Excel располагает функцией Anova: (Two-Factor Without Replication), которая используется для выявления факта влияния контролируемых факторов А и В на результативный признак на основе выборочных данных, причем каждому уровню факторов А и В соответствует только одна выборка. Для вызова этой функции необходимо на панели меню выбрать команду Сервис –Анализ данных . На экране раскроется окно Анализ данных , в котором следует выбрать значение Двухфакторный дисперсионный анализ без повторений и щелкнуть на кнопке ОК. В результате на экране раскроется диалоговое окно, показанное на рисунке 1.

78" height="42" bgcolor="white" style="border:.75pt solid black; vertical-align:top;background:white">

2. Флажок опции Метки (Labels) устанавливается в том случае, если первая строка во входном диапазоне содержит заголовки столбцов. Если заголовки отсутствуют, флажок следует сбросить. В этом случае для данных выходного диапазона будут автоматически созданы стандартные названия.

3. В поле Aльфа вводится принятый уровень значимости α , соответствующий вероятности возникновения ошибки первого рода.

4. Переключатель в группе Output options может быть установлен в одно из трех положений: Output Range (Выходной диапазон), New Worksheet Ply (Новый рабочий лист) или New Workbook (Новая рабочая книга).

Пример.

Двухфакторный дисперсионный анализ без повторений (Anova: Two-Factor Without Replication) на следующем примере.

На рисунке. 2 представлены данные об урожайности (ц/га) четырех сортов пшеницы (четыре уровня фактора А), достигнутой при использовании пяти типов удобрений (пять уровней фактора В). Данные получены на 20 участках одинакового размера и аналогичного почвенного покрова. Необходимо определить , влияет ли сорт и тип удобрения на урожайность пшеницы.

Двухфакторный дисперсионный анализ без повторений представлены на рисунке 3.

Как видно по результатам, расчетное значение величины F-статистики для фактора А (тип удобрения) F А = l ,67 , а критическая область образуется правосторонним интервалом (3,49; +∞). Так как F А = l ,67 не попадает в критическую область, гипотезу НА: a 1 = a 2 + = ak принимаем , т. е. считаем, что в этом эксперименте тип удобрения не оказал влияния на урожайность.

Расчетное значение величины F-статистики для фактора В (сорт пшеницы) F В =2,03 , а критическая область образуется правосторонним интервалом (3,259;+∞).

Так как F В =2,03 не попадает в критическую область, гипотезу НВ : b 1 = b 2 = ... = bm

также принимаем, т. е. считаем, что в данном эксперименте сорт пшеницы также не оказал влияния на урожайность.

2. Двухфакторный дисперсионный анализ c повторениями

Microsoft Excel располагает функцией Anova: Двухфакторный дисперсионный анализ с повторениями (Two-Factor With Replication), которая также используется для выявления факта влияния контролируемых факторов А и В на результативный признак на основе выборочных данных, однако каждому уровню одного из факторов А (или В) соответствует более одной выборки данных .

Рассмотрим использование функции Двухфакторный дисперсионный анализ с повторениями на следующем примере.

Пример 2 . В таблице. 6 приведены суточные привесы (г) собранных для исследования 18 поросят в зависимости от метода удержания поросят (фактор А) и качества их кормления (фактор В).

75" height="33" bgcolor="white" style="border:.75pt solid black; vertical-align:top;background:white">

В этом диалоговом окне задаются следующие параметры.

1. В поле Входной интервал (Input Range) вводится ссылка на диапазон ячеек, содержащий анализируемые данные. Необходимо выделить ячейки от G 4 до I 13.

2. В поле Число строк для выборки (Rows per sample) определяется число выборок, которое приходится на каждый уровень одного из факторов. Каждый уровень фактора должен содержать одно и то же количество выборок (строк таблицы). В нашем случае число строк равно трем.

3. В поле Альфа (Alpha) вводится принятое значение уровня значимости α , которое равно вероятности возникновения ошибки первого рода.

4. Переключатель в группе Output options может быть установлен в одно из трех положений: Output Range (Выходной интервал), New Worksheet Ply (Новый рабочий лист) или New Workbook (Новая рабочая книга).

Результаты двухфакторного дисперсионного анализа с помощью функции Двухфакторный дисперсионный анализ сповторениями существенным. В силу того что взаимодействие указанных факторов незначимо (на 5%-ном уровне).

Задание на дом

1. В течение шести лет использовались пять различных технологий по выращиванию сельскохозяйственной культуры. Данные по эксперименту (в ц/га) приведены в таблице:

https://pandia.ru/text/78/446/images/image024_11.jpg" width="642" height="190 src=">

Требуется на уровне значимости α = 0,05 установить зависимость выпуска качественных плиток от линии выпуска (фактора А).

3. Имеются следующие данные об урожайности четырех сортов пшеницы на выделенных пяти участках земли (блоках):

https://pandia.ru/text/78/446/images/image026_9.jpg" width="598" height="165 src=">

Требуется на уровне значимости α = 0,05 установить влияние на производительность труда технологий (фактора А) и предприятий (фактора В).

Введение

Цель работы: познакомится с таким статистическим методом, как дисперсионный анализ.

Дисперсионный анализ (от латинского Dispersio – рассеивание) – статистический метод, позволяющий анализировать влияние различных факторов на исследуемую переменную. Метод был разработан биологом Р. Фишером в 1925 году и применялся первоначально для оценки экспериментов в растениеводстве. В дальнейшем выяснилась общенаучная значимость дисперсионного анализа для экспериментов в психологии, педагогике, медицине и др.

Целью дисперсионного анализа является проверка значимости различия между средними с помощью сравнения дисперсий. Дисперсию измеряемого признака разлагают на независимые слагаемые, каждое из которых характеризует влияние того или иного фактора или их взаимодействия. Последующее сравнение таких слагаемых позволяет оценить значимость каждого изучаемого фактора, а также их комбинации.

При истинности нулевой гипотезы (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии.

При проведении исследования рынка часто встает вопрос о сопоставимости результатов. Например, проводя опросы по поводу потребления какого-либо товара в различных регионах страны, необходимо сделать выводы, на сколько данные опроса отличаются или не отличаются друг от друга. Сопоставлять отдельные показатели не имеет смысла и поэтому процедура сравнения и последующей оценки производится по некоторым усредненным значениям и отклонениям от этой усредненной оценки. Изучается вариация признака. За меру вариации может быть принята дисперсия. Дисперсия σ2 – мера вариации, определяемая как средняя из отклонений признака, возведенных в квадрат.

На практике часто возникают задачи более общего характера – задачи проверки существенности различий средних выборочных нескольких совокупностей. Например, требуется оценить влияние различного сырья на качество производимой продукции, решить задачу о влиянии количества удобрений на урожайность с/х продукции.



Иногда дисперсионный анализ применяется, чтобы установить однородность нескольких совокупностей (дисперсии этих совокупностей одинаковы по предположению; если дисперсионный анализ покажет, что и математические ожидания одинаковы, то в этом смысле совокупности однородны). Однородные же совокупности можно объединить в одну и тем самым получить о ней более полную информацию, следовательно, и более надежные выводы.

Дисперсионный анализ

1.1 Основные понятия дисперсионного анализа

В процессе наблюдения за исследуемым объектом качественные факторы произвольно или заданным образом изменяются. Конкретная реализация фактора (например, определенный температурный режим, выбранное оборудование или материал) называется уровнем фактора или способом обработки. Модель дисперсионного анализа с фиксированными уровнями факторов называют моделью I, модель со случайными факторами - моделью II. Благодаря варьированию фактора можно исследовать его влияние на величину отклика. В настоящее время общая теория дисперсионного анализа разработана для моделей I.

В зависимости от количества факторов, определяющих вариацию результативного признака, дисперсионный анализ подразделяют на однофакторный и многофакторный.

Основными схемами организации исходных данных с двумя и более факторами являются:

Перекрестная классификация, характерная для моделей I, в которых каждый уровень одного фактора сочетается при планировании эксперимента с каждой градацией другого фактора;

Иерархическая (гнездовая) классификация, характерная для модели II, в которой каждому случайному, наудачу выбранному значению одного фактора соответствует свое подмножество значений второго фактора.

Если одновременно исследуется зависимость отклика от качественных и количественных факторов, т.е. факторов смешанной природы, то используется ковариационный анализ /3/.

При обработке данных эксперимента наиболее разработанными и поэтому распространенными считаются две модели. Их различие обусловлено спецификой планирования самого эксперимента. В модели дисперсионного анализа с фиксированными эффектами исследователь намеренно устанавливает строго определенные уровни изучаемого фактора. Термин «фиксированный эффект» в данном контексте имеет тот смысл, что самим исследователем фиксируется количество уровней фактора и различия между ними. При повторении эксперимента он или другой исследователь выберет те же самые уровни фактора. В модели со случайными эффектами уровни значения фактора выбираются исследователем случайно из широкого диапазона значений фактора, и при повторных экспериментах, естественно, этот диапазон будет другим.

Таким образом, данные модели отличаются между собой способом выбора уровней фактора, что, очевидно, в первую очередь влияет на возможность обобщения полученных экспериментальных результатов. Для дисперсионного анализа однофакторных экспериментов различие этих двух моделей не столь существенно, однако в многофакторном дисперсионном анализе оно может оказаться весьма важным.

При проведении дисперсионного анализа должны выполняться следующие статистические допущения: независимо от уровня фактора величины отклика имеют нормальный (Гауссовский) закон распределения и одинаковую дисперсию. Такое равенство дисперсий называется гомогенностью. Таким образом, изменение способа обработки сказывается лишь на положении случайной величины отклика, которое характеризуется средним значением или медианой. Поэтому все наблюдения отклика принадлежат сдвиговому семейству нормальных распределений.

Говорят, что техника дисперсионного анализа является "робастной". Этот термин, используемый статистиками, означает, что данные допущения могут быть в некоторой степени нарушены, но несмотря на это, технику можно использовать.

При неизвестном законе распределения величин отклика используют непараметрические (чаще всего ранговые) методы анализа.

В основе дисперсионного анализа лежит разделение дисперсии на части или компоненты. Вариацию, обусловленную влиянием фактора, положенного в основу группировки, характеризует межгрупповая дисперсия σ2. Она является мерой вариации частных средних по группам вокруг общей средней и определяется по формуле:

,

где k - число групп;

nj - число единиц в j-ой группе;

Частная средняя по j-ой группе;

Общая средняя по совокупности единиц.

Вариацию, обусловленную влиянием прочих факторов, характеризует в каждой группе внутригрупповая дисперсия σj2.

.

Между общей дисперсией σ02, внутригрупповой дисперсией σ2 и межгрупповой дисперсией существует соотношение:

Внутригрупповая дисперсия объясняет влияние неучтенных при группировке факторов, а межгрупповая дисперсия объясняет влияние факторов группировки на среднее значение по группе /2/.

Однофакторный дисперсионный анализ

Однофакторная дисперсионная модель имеет вид:

x ij = μ + F j + ε ij, (1)

где х ij – значение исследуемой переменой, полученной на i-м уровне фактора (i=1,2,...,т) c j-м порядковым номером (j=1,2,...,n);

F i – эффект, обусловленный влиянием i-го уровня фактора;

ε ij – случайная компонента, или возмущение, вызванное влиянием неконтролируемых факторов, т.е. вариацией переменой внутри отдельного уровня.

Основные предпосылки дисперсионного анализа:

Математическое ожидание возмущения ε ij равно нулю для любых i, т.е.

M(ε ij) = 0; (2)

Возмущения ε ij взаимно независимы;

Дисперсия переменной x ij (или возмущения ε ij) постоянна для

любых i, j, т.е.

D(ε ij) = σ 2 ; (3)

Переменная x ij (или возмущение ε ij) имеет нормальный закон

распределения N(0;σ 2).

Влияние уровней фактора может быть как фиксированным или систематическим (модель I), так и случайным (модель II).

Пусть, например, необходимо выяснить, имеются ли существенные различия между партиями изделий по некоторому показателю качества, т.е. проверить влияние на качество одного фактора - партии изделий. Если включить в исследование все партии сырья, то влияние уровня такого фактора систематическое (модель I), а полученные выводы применимы только к тем отдельным партиям, которые привлекались при исследовании. Если же включить только отобранную случайно часть партий, то влияние фактора случайное (модель II). В многофакторных комплексах возможна смешанная модель III, в которой одни факторы имеют случайные уровни, а другие – фиксированные.

Пусть имеется m партий изделий. Из каждой партии отобрано соответственно n 1 , n 2 , …, n m изделий (для простоты полагается, что n 1 =n 2 =...=n m =n). Значения показателя качества этих изделий представлены в матрице наблюдений:

x 11 x 12 … x 1n

x 21 x 22 … x 2n

………………… = (x ij), (i = 1,2, …, m; j = 1,2, …, n).

x m1 x m2 … x mn

Необходимо проверить существенность влияния партий изделий на их качество.

Если полагать, что элементы строк матрицы наблюдений – это численные значения случайных величин Х 1 ,Х 2 ,...,Х m , выражающих качество изделий и имеющих нормальный закон распределения с математическими ожиданиями соответственно a 1 ,а 2 ,...,а m и одинаковыми дисперсиями σ 2 , то данная задача сводится к проверке нулевой гипотезы Н 0: a 1 =a 2 =...= а m , осуществляемой в дисперсионном анализе.

Усреднение по какому-либо индексу обозначено звездочкой (или точкой) вместо индекса, тогда средний показатель качества изделий i-й партии, или групповая средняя для i-го уровня фактора, примет вид:

где i* – среднее значение по столбцам;

Ij – элемент матрицы наблюдений;

n – объем выборки.

А общая средняя:

(5)

Сумма квадратов отклонений наблюдений х ij от общей средней ** выглядит так:

2 = 2 + 2 +

2 2 . (6)

Q = Q 1 + Q 2 + Q 3 .

Последнее слагаемое равно нулю

так как сумма отклонений значений переменной от ее средней равна нулю, т.е.

2 =0.

Первое слагаемое можно записать в виде:

В результате получается тождество:

Q = Q 1 + Q 2 , (8)

где - общая, или полная, сумма квадратов отклонений;

- сумма квадратов отклонений групповых средних от общей средней, или межгрупповая (факторная) сумма квадратов отклонений;

- сумма квадратов отклонений наблюдений от групповых средних, или внутригрупповая (остаточная) сумма квадратов отклонений.

В разложении (8) заключена основная идея дисперсионного анализа. Применительно к рассматриваемой задаче равенство (8) показывает, что общая вариация показателя качества, измеренная суммой Q, складывается из двух компонент – Q 1 и Q 2 , характеризующих изменчивость этого показателя между партиями (Q 1) и изменчивость внутри партий (Q 2), характеризующих одинаковую для всех партий вариацию под воздействием неучтенных факторов.

В дисперсионном анализе анализируются не сами суммы квадратов отклонений, а так называемые средние квадраты, являющиеся несмещенными оценками соответствующих дисперсий, которые получаются делением сумм квадратов отклонений на соответствующее число степеней свободы.

Число степеней свободы определяется как общее число наблюдений минус число связывающих их уравнений. Поэтому для среднего квадрата s 1 2 , являющегося несмещенной оценкой межгрупповой дисперсии, число степеней свободы k 1 =m-1, так как при его расчете используются m групповых средних, связанных между собой одним уравнением (5). А для среднего квадрата s22, являющегося несмещенной оценкой внутригрупповой дисперсии, число степеней свободы k2=mn-m, т.к. при ее расчете используются все mn наблюдений, связанных между собой m уравнениями (4).

Таким образом:

Если найти математические ожидания средних квадратов и , подставить в их формулы выражение xij (1) через параметры модели, то получится:

(9)

т.к. с учетом свойств математического ожидания

(10)

Для модели I с фиксированными уровнями фактора F i (i=1,2,...,m) – величины неслучайные, поэтому

M(S ) = 2 /(m-1) +σ 2 .

Гипотеза H 0 примет вид F i = F * (i = 1,2,...,m), т.е. влияние всех уровней фактора одно и то же. В случае справедливости этой гипотезы

M(S )= M(S )= σ 2 .

(12)

(13)

(14)

т.е. сами средние, вообще говоря, находить не обязательно.

Таким образом, процедура однофакторного дисперсионного анализа состоит в проверке гипотезы H 0 о том, что имеется одна группа однородных экспериментальных данных против альтернативы о том, что таких групп больше, чем одна. Под однородностью понимается одинаковость средних значений и дисперсий в любом подмножестве данных. При этом дисперсии могут быть как известны, так и неизвестны заранее. Если имеются основания полагать, что известная или неизвестная дисперсия измерений одинакова по всей совокупности данных, то задача однофакторного дисперсионного анализа сводится к исследованию значимости различия средних в группах данных /1/.

Дисперсионный анализ есть совокупность статистических методов, предназначенных для проверки гипотез о связи между определенными признаками и исследуемыми факторами, которые не имеют количественного описания, а также для установления степени влияния факторов и их взаимодействия. В специальной литературе его часто называют ANOVA (от англоязычного названия Analysis of Variations). Впервые этот метод был разработан Р. Фишером в 1925 г.

Виды и критерии дисперсионного анализа

Этот метод используется для исследования связи между качественными (номинальными) признаками и количественной (непрерывной) переменной. По сути, он осуществляет тестирование гипотезы о равенстве средних арифметических нескольких выборок. Таким образом, его можно рассматривать как параметрический критерий для сравнения центров сразу нескольких выборок. Если использовать этот метод для двух выборок, то результаты дисперсионного анализа будут идентичны результатам t-критерия Стьюдента. Однако, в отличие от других критериев, это исследование позволяет изучить проблему более детально.

Дисперсионный анализ в статистике базируется на законе: сумма квадратов отклонений объединенной выборки равна сумме квадратов внутригрупповых отклонений и сумме квадратов межгрупповых отклонений. Для исследования используется критерий Фишера для установления значимости различия межгрупповых дисперсий от внутригрупповых. Однако для этого необходимыми предпосылками являются нормальность распределения и гомоскедастичность (равенство дисперсий) выборок. Различают одномерный (однофакторный) дисперсионный анализ и многомерный (многофакторный). Первый рассматривает зависимость исследуемой величины от одного признака, второй - сразу от многих, а также позволяет выявить связь между ними.

Факторы

Факторами называют контролируемые обстоятельства, что влияют на конечный результат. Его уровнем или способом обработки называют значение, которое характеризует конкретное проявление этого условия. Эти цифры обычно подают в номинальной или порядковой шкале измерений. Часто выходные значения измеряют в количественных или порядковых шкалах. Тогда возникает проблема группировки выходных данных в ряде наблюдений, что соответствуют примерно одинаковым числовым значениям. Если количество групп взять чрезмерно большим, то количество наблюдений в них может оказаться недостаточным для получения надежных результатов. Если брать число чрезмерно малым, это может привести к потере существенных особенностей влияния на систему. Конкретный способ группировки данных зависит от объема и характера варьирования значений. Количество и размеры интервалов при однофакторном анализе чаще всего определяют по принципу равных промежутков или по принципу равных частот.

Задачи дисперсионного анализа

Итак, существуют случаи, когда нужно сравнить две или больше выборок. Именно тогда и целесообразно применение дисперсионного анализа. Название метода указывает на то, что выводы делают на основе исследования составляющих дисперсии. Суть изучения состоит в том, что общее изменение показателя разбивают на составляющие части, которые соответствуют действию каждого отдельно взятого фактора. Рассмотрим ряд задач, которые решает типичный дисперсионный анализ.

Пример 1

В цехе есть ряд станков - автоматов, которые изготавливают определенную деталь. Размер каждой детали - это случайная величина, которая зависит от настройки каждого станка и случайных отклонений, возникающих в процессе изготовления деталей. Нужно по данным измерений размеров деталей определить, одинаково ли настроены станки.

Пример 2

Во время изготовления электрического аппарата используют различные типы изоляционной бумаги: конденсаторную, электротехническую и др. Аппарат можно пропитать различными веществами: эпоксидной смолой, лаком, смолой МЛ-2 и др. Утечки можно устранять под вакуумом при повышенном давлении, при нагреве. Пропитывать можно методом погружения в лак, под непрерывной струей лака и т. п. Электрический аппарат в целом заливают определенным компаундом, вариантов которого есть несколько. Показателями качества являются электрическая прочность изоляции, температура перегрева обмотки в рабочем режиме и ряд других. Во время отработки технологического процесса изготовления аппаратов надо определить, как влияет каждый из перечисленных факторов на показатели аппарата.

Пример 3

Троллейбусное депо обслуживает несколько троллейбусных маршрутов. На них работают троллейбусы различных типов, и оплату за проезд собирают 125 контролеров. Руководство депо интересует вопрос: как сравнить экономические показатели работы каждого контролера (выручку) учитывая различные маршруты, различные типы троллейбусов? Как определить экономическую целесообразность выпуска троллейбусов определенного типа на тот или другой маршрут? Как установить обоснованные требования к величине выручки, которую приносит кондуктор, на каждом маршруте в различных типах троллейбусов?

Задача по выбору метода состоит в том, как получить максимум информации относительно влияния на конечный результат каждого фактора, определить числовые характеристики такого влияния, их надежность при минимальных затратах и за максимально короткое время. Решить такие задачи позволяют методы дисперсионного анализа.

Однофакторный анализ

Исследование своей целью ставит оценку величины влияния конкретного случая на анализируемый отзыв. Другой задачей однофакторного анализа может быть сравнение двух или нескольких обстоятельств друг с другом с целью определения разницы их влияния на отзыв. Если нулевую гипотезу отвергают, то следующим этапом будет количественное оценивание и построение доверительных интервалов для полученных характеристик. В случае, когда нулевая гипотеза не может быть отброшенной, обычно ее принимают и делают вывод о сущности влияния.

Однофакторный дисперсионный анализ может стать непараметрическим аналогом рангового метода Краскела-Уоллиса. Он разработан американскими математиком Уильямом Краскелом и экономистом Вильсоном Уоллисом в 1952 г. Этот критерий назначен для проверки нулевой гипотезы о равенстве эффектов влияния на исследуемые выборки с неизвестными, но равными средними величинами. При этом количество выборок должно быть больше двух.

Критерий Джонкхиера (Джонкхиера-Терпстра) был предложен независимо друг от друга нидерландским математиком Т. Дж. Терпстром в 1952 г. и британским психологом Е. Р. Джонкхиером в 1954 г. Его применяют тогда, когда заранее известно, что имеющиеся группы результатов упорядочены по росту влияния исследуемого фактора, который измеряют в порядковой шкале.

М - критерий Бартлетта, предложенный британским статистиком Маурисом Стивенсоном Бартлеттом в 1937 г., применяют для проверки нулевой гипотезы о равенстве дисперсий нескольких нормальных генеральных совокупностей, с которых взяты исследуемые выборки, в общем случае имеющие различные объемы (число каждой выборки должно быть не меньше четырех).

G - критерий Кохрена, который открыл американец Вильям Геммел Кохрен в 1941 г. Его используют для проверки нулевой гипотезы о равенстве дисперсий нормальных генеральных совокупностей по независимым выборкам равного объема.

Непараметрический критерий Левене, предложенный американским математиком Ховардом Левене в 1960 г., является альтернативой критерия Бартлетта в условиях, когда нет уверенности в том, что исследуемые выборки подчиняются нормальному распределению.

В 1974 г. американские статистики Мортон Б. Браун и Алан Б. Форсайт предложили тест (критерий Брауна-Форсайта), который несколько отличается от критерия Левене.

Двухфакторный анализ

Двухфакторный дисперсионный анализ применяют для связанных нормально распределенных выборок. На практике часто используют и сложные таблицы этого метода, в частности те, в которых каждая ячейка содержит набор данных (повторные измерения), соответствующих фиксированным значениям уровней. Если предположения, необходимые для применения двухфакторного дисперсионного анализа, не выполняются, то используют непараметрический ранговый критерий Фридмана (Фридмана, Кендалла и Смита), разработанный американским экономистом Милтоном Фридманом в конце 1930 г. Этот критерий не зависит от типа распределения.

Предполагается только, что распределение величин является одинаковым и непрерывным, а сами они независимы одна от другой. При проверке нулевой гипотезы выходные данные подают в форме прямоугольной матрицы, в которой строки соответствуют уровням фактора В, а столбцы - уровням А. Каждая ячейка таблицы (блока) может быть результатом измерений параметров на одном объекте или на группе объектов при постоянных значениях уровней обоих факторов. В этом случае соответствующие данные подают как средние значения определенного параметра по всем измерениям или объектам исследуемой выборки. Для применения критерия выходных данных необходимо перейти от непосредственных результатов измерений к их рангу. Ранжирование осуществляют по каждой строке отдельно, то есть величины упорядочивают для каждого фиксированного значения.

Критерий Пейджа (L-критерий), предложенный американским статистиком Е. Б. Пейджем в 1963 г., предназначен для проверки нулевой гипотезы. Для больших выборок применяют аппроксимацию Пейджа. Они при условии реальности соответствующих нулевых гипотез подчиняются стандартному нормальному распределению. В случае, когда в строках исходной таблицы есть одинаковые значения, необходимо использовать средние ранги. При этом точность выводов будет тем хуже, чем больше будет количеств таких совпадений.

Q - критерий Кохрена, предложенный В. Кохреном в 1937 г. Его используют в случаях, когда группы однородных субъектов подвергаются воздействиям, количество которых превышает два и для которых возможны два варианта отзывов - условно-отрицательный (0) и условно-положительный (1). Нулевая гипотеза состоит из равенства эффектов влияния. Двухфакторный дисперсионный анализ дает возможность определить существование эффектов обработки, однако не дает возможности установить, для каких именно столбцов существует этот эффект. При решении данной проблемы применяют метод множественных уравнений Шеффе для связанных выборок.

Многофакторный анализ

Задача многофакторного дисперсионного анализа возникает тогда, когда нужно определить влияние двух или большего количества условий на определенную случайную величину. Исследование предусматривает наличие одной зависимой случайной величины, измеренной в шкале разницы или отношений, и нескольких независимых величин, каждая из которых выражена в шкале наименований или в ранговой. Дисперсионный анализ данных является достаточно развитым разделом математической статистики, который имеет массу вариантов. Концепция исследования общая как для однофакторного, так и для многофакторного. Сущность ее состоит в том, что общую дисперсию разбивают на составляющие, что соответствует определенной группировке данных. Каждой группировке данных соответствует своя модель. Здесь мы рассмотрим только основные положения, нужные для понимания и практического использования наиболее применяемых его вариантов.

Дисперсионный анализ факторов требует достаточно внимательного отношения к сбору и подаче входных данных, а особенно к интерпретации результатов. В отличие от однофакторного, результаты которого можно условно разместить в определенной последовательности, результаты двухфакторного требуют более сложного представления. Еще сложнее ситуация возникает, когда есть три, четыре или больше обстоятельств. Из-за этого в модель достаточно редко включают больше трех (четырех) условий. Примером может быть возникновение резонанса при определенной величине емкости и индуктивности электрического круга; проявление химической реакции при определенной совокупности элементов, из которых построена система; возникновение аномальных эффектов в сложных системах при определенном совпадении обстоятельств. Наличие взаимодействия может в корне изменить модель системы и иногда привести к переосмыслению природы явлений, с которыми имеет дело экспериментатор.

Многофакторный дисперсионный анализ с повторными опытами

Данные измерений достаточно часто можно группировать не по двум, а по большему количеству факторов. Так, если рассматривать дисперсионный анализ срока службы покрышек колес троллейбуса с учетом обстоятельств (завод-производитель и маршрут, на котором эксплуатируются покрышки), то можно выделить как отдельное условие сезон, во время которого эксплуатируются покрышки (а именно: зимняя и летняя эксплуатация). В результате будем иметь задачу трехфакторного метода.

При наличии большего количества условий подход такой же, как и в двухфакторном анализе. Во всех случаях модель пытаются упростить. Явление взаимодействия двух факторов проявляется не так часто, а тройное взаимодействие бывает только в исключительных случаях. Включают то взаимодействие, для которого есть предыдущая информация и серьезные основания, чтобы ее учесть в модели. Процесс выделения отдельных факторов и их учета относительно простой. Поэтому часто возникает желание выделить больше обстоятельств. Этим не следует увлекаться. Чем больше условий, тем менее надежной становится модель и тем больше вероятность ошибки. Сама модель, в которую входит большое количество независимых переменных, становится достаточно сложной для интерпретации и неудобной для практического использования.

Общая идея дисперсионного анализа

Дисперсионный анализ в статистике - это метод получения результатов наблюдений, зависимых от различных одновременно действующих обстоятельств, и оценки их влияния. Управляемую переменную величину, которая соответствует способу воздействия на объект исследования и в некоторый период времени приобретает определенное значение, называют фактором. Они могут быть качественными и количественными. Уровни количественных условий приобретают определенное значение на числовой шкале. Примерами являются температура, давление прессования, количество вещества. Качественные факторы - это разные вещества, разные технологические способы, аппараты, наполнители. Их уровням соответствует шкала наименований.

К качественным можно отнести также вид упаковочного материала, условия хранения лекарственной формы. Сюда же рационально отнести степень измельчения сырья, фракционный состав гранул, имеющих количественное значение, однако плохо поддающихся регулированию, если использовать количественную шкалу. Число качественных факторов зависит от вида лекарственной формы, а также физических и технологических свойств лекарственных веществ. Например, из кристаллических веществ можно получать таблетки прямым прессованием. В этом случае достаточно провести выбор скользящих и смазывающих веществ.

Примеры качественных факторов для различных видов лекарственных форм

  • Настойки. Состав экстрагента, тип экстрактора, способ подготовки сырья, способ получения, способ фильтрации.
  • Экстракты (жидкие, густые, сухие). Состав экстрагента, способ экстракции, тип установки, способ удаления экстрагента и балластных веществ.
  • Таблетки. Состав вспомогательных веществ, наполнители, разрыхлители, связующие, смазывающие и скользящие вещества. Способ получения таблеток, вид технологического оборудования. Вид оболочки и ее компонентов, пленкообразователи, пигменты, красители, пластификаторы, растворители.
  • Инъекционные растворы. Вид растворителя, способ фильтрации, природа стабилизаторов и консервантов, условия стерилизации, способ заполнения ампул.
  • Суппозитории. Состав суппозиторной основы, способ получения суппозиториев, наполнителей, упаковки.
  • Мази. Состав основы, структурные компоненты, способ приготовления мази, вид оборудования, упаковка.
  • Капсулы. Вид оболочечного материала, способ получения капсул, тип пластификатора, консерванта, красителя.
  • Линименты. Способ получения, состав, тип оборудования, тип эмульгатора.
  • Суспензии. Вид растворителя, вид стабилизатора, метод диспергирования.

Примеры качественных факторов и их уровней, изучаемых в процессе изготовления таблеток

  • Разрыхлитель. Крахмал картофельный, глина белая, смесь натрия гидрокарбоната с кислотой лимонной, магния карбонат основной.
  • Связывающий раствор. Вода, крахмальный клейстер, сахарный сироп, раствор метилцеллюлозы, раствор оксипропилметилцеллюлозы, раствор поливинилпирролидона, раствор поливинилового спирта.
  • Скользящая вещество. Аэросил, крахмал, тальк.
  • Наполнитель. Сахар, глюкоза, лактоза, натрия хлорид, фосфат кальция.
  • Смазывающее вещество. Стеариновая кислота, полиэтиленгликоль, парафин.

Модели дисперсионного анализа в исследовании уровня конкурентоспособности государства

Одним из важнейших критериев оценки состояния государства, по которым проводится оценка уровня его благосостояния и социально-экономического развития, является конкурентоспособность, то есть совокупность свойств, присущих национальной экономике, которые определяют способность государства конкурировать с другими странами. Определив место и роль государства на мировом рынке, можно установить четкую стратегию обеспечения экономической безопасности в международных масштабах, ведь она является залогом положительных взаимоотношений России со всеми игроками мирового рынка: инвесторами, кредиторами, правительствами государств.

Для сравнения уровня конкурентоспособности государств проводится ранжирование стран с помощью комплексных индексов, которые включают различные взвешенные показатели. В основу этих индексов заложены ключевые факторы, влияющие на экономическое, политическое и т. п. положение. Комплекс моделей исследования конкурентоспособности государства предусматривает использование методов многомерного статистического анализа (в частности, это дисперсионный анализ (статистика), эконометрическое моделирование, принятие решений) и включает следующие основные этапы:

  1. Формирование системы показателей-индикаторов.
  2. Оценку и прогнозирование индикаторов конкурентоспособности государства.
  3. Сравнение показателей-индикаторов конкурентоспособности государств.

А теперь рассмотрим содержание моделей каждого из этапов данного комплекса.

На первом этапе с помощью методов экспертного изучения формируется обоснованный комплекс экономических показателей-индикаторов оценки конкурентоспособности государства с учетом специфики ее развития на основе международных рейтингов и данных статистических отделов, отражающих состояние системы в целом и ее процессов. Выбор этих показателей обоснован необходимостью отобрать те из них, которые наиболее полно с точки зрения практики позволяют определить уровень государства, его инвестиционную привлекательность и возможности относительной локализации существующих потенциальных и реально действующих угроз.

Основные показатели-индикаторы международных рейтинг-систем - это индексы:

  1. Глобальной конкурентоспособности (ИГК).
  2. Экономической свободы (ИЭС).
  3. Развития человеческого потенциала (ИРЧП).
  4. Восприятия коррупции (ИВК).
  5. Внутренних и внешних угроз (ИВЗЗ).
  6. Потенциала международного влияния (ИПМВ).

Второй этап предусматривает оценку и прогнозирование индикаторов конкурентоспособности государства по международным рейтингам для исследуемых 139 государств мира.

Третий этап предусматривает сравнение условий конкурентоспособности государств при помощи методов корреляционно-регрессионного анализа.

Используя результаты исследования можно определить характер протекания процессов в целом и по отдельным составляющим конкурентоспособности государства; проверить гипотезу о влиянии факторов и их взаимосвязи при соответствующем уровне значимости.

Реализация предложенного комплекса моделей позволит не только оценить сложившуюся ситуацию уровня конкурентоспособности и инвестиционной привлекательности государств, но и проанализировать недостатки управления, предупредить ошибки неправильных решений, не допустить развития кризиса в государстве.

Курсовая работа по математике

Введение

Понятие дисперсионного анализа

Однофакторный дисперсионный анализ (Практическая реализация в IBM SPSS Statistics 20)

Однофакторный дисперсионный анализ (Практическая реализация в Microsoft Office 2013)

Заключение

Список использованных источников

Введение

Актуальность темы. Развитие математической статистики начинается с работ знаменитого немецкого математика Карла Фридриха Гаусса в 1795 году и до сих пор развивается. В статистическом анализе существует параметрический метод «Однофакторный дисперсионный анализ». В настоящее время его используют в экономике при проведении исследования рынка для сопоставимости результатов (например, проводя опросы по поводу потребления какого-либо товара в различных регионах страны, необходимо сделать выводы на сколько данные опроса отличаются или не отличаются друг от друга, в психологии при проведении различного рода исследований), при составлении научных тестов сравнения, или исследовании каких-либо социальных групп, ну и для решении задач по статистике.

Цель работы. Познакомится с таким статистическим методом, как однофакторный дисперсионный анализ, а так же с реализацией его на ПК в различных программах и выполнить сравнение этих программ.

Изучить теорию однофакторного дисперсионного анализа.

Изучить программы для решения задач на однофакторный анализ.

Провести сравнительный анализ данных программ.

Достижения работы: Практическая часть работы полностью проделана автором: подбор программ, подбор задач, их решение на ПК, после проведен сравнительный анализ. В теоритической части проведена классификация групп дисперсионного анализа. Данная работа была апробирована в качестве доклада на студенческой научной сессии «Избранные вопросы высшей математики и методики преподавании математики»

Структура и объём работы. Работа состоит из введения, заключения, содержания и списка литературы, включающего 4 наименования. Полный объём работы - 25 страниц печатного текста. Работа содержит 1 пример решенный 2 программами.

Понятие дисперсионного анализа

Часто возникает необходимость исследовать влияние одной или нескольких независимых переменных (факторов) на одну или несколько зависимых переменных (результативных признаков), подобные задачи можно решать методами дисперсионного анализа, автором которого является Р. Фишер.

Дисперсионный анализ ANOVA - совокупность статистических методов обработки данных, позволяющих анализировать изменчивость одного или нескольких результативных признаков под влиянием контролируемых факторов (независимых переменных) . Здесь под фактором понимается некоторая величина, определяющая свойства исследуемого объекта или системы, т.е. причина, влияющая на конечный результат. При проведении дисперсионного анализа важно правильно выбрать источник и объект влияния, т.е. определить зависимые и независимые переменные.

В зависимости от признаков классификации различают несколько классификационных групп дисперсионного анализа (табл. 1).

По количеству учитываемых факторов:Однофакторный анализ - исследуется влияние одного фактора;Многофакторный анализ - изучается одновременное воздействие двух или более факторов.По наличию связи между выборками значений:Анализ несвязанных (различных) выборок - проводится, когда имеется несколько групп объектов исследования, находящихся в разных условиях. (Проверяется нулевая гипотеза H0: среднее значение зависимой переменной одинаково в разных условиях замера, т.е. не зависит от исследуемого фактора.);Анализ связанных (одних и тех же) выборок - проводится для двух и более замеров, проведенных на одной и той же группе исследуемых объектов в разных условиях. Здесь возможно влияние неучтенного фактора, которое можно ошибочно приписать изменению условий.По количеству зависимых переменных, подверженных воздействию факторов.Одномерный анализ (АNOVA или АМСОVА - ковариационный анализ) - воздействию факторов подвержена одна зависимая переменная;Многомерный анализ (МАNОVА - многомерный дисперсионный анализ или МАNСОVА - многомерный ковариационный анализ) - воздействию факторов подвержено несколько зависимых переменных.По цели исследования.Детерминированные - уровни всех факторов заранее фиксированы и проверяется именно их влияние (проверяется гипотеза H0 об отсутствии различий между средними уровнями);Случайные - уровни каждого фактора получены как случайная выборка из генеральной совокупности уровней фактора (проверяется гипотеза Н0 о том, что дисперсия средних значений отклика, вычисленная для различных уровней фактора, не отлична от нуля);

В однофакторном дисперсионном анализе проводится проверка статистической значимости различий выборочных средних двух или более совокупностей для этого предварительно формируются гипотезы.

Нулевая гипотеза H0: средние величины результативного признака во всех условиях действия фактора (или градациях фактора) одинаковы

Альтернативная гипотеза H1: средние величины результативного признака во всех условиях действия фактора различны.

Методы дисперсионного анализа могут применяться для нормально распределенных совокупностей (многомерные аналоги параметрических тестов) и для совокупностей, не имеющих определенных распределений (многомерные аналоги непараметрических тестов). В первом случае необходимо предварительно установить, что распределение результативного признака является нормальным. Для проверки нормальности распределения признака можно использовать показатели асимметрии A =, , и эксцесса E =, , где , . - значение результативного признака и его среднее значение; - среднеквадратическое отклонение результативного признака; .

Число наблюдений;

Ошибки репрезентативности для показателей A и E

Если показатели асимметрии и эксцесса не превышают более чем в 3 раза свои ошибки репрезентативности, т.е. А <3тА и Е <3тЕ, то распределение можно считать нормальным. Для нормальных распределений показатели А и Е равны нулю.

Данные, относящиеся к одному условию действия фактора (к одной градации), называют дисперсионным комплексом. При проведении дисперсионного анализа должно соблюдаться равенство дисперсий между комплексами. При этом выбор элементов должен осуществляться случайным образом.

Во втором случае, когда выборочные совокупности имеют произвольные распределения, используются непараметрические (ранговые) аналоги однофакторного дисперсионного анализа (критерии Крускала - Уоллиса, Фридмана).

Рассмотрим графическую иллюстрацию зависимости ставки доходности акций от положения дел в экономике страны (рис. 1, а). Здесь исследуемым фактором является уровень состояния экономики (точнее, три уровня ее состояния), а результативным признаком - ставка доходности. Приведенное распределение показывает, что данный фактор оказывает существенное влияние на доходность, т.е. с улучшением дел в экономике растет и доходность акций, что не противоречит здравому смыслу.

Заметим, что выбранный фактор имеет градации, т.е. его величина изменялась при переходе от одной градации к другой (от одного состояния экономики к другому).

Рис. 1. Соотношение влияние фактора и внутригруппового разброса: а-существенное влияние фактора; б - незначимое влияние фактора

Группа градаций фактора является лишь частным случаем, кроме того, фактор может иметь градации, представленные даже в номинальной шкале. Потому чаще говорят не о градациях фактора, а о различных условиях его действия.

Рассмотрим теперь идею дисперсионного анализа, в основе которой лежит правило сложения дисперсий: общая дисперсия равна сумме межгрупповой и средней из внутригрупповых дисперсий:

Общая дисперсия, возникающая под влиянием всех факторов

Межгрупповая дисперсия, обусловленная влиянием всех прочих факторов;

Средняя внутригрупповая дисперсия, вызванная влиянием группировочного признака.

Влияние группированного признака хорошо видно на рис.1 а, так как влияние фактора существенно по сравнению с внутригрупповым разбросом, следовательно, межгрупповая дисперсия будет больше внутригрупповой ( > ), а на рис. 1, б наблюдается обратная картина: здесь преобладает внутригрупповой разброс и практически отсутствует влияние фактора.

На этом же принципе построен и дисперсионный анализ, только в нем используются не дисперсии, а средние квадратов отклонений (, , ), являющиеся несмещенными оценками соответствующих дисперсий. Их получают делением сумм квадратов отклонений на соответствующее число степеней свободы

Совокупности в целом;

Внутригрупповые средние;

Межгрупповые средние;

Общая средняя по всем измерениям (по всем группам);

Групповая средняя для j-й градации фактора.

Математические ожидания соответственно для внутригрупповой и межгрупповой суммы квадратов отклонений вычисляются по формулам: (Модеь с фиксированным фактором),

.

Е () = Е () = , то нулевая гипотеза H0 об отсутствии различий между средними подтверждается, следовательно, исследуемый фактор не оказывает существенного влияния (см. рис. 1, б). Если фактическое значение F-критерия Фишера F= Е () /Е () окажется больше критического то нулевая гипотеза H0 при уровне значимости , отвергается и принимается альтернативная гипотеза H1, - о существенном воздействии фактора рис. 1, а. .

Однофакторный дисперсионный анализ

Дисперсионный анализ, который рассматривает только одну переменную называется однофакторным дисперсионным анализом (One -Way ANOVA).

Имеется группа из п объектов наблюдения с измеренными значениями некоторой исследуемой переменной. На переменную оказывает воздействие некоторый качественный фактор с несколькими уровнями (градациями) воздействия. Измеренные значения переменной при различных уровнях фактора приведены в таблице 2 (они также могут быть представлены в матричном виде).

Таблица 2.

Табличная форма задания исходных данных для однофакторного анализа

Номер объекта наблюдения ()Значения переменной при уровне(градации) фактора (самый низкий)(низкий)… (самый высокий)1 2 … n.Здесь каждый уровень может содержать разное количество откликов, измеренных при одном уровне фактора, тогда каждому столбцу будет соответствовать свое значение . Требуется оценить значимость влияния данного фактора на исследуемую переменную. Для решения этой задачи может использоваться однофакторная модель дисперсионного анализа. Однофакторная дисперсионная модель.

Значение исследуемой переменой для -го объекта наблюдения при -м уровне фактора;

Групповая средняя для - го уровня фактора;

Эффект, обусловленный влиянием -го уровня фактора;

Случайная компонента, или возмущение, вызванное влиянием неконтролируемых факторов. Итак выделим основные ограничения использования дисперсионного анализа:

Равенство нулю математического ожидания случайной компоненты: = 0.

Случайная компонента , а следовательно, и имеют нормальный закон распределения.

Число градаций факторов должно быть не менее трех.

Данная модель в зависимости от уровней фактора с помощью F-критерия Фишера позволяет проверить одну из нулевых гипотез.

При выполнении дисперсионного анализа для связанных выборок возможна проверка еще одной нулевой гипотезы H0{и) - индивидуальные различия между объектами наблюдения выражены не более, чем различия, обусловленные случайными причинами.

Однофакторный дисперсионный анализ

(Практическая реализация в IBM SPSS Statistics 20)

Исследователя интересует вопрос, как изменяется определенный признак в разных условиях действия переменной (фактора). Изучается действие только одной переменной (фактора) на исследуемый признак. Мы уже рассмотрели пример из экономики теперь приведем пример из психологии например, как изменяется время решения задачи при разных условиях мотивации испытуемых (низкой, средней, высокой мотивации) или при разных способах предъявления задачи (устно, письменно или в виде текста с графиками и иллюстрациями), в разных условиях работы с задачей (в одиночестве, в комнате с преподавателем, в классе). В первом случае фактором является мотивация, во втором - степень наглядности, в третьем - фактор публичности.

В данном варианте метода влиянию каждой из градаций подвергаются разные выборки испытуемых. Градаций фактора должно быть не менее трех.

Пример 1. Три различные группы из шести испытуемых получили списки из десяти слов. Первой группе слова предъявлялись с низкой скоростью -1 слово в 5 секунд, второй группе со средней скоростью - 1 слово в 2 секунды, и третьей группе с большой скоростью - 1 слово в секунду. Было предсказано, что показатели воспроизведения будут зависеть от скорости предъявления слов (табл. 3) .

Таблица 3

Количество воспроизведенных слов

ИспытуемогоГруппа 1 низкая скоростьГруппа 2 средняя скоростьГруппа 3 высокая скорость187427853953454656626874суммы433724среднее7,176,174,00

Сформулируем гипотезы: различия в объеме воспроизведения слов между группами являются не более выраженными, чем случайные различия внутри каждой группы: Различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы.

Решение проведем в среде SPSS по следующему алгоритму

Запустим программу SPSS

Введем числовые значения в окне данные

Рис. 1. Ввод значений в SPSS

В окне Переменные опишем все исходные данные, согласно условию

Задачи

Рисунок 2 Окно переменные

Для наглядности в графе метка опишем название таблиц

В графе Значения опишем номер каждой группы

Рисунок 3 Метки значений

Все это делается для наглядности т.е. этими настройками можно пренебречь

В графе шкала, во втором столбце нужно поставить значение номинальная

В окне данные закажем однофакторный дисперсионный анализ с помощью меню «Анализ» Сравнение средних

Однофакторный дисперсионный анализ…

Рисунок 4 Функция Однофакторный дисперсионный анализ

В открывшемся диалоговом окне Однофакторный дисперсионный анализ выделим зависимую переменную и внесем ее в список зависимых, а переменную фактор в окно фактор

Рисунок 5 выделение списка зависимых и фактора

Настроим некоторые параметры для качественного выведения данных

Рисунок 6 Параметры для качественного выведения данных

Вычисления по выбранному алгоритму однофакторного дисперсионного анализа начинается после щелчка ОК

По окончанию вычислений в окне просмотра выводятся результаты расчета

Описательные статистикиГруппаNСреднееСтд. ОтклонениеСтд. Ошибка95% доверительный интервал для среднегоМинимумМаксимумНижняя границаВерхняя границанизкая скорость67,171,472,6015,628,7159средняя скорость66,171,472,6014,627,7148высокая скорость64,001,414,5772,525,4826Итого185,781,927,4544,826,7429Таблица 2. Описательные статистики

В таблице Описательные статистики приведены основные показатели по скоростям в группах и их итоговые значения

Количество наблюдений в каждой группе и суммарное

Среднее - среднее арифметическое наблюдений в каждой группе и по всем группам вместе

Стд. Отклонение, Стд. Ошибка - среднее квадратическое отклонение и стандартные отклонения

% доверительный интервал для среднего - эти интервалы являются наиболее точными для каждой группы и по всем группам вместе , нежели если взять интервалы ниже или выше этих границ.

Минимум, Максимум - минимальные и максимальные значения для каждой группы, которые услышали испытуемые

однофакторный дисперсионный случайный

Критерий однородности дисперсийгруппаСтатистика Ливиняст.св.1ст.св.2Знч.,089215,915

Критерий однородности Ливиня используется для проверки дисперсий на гомогенность(однородность). В данном случае он подтверждает незначимость различий между дисперсиями, поскольку значение = 0.915 т.е явно больше 0.05. Поэтому результаты полученные с помощью дисперсионного анализа признаются корректными.

В таблице однофакторный дисперсионный анализ приведены результаты Однофакторного ДА

Сумма квадратов «между группами» представляет собой сумму квадратов разностей между общим средним значением и средними значениями в каждой группе с учетом весовых коэффициентов, равных числу объектов в группе

«Внутри групп» представляет собой сумму квадратов разностей среднего значения каждой группы и каждого значения этой группы

Столбец «ст.св.» содержит число степеней свободы V:

Межгрупповое (v=число групп - 1);

Внутригрупповое (v=число объектов - число групп - 1);

«средний квадрат» содержит отношение суммы квадратов к числу степеней свободы.

В столбце «F» приведено отношение среднего квадрата между группами к среднему квадрату внутри групп.

В столбце «знч» содержится значение вероятности того, что наблюдаемые различия случайны

Таблица 4 Формулы

Графики средних

По графику видно, что он убывает. Так же можно определить по таблице Fк k1=2, k2=15 табличное значение статистики равно 3,68. По правилу если , то нулевая гипотеза принимается, в противном случае принимается альтернативная гипотеза. Для нашего примера (7.45>3.68), следовательно принимается альтернативная гипотеза. Таким образом возвращаясь к условию задачи можно сделать вывод нулевая гипотеза отклоняется и принимается альтернативная : различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы ). Т.о. скорость предъявления слов влияет на объем их воспроизведения.

Однофакторный дисперсионный анализ

(Практическая реализация в Microsoft Office 2013)

На этом же примере рассмотрим однофакторный дисперсионный анализ в Microsoft Office 2013

Решение задачи в Microsoft Excel

Откроем Microsoft Excel.


Рисунок 1. Запись данных в Excel

Преобразуем данные в числовой формат. Для этого на вкладке главное есть пункт Формат а в нем есть подпункт Формат ячейки. На экранe появится окно Формат ячеек. Рис. 2 Выберем Числовой формат и введенные данные преобразуются. Как показано на Рис.3

Рисунок 2 Преобразуем в числовой формат

Рисунок 3 Результат после преобразование

На вкладке данные есть пункт анализ данных кликнем по нему.

Выберем Однофакторный дисперсионный анализ

Рисунок 6 Анализ данных

На экране появится окно Однофакторный дисперсионный анализ для проведения дисперсионного анализа данных (Рис.7). Произведем настройку параметров

Рис. 7 Настройка параметров для однофакторного анализа

Щелкнем мышью в поле Входной интервал. Выделим диапазон ячеек B2::F9, данные в котором нужно проанализировать. В поле Входной интервал группы элементов управления Входные данные, появится указанный диапазон.

Если в группе элементов управления Входные данные не установлен переключатель по строкам, то установите его, чтобы программа Ехcel воспринимала группы данных по строкам.

Если нужно Установите флажок Метки в первой строке в группе элементов управления Входные данные, если первый столбец выделенного диапазона данных содержит названия строк.

В поле ввода Альфа группы элементов управления Входные данные по умолчанию отображается величина 0,05, которая связана с вероятностью возникновения ошибки в дисперсионном анализе.

Если в группе элементов управления Параметры вывода не установлен переключатель выходной интервал то установим его либо выберем переключатель новый рабочий лист, чтобы данные были перенесены на новый лист.

Нажмем кнопку ОК, чтобы закрыть окно Однофакторный дисперсионный анализ. Появятся результаты дисперсионного анализа (Рис.8).

Рисунок 8 Вывод данных

В диапазоне ячеек А4:Е7 расположены результаты описательной статистики. В строке 4 находятся названия параметров, в строках 5 - 7 - статистические значения, вычисленные по партиям. В столбце «Счет» расположены количества измерений, в столбце «Сумма» - суммы величин, в столбце «Среднее» - средние арифметические значения, в столбце «Дисперсия» - дисперсии.

Полученные результаты показывают, что наибольшая средняя разрывная нагрузка в партии №1, а наибольшая дисперсия разрывной нагрузки -в партии №2, №1.

В диапазоне ячеек А10:G15 отображается информация, касающаяся существенности расхождений между группами данных. В строке 11 находятся названия параметров дисперсионного анализа, в строке 12 - результаты межгрупповой обработки, в строке 13 - результаты внутригрупповой обработки, а в строке 15 - суммы значений этих двух строк.

В столбце SS расположены величины варьирования, т.е. суммы квадратов по всем отклонениям. Варьирование, как и дисперсия, характеризует разброс данных.

В столбце df находятся значения чисел степеней свободы. Данные числа указывают на количество независимых отклонений, по которым будет вычисляться дисперсия. Например, межгрупповое число степеней свободы равняется разности количеству групп данных и единицы. Чем больше число степеней свободы, тем выше надежность дисперсионных параметров. Данные степеней свобод в таблице показывают, что для внутригрупповых результатов надежность выше, чем для межгрупповых параметров.

В столбце MS расположены величины дисперсии, которые определяются отношением варьирования и числа степеней свобод. Дисперсия характеризует степень разброса данных, но в отличие от величины варьирования, не имеет прямой тенденции увеличиваться с ростом числа степеней свобод. Из таблицы видно, что межгрупповая дисперсия значительно больше внутригрупповой дисперсии.

В столбце F находится, значение F-статистики, вычисляемое отношением межгрупповой и внутригрупповой дисперсий.

В столбце F критическое расположено F-критическое значение, рассчитываемое по числу степеней свободы и величине Альфа. F-статистика и F-критическое значение используют критерий Фишера-Снедекора.

Если F-статистика больше F-критического значения, то можно утверждать, что различия между группами данных носят неслучайный характер. т.е. на уровне значимости α = 0,05 (с надежностью 0,95) нулевая гипотеза отвергается и принимается альтернативная: что скорость предъявления слов влияет на объем их воспроизведения. В столбце Р-значение находится значение вероятности того, что расхождение между группами случайно. Так как в таблице данная вероятность очень мала, то отклонение между группами носит неслучайный характер.

Сравнение IBM SPSS Statistics 20 и Microsoft Office 2013

однофакторный дисперсионный случайный программа

Посмотрим на выводы программ, для этого взглянем еще раз на скриншоты.

Однофакторный дисперсионный анализгруппаСумма квадратовст.св.Средний квадратFЗнч.Между группами31,444215,7227,447,006Внутри групп31,667152,111Итого63,11117

Таким образом программа IBM SPSS Statistics 20 лучше производит счет, может округлять числа, строить наглядный график (см. полное решение) по которому можно определить ответ, в ней более подробно описаны, как условия задачи, так и их решение. В Microsoft Office 2013 есть свои плюсы, во - первых это, конечно, его распространённость так как Microsoft Office 2013 установлен почти в каждом компьютере, он выводит Fкритическое, что не предусмотрено в SPSS Statistics, а также там тоже просто и удобно считать. Все-таки обе этих программы очень хорошо подходят для решения задач на однофакторный дисперсионный анализ, у каждой из них есть свои плюсы и минусы, но если считать большие задачи с большими условиями рекомендовал бы SPSS Statistics.

Заключение

Дисперсионный анализ применяется во всех областях научных исследований, где необходимо проанализировать влияние различных факторов на исследуемую переменную. В современном мире есть множество задач на однофакторный дисперсионный анализ как в экономике, психологии, биологии. В результате изучения теоретического материала было установлено, что основой дисперсионного анализа является теорема о сложении дисперсий, из множество пакетов прикладных программ, в которых реализован аппарат дисперсионного анализа, подобранны самые лучшие и включены в работу. Благодаря появлению новых технологий каждый из нас может проводить исследования (решения), затрачивая при этом меньше времени и усилий на вычисления, при помощи ЭВМ. В процессе работы были поставлены цели, задачи, которые были достигнуты.

писок литературы

Сидоренко, Е.В. Методы математической обработки в психологии [Текст] / СПб. 2011. - 256 с.

Математическая статистика для психологов Ермолаев О.Ю [Текст] / Москва_2009 -336с

Лекция 7. Аналитическая статистика [Электронный ресурс]. , Дата доступа: 14.05.14

Теория вероятностей и математическая статистика[Текст] / Гмурман В.Е 2010 -479с