Болезни Военный билет Призыв

Какая температура в космосе абсолютный нуль. Температура в космосе по Цельсию. Какая температура в открытом космосе? Какая температура в космосе

Один из самых интересных вопросов о космосе касается изучения температуры за пределами земной атмосферы. Любопытствующих пользователей интересует также, какова она в межзвездном пространстве и будет ли она холоднее, если двинуться за пределы нашей галактики. С другой стороны, имеет ли смысл вообще вести речь о температуре в отношении вакуума, ведь если это пустота, то сложно представить, что она подвергается температурному воздействию. Давайте разберемся.

Сперва стоит выяснить, чем же, по сути, является температура , как появляется тепло и вследствие чего появляется холод. Для этого необходимо проанализировать строение материи на микроуровнях. Каждое вещество во Вселенной состоит из простейших частиц:

  • фотонов;
  • протонов;
  • электронов и проч.

Из их комбинаций формируются атомы и молекулы. Микрочастицы не представляют собой неподвижные объекты.

Молекулы и атомы постоянно движутся и колеблются. А простейшие частицы, более того, передвигаются со скоростями, которые близки к световым. Так какая здесь связь с температурой? Как ни странно, самая прямая: энергия перемещения микрочастиц и является теплом. Чем интенсивнее колеблются, к примеру, молекулы в кусочке металла, тем теплее он станет.

Если тепло - это сила перемещения микрочастиц, то какой именно окажется температурный показатель в вакууме , в том самом космосе? Разумеется, космическое пространство не совершенно пустое - через него передвигаются фотоны, которые несут свет. Однако, плотность материи в нем в разы ниже, чем у нас, на Земле. Чем мельче атомы, которые сталкиваются друг с другом, тем меньше согревается вещество, которое состоит из них.

Если газ, который находится под большим давлением, отпустить в разреженное пространство, то его температура быстро понизится. На данном принципе основывается работа всем знакомого компрессорного холодильника. Соответственно, температурные показатели в космосе, где частицы располагаются весьма далеко друг от друга и не могут сталкиваться, должны стремиться к полному нулю. Однако, так ли это на самом деле?

Как совершается передача тепла

Когда нагревается вещество , его атомы начинают испускают фотоны. Данное явление также отлично всем знакомо - аналогичный принцип наблюдается в накаляющемся металлическом волоске, когда электролампочка начинает ярко гореть. Одновременно фотоны начинают переносить тепло. Соответственно, энергия начинает перемещаться от горячего вещества к прохладному.

Космическое пространство пронизано не только фотонами, которые излучают многочисленные звезды и галактики. Вселенная исполнена в том числе реликтовым излучением, а оно образовалось на начальных этапах появления ее существования. Именно за счет того, что температура в космическом пространстве не может упасть до безусловного нуля. Даже вдали от галактик и звезд материя не прекратит получать тепло, рассеянное по Вселенной от того самого реликтового излучения.

Абсолютный нуль

Ни одно вещество невозможно остудить ниже минимальной температуры. Поскольку остывание - это просто утрата энергии . В строгом соответствии с законами термодинамики, в обусловленной точке энтропия системы дойдет до нуля. В данном состоянии вещество уже не будет способно дальше терять энергию. Это и станет предельно возможной низкой температурой.

Температура абсолютного нуля составляет минус 273,15 градуса по Цельсию или же ноль по системе Кельвина. На теоретическом уровне такую температуру возможно получить только в замкнутых системах. Однако на практике нигде, ни на Земле, ни в космосе, невозможно создать или сымитировать такую область пространства, на которую не могли бы оказывать влияния никакие внешние силы.

Температура в космосе

Вселенная далеко не однородна. Все ядра звезд разогреты до миллиардов градусов. Однако большая часть пространства, само собой разумеется, серьёзно холодней . Если стоит вопрос о температуре в открытом космосе, то, как это ни странно, она всего лишь на 2,7 градуса выше показателя абсолютного нуля. Соответственно, его показатель будет минус 270,45 по Цельсию.

Эта разница в 2,7 градуса возникает по причине реликтового излучения, уже упоминавшегося. Однако, Вселенная распространяется, разрастается (понятие энтропии), а это говорит о том, что ее температура станет потихоньку снижаться. Чисто умозрительно говоря, спустя триллионы лет, материя и вещества в ней имеют возможность остынуть до самой минимальной отметки.

Но вопрос состоит в том, завершится ли в таком случае расширение Вселенной так называемой «тепловой смертью» , или же она окажется более структурированной или разнородной из-за воздействия сил гравитации, - это и по сей день остается объектом дискуссий. В участках сосредоточения материи теплее, но ненамного.

Скопления пыли и газа, которые встречаются между звездами нашей галактики, обладают температурой в диапазоне 10−20 градусов выше отметки абсолютного нуля, иначе говоря, минус 263−253 градусов Цельсия. И лишь рядом со звездами, в центре которых происходят реакции ядерного синтеза, находится достаточно теплоты для комфортной жизни белковых форм существования.

Околоземная орбита

Теперь коснемся следующих тем, связанных с нашей главной тематикой:

  1. Какова температура рядом с нашей планетой?
  2. Нужно ли космонавтам, которые отправляются на МКС, припасать теплые вещи?

На околоземной орбите под прямыми солнечными лучами металл накаливается до 150−160 градусов Цельсия. Одновременно с этим в тени предметы остывают до минус 90−100 градусов Цельсия. По этой причине для выхода в открытый космос применяются скафандры:

  • с прочной теплоизоляцией, мощными нагревателями;
  • с отменно работающей системой охлаждения.

Они защищают тело человека от настолько суровых скачков температур.

Такие же экстремальные условия встречаются на плоскости Луны. На ее солнечной стороне даже жарче, чем в самое жаркое время в Сахаре. Температурная отметка там нередко превышает 120 градусов Цельсия. Однако, на несолнечной стороне она снижается предположительно до минус 170 градусов. Во время посадки на Луну американцы воспользовались скафандрами, которые имели порядка 17 слоев предохранительных материалов. Теплорегуляция обеспечивалась специально предназначенной системой трубочек, в которых циркулировала дистиллированная вода.

Прочие планеты Солнечной системы

На любой планете Солнечной системы климат зависит от наличия или отсутствия атмосферы . Атмосфера - вторая по значению причина после дальности до Солнца. Разумеется, по мере удаления от горячей звезды температура в межпланетном пространстве падает. Однако присутствие атмосферы дает возможность удержать часть тепла за счет парникового эффекта. Особенно яркой иллюстрацией данного явления могут послужить климатические характеристики Венеры.

Температура на поверхности этой планеты поднимается до 477 градусов Цельсия. За счет атмосферы Венера жарче Меркурия, находящегося по расположению ближе к Солнцу.

За счет реликтового излучения межзвездное пространство прогревается, а по этой причине температура в космосе не опускается ниже 270 градусов ниже нуля . Однако, как выясняется, могут быть и более холодные участки.

19 лет назад телескоп Хаббл заметил газопылевое облако, стремительно расширяющееся. Туманность, получившая название Бумеранг, сформировалась вследствие явления, знакомого по названию как «звездный ветер». Это весьма любопытный процесс. Суть его заключается в том, что из центральной звезды с громадной скоростью «выдувается» ток материи, которая, влетая в разреженное пространство космоса, остывает вследствие резкого расширения.

По оценкам научных работников, температура в туманности Бумеранг достигает всего одного градуса по Кельвину, то есть -272 Цельсия. Это наиболее низкая отметка в космическом пространстве, которую на текущий момент удалось зарегистрировать астрономам. Туманность Бумеранг располагается на расстоянии 5000 световых лет от нашей планеты. Отслеживать ее можно в плеяде Центавра.

Мы выяснили информацию насчет самой низкой температурной отметки в космосе - ее величину и точки нахождения. Для полноты раскрытия вопроса остается узнать, какие наиболее низкие температуры были зафиксированы на нашей планете . А произошло это в процессе недавних научных исследований. В 2000 году ученые Технологического университета города Хельсинки остудили металл родия практически до абсолютного нуля. В течение эксперимента они получили температуру равную. 1×10−10 по Кельвину. И эта отметка всего лишь на 1 миллиардную градуса больше нижнего рубежа.

Целью проведенных исследований было не только получение сверхнизких температур. Ключевая задача состояла в изучении магнетизма атомов родия. Данное исследование оказалось крайне эффективным и принесло ряд увлекательных результатов. Эксперимент дал возможность понять, каким образом магнетизм оказывает действие на сверхпроводящие электроны.

Получение рекордно низких температур складывается из нескольких поочередных этапов охлаждения . Сначала с помощью криостата родий остывает до температурной отметки 3×10−3 по Кельвину. На последующих двух ступенях используется метод ядерного адиабатического размагничивания. Металл родия остывает сначала до температуры 5×10−5 по Кельвину, а после этого падает до рекордно низкой температурной отметки.

Видео

Из этого видео вы узнаете, какие бывают температуры в космосе.

Не получили ответ на свой вопрос? Предложите авторам тему.

Любой предмет в окружающем нас мире имеет температуру, отличную от абсолютного нуля. По этой причине он излучает в окружающее пространство электромагнитные волны всех длин. Это утверждение верно, разумеется, и для человеческих тел. И мы с вами — излучатели не только тепла, но и радиоволн, и ультрафиолетового излучения. И, строго говоря, электромагнитных волн любого диапазона. Правда, интенсивность излучения для различных волн весьма различна. И если, скажем, тепловое излучение нашего тела легко ощутимо, то как радиостанция тело работает очень плохо.

Для обычных, реальных предметов распределение интенсивности излучения в зависимости от длины волны весьма сложно. Поэтому физики вводят понятие идеального излучателя. Им служит так называемое абсолютно черное тело. То есть тело, которое поглощает все падающее на него излучение. А при нагревании излучает во всех диапазонах по так называемому закону Планка. Закон этот показывает распределение энергии излучения в зависимости от длины волны. Для каждой температуры существует своя кривая Планка. И по ней (или по формуле Планка) легко найти, как будет испускать, скажем, радиоволны или рентгеновское излучение данное абсолютно черное тело.

Солнце как абсолютно черное тело

Разумеется, таких тел в природе не существует. Но есть объекты, по характеру излучения очень напоминающие абсолютно черные тела. Как это ни странно, к ним принадлежат звезды. И, в частности, наше . Распределение энергии в их спектрах напоминает кривую Планка. Если излучение подчиняется закону Планка, оно называется тепловым. Всякое отступление от этого правила заставляет астрономов искать причины таких аномалий.

Все это вступление понадобилось для того, чтобы читатель понял суть недавнего выдающегося открытия. Оно в значительной мере раскрывает роль человека во Вселенной.

Спутник «Ирас»

В январе 1983 г. на околоземную полярную орбиту с высотой 900 км был выведен международный спутник «Ирас». В его создании участвовали специалисты Великобритании, Нидерландов и США. Спутник имел рефлектор с поперечником зеркала 57 см. В фокусе него располагался приемник инфракрасного излучения. Главная цель, поставленная исследователями, — обзор неба в инфракрасном диапазоне для длин волн от 8 до 120 мкм. В декабре 1983 г. бортовая аппаратура спутника прекратила свою работу. Но тем не менее за 11 месяцев был собран колоссальный научный материал. Его обработка заняла несколько лет, но уже первые результаты привели к поразительным открытиям. Из 200000 инфракрасных космических источников излучения, зарегистрированных «Ирасом», прежде всего обратила на себя внимание Вега.

Эта главная звезда в Лиры является ярчайшей звездой северного полушария неба. Она удалена от нас на 26 световых лет и потому считается близкой звездой. Вега — горячая голубовато-белая звезда с температурой поверхности около 10000 кельвинов. Для нее легко вычислить и нарисовать соответствующую этой температуре кривую Планка. К удивлению астрономов оказалось, что в инфракрасном диапазоне излучение Веги не подчиняется закону Планка. Оно было почти в 20 раз мощнее, чем положено по этому закону. Источник инфракрасного излучения оказался протяженным, имеющим поперечник 80 а. е., что близко к поперечнику нашей планетной системы (100 а.е.). Температура этого источника близка к 90 К, и излучение от него наблюдается в основном в инфракрасной части спектра.

Облако вокруг Веги

Специалисты пришли к выводу, что источником излучения служит облако твердой пыли, со всех сторон окутывающее Вегу. Частицы пыли не могут быть очень мелкими — в противном случае их выбросит в пространство световым давлением лучей Веги. Немного более крупные частицы также просуществовали бы недолго. На них весьма заметно действовало бы боковое световое давление (эффект Пойнтинга — Робертсона). Тормозя полет частиц, оно заставляло бы частицы по спирали падать на звезду. Значит, пылевая оболочка Веги состоит из частиц, поперечник которых не меньше нескольких миллиметров. Вполне возможно, что спутниками Веги могут быть и гораздо более крупные твердые тела планетного типа.

Вега — молодая. Её возраст вряд ли превышает 300 миллионов лет. Тогда как возраст Солнца оценивается в 5 миллиардов лет. Поэтому естественно предположить, что около Веги открыта молодая планетная система. Она находится в процессе своего формирования.

Вега не единственная звезда, окруженнаяпо-видимому планетной системой. Вскоре пришло сообщение об открытии пылевого облака вокруг Фомальгаута — главной звезды из созвездия Южной Рыбы. Она почти на 4 световых года ближе Веги и также представляет собой горячую бело-голубую звезду.

Протопланетные диски

В последние годы японские астрономы обнаружили газовые диски, окружающие ряд звезд в созвездиях Тельца и Ориона. Их поперечники весьма внушительны — десятки тысяч астрономических единиц. Не исключено, что внутренние части этих дисков в будущем станут планетными системами. Рядом с молодой звездой типа Т Тельца американские астрономы нашли точечный инфракрасный источник. Он очень похож на зарождающуюся протопланету.

Все эти открытия заставляют оптимистически расценивать распространенность планетных систем во Вселенной. Еще совсем недавно звезды типа Веги и Фомальгаута исключались из числа тех, которые могут иметь такие системы. Они очень горячи, быстро вращаются вокруг оси и, как считалось, не отделили от себя планеты. Но если образование планет не связано с отделением от центральной звезды, её быстрое вращение не может служить аргументом против наличия у звезды каких-либо планет. В то же время не исключено, что в природе планетные системы в разных ситуациях возникают по-разному. Одно ныне бесспорно — наша планетная система далеко не уникальна во Вселенной.

1 апреля 2014 в 06:33

Факты о космосе, в которые трудно поверить

  • Фототехника ,
  • Космонавтика ,
  • Физика

1 апреля принято всех обманывать или подшучивать, но я пойду против традиции. Даже в этот день я не могу позволить себе обман читателей. Поэтому расскажу о реальных фактах, которые вызвали мое удивление. Разумеется, для кого-то эти факты не станут новостью, но, надеюсь, хоть что-то сможет заинтересовать каждого. И еще надеюсь, что многие, подобно мне, и вопреки заветам Шерлока Холмса, тащат в свой мозговой чердак не только нужное, но и просто интересное. Буду рад, если эта первоапрельская подборка заставит кого-нибудь забраться поглубже в источники и перепроверить мои заявления.

Температура в космосе, на орбите Земли равна +4°С


Если быть точным, то не на орбите Земли, а на расстоянии от Солнца равному удаленности орбиты Земли. И для абсолютно черного тела, т.е. такого, которое полностью поглотит солнечные лучи, ничего не отразив обратно.

Считается, что температура в космосе стремится к абсолютному нулю. Во-первых, это не совсем так, поскольку вся известная Вселенная нагрета до 3 К, реликтовым излучением. Во-вторых, вблизи от звезд температура повышается. А мы обитаем довольно близко к Солнцу. Сильная теплозащита нужна скафандрам и космическим кораблям потому, что они входят в тень Земли, и наше светило уже не может их согревать до указанного +4°С. В тени температура может опускаться до -160° С, например ночью на Луне. Это холодно, но до абсолютного нуля еще далеко.

Вот, для примера, показания бортового термометра спутника TechEdSat , который вращался на низкой околоземной орбите:

На него оказывала влияние еще и земная атмосфера, но в целом график демонстрирует не те ужасные условия, которые принято представлять в космосе.

На Венере местами идет свинцовый снег

Это, наверно, самый поразительный факт о космосе, который я узнал не так давно. Условия на Венере настолько отличаются от всего, что мы могли бы вообразить, что венериане спокойно могли бы летать в земной ад, чтобы отдохнуть в мягком климате и комфортных условиях. Поэтому, как бы ни казалась фантастической фраза “свинцовый снег”, для Венеры - это реальность.

Благодаря радару американского зонда Magellan вначале 90-х, ученые обнаружили на вершинах венерианских гор некое покрытие, обладающее высокой отражающей способностью в радиодиапазоне. Поначалу предполагалось несколько версий: последствие эрозии, отложение железосодержащих материалов и т.п. Позже, после нескольких экспериментов на Земле, пришли к выводу , что это самый натуральный металлический снег, состоящий из сульфидов висмута и свинца. В газообразном состоянии они выбрасываются в атмосферу планеты во время извержений вулканов. Затем термодинамические условия на высоте 2600 м способствуют конденсации соединений и выпадению на возвышенностях.

В Солнечной системе 13 планет… или больше

Когда Плутон разжаловали из планет, правилом хорошего тона стало знание, что в Солнечной системе всего восемь планет. Правда, при этом же, ввели новую категорию небесных тел - карликовые планеты. Это “недопланеты”, которые имеют округлую (или близкую к ней) форму, не являются ничьими спутниками, но, при этом не могут очистить собственную орбиту от менее массивных конкурентов. Сегодня считается, что таких планет пять: Церера, Плутон, Ханумеа, Эрида и Макемаке. Ближайшая к нам - Церера. Через год мы узнаем о ней намного больше чем сейчас, благодаря зонду Dawn. Пока знаем только, что она покрыта льдом и с двух точек на поверхности у нее испаряется вода со скоростью 6 литров в секунду. О Плутоне тоже узнаем в следующем году, благодаря станции New Horizons. Вообще, как 2014 год в космонавтике станет годом комет, 2015 год обещает стать годом карликовых планет.

Остальные карликовые планеты находятся за Плутоном, и какие-либо подробности о них мы узнаем не скоро. Буквально на днях нашли еще одного кандидата, правда официально его в список карликовых планет не включили, так же как и его соседку Седну. Но не исключено, что найдут еще, несколько более крупных карликов, поэтому число планет в Солнечной системе еще вырастет.

Телескоп Hubble - не самый мощный

Благодаря колоссальному объему снимков и впечатляющим открытиям, совершенным телескопом Hubble, у многих существует представление, что этот телескоп обладает самым высоким разрешением и способен увидеть такие детали, которые не увидеть с Земли. Какое-то время так и было: несмотря на то, что на Земле можно собрать большие зеркала на телескопах, существенное искажение в изображения вносит атмосфера. Поэтому даже “скромное” по земным меркам зеркало диаметром 2,4 метра в космосе, позволяет добиться впечатляющих результатов.

Однако, за годы, прошедшие с момента запуска Hubble и земная астрономия не стояла на месте, было отработано несколько технологий, позволяющих, если не полностью избавиться от искажающего действия воздуха, то существенно снизить его воздействие. Сегодня самое впечатляющее разрешение способен дать Very Large Telescope Европейской Южной обсерватории в Чили. В режиме оптического интерферометра, когда вместе работают четыре основных и четыре вспомогательных телескопа, возможно достичь разрешающей способности превышающей возможности Hubble примерно в пятьдесят раз.

К примеру, если Hubble дает разрешение на Луне около 100 метров на пиксель (привет всем, кто думает, что так можно рассмотреть посадочные аппараты Apollo), то VLT может различить детали до 2 метров. Т.е. в его разрешении американские спускаемые аппараты или наши луноходы выглядели бы как 1-2 пикселя (но смотреть не будут из-за чрезвычайно высокой стоимости рабочего времени).

Пара телескопов обсерватории Keck, в режиме интерферометра, способны превысить разрешение Hubble в десять раз. Даже по отдельности, каждый из десятиметровых телескопов Keck, используя технологию адаптивной оптики, способны превзойти Hubble примено в два раза. Для примера фото Урана:

Впрочем Hubble без работы не остается, небо большое, а широта охвата камеры космического телескопа превышает наземные возможности. А для наглядности можно посмотреть сложноватый, но информативный

Вопрос, поставленный в заголовке, в принципе является некорректным, ведь космос представляет собой пустоту, то есть пространство, где нет ничего. А температуру «ничего» измерить невозможно. Температура — следствие движения (активности) молекул, из которых состоят все материальные объекты. А нет материи – нет и температуры.

Теоретически ноль, а практически…

Космос лишь теоретически является вакуумом, ведь Вселенная согласно общепринятой научной (космологической) модели возникла в результате Большого взрыва, что обусловило реликтовое (космическое электромагнитное) излучение. Его спектр отвечает абсолютно черному телу, имеющему температуру по Кельвину – 2,725 (по Фаренгейту — минус 454,8°, по Цельсию – минус 270,425°).

Электромагнитное излучение в космосе – это дождь фотонов (безмассовых элементарных частиц), присутствующих в терагерцевом, инфракрасном, ультрафиолетовом, рентгеновском и гамма-излучении, а также в радиоволнах.

В наибольшей степени свойствами абсолютно черного тела обладает Солнце, его наружные слои имеют температуру около 6200 К, то есть температура в космосе может разниться.

Определенная роль в «температурном режиме» космоса принадлежит также планетам и их спутникам, астероидам, метеоритам и кометам, космической пыли и молекулам газов. Поэтому во Вселенной могут быть температурные отклонения. К примеру, в туманности Бумеранг (созвездие Центавра) благодаря «Хаббл» — автоматической обсерватории на орбите Земли была зафиксирована самая низкая космическая температура – 1 К (минус 272 градуса по шкале Цельсия). Ее причиной является «звездный ветер» (поток материи), идущий от центральной звезды.

О наличии космической пыли свидетельствует ночное свечение, обнаруженное астрономами в плоскости зодиакальных созвездий. Свечение, как установили ученые, — это свет, отражаемый от частиц космической пыли.

Материальными являются и космические лучи. В основном их структура состоит из стремительных ядер водородных и гелиевых атомов, а также более тяжелых ядер, к примеру, железа и никеля.

Таким образом, сколько градусов в космосе? Теоретически — 0° по шкале Кельвина или минус 273,15°С. На самом же деле, учитывая реликтовое излучение — 2,725 К (минус 270,425°С). Но это, если не брать во внимание тепло, излучаемое звездами и планетами.

Холодно — жарко

Отвечая на вопрос: «Какая температура в космосе», нужно отметить, что на все тела, находящиеся в космосе, действует не только смертельный для человека холод, но и губительная жара. Простейший пример тому – космический корабль. На его солнечной стороне – жарко, на теневой – холодно. И чем ближе или дальше звездолет от небесного светила, тем больше разница температур.

Положение Солнца влияет и на климат Земли. Одна теория гласит, что вращаясь вокруг Солнца, планета то приближается, то удаляется от него, поэтому происходит и смена времен года: зиму сменяет лето и наоборот. Однако на экваторе никогда не бывает зимы.

Дело в том, что земля вращается в наклонном положении относительно Солнца (23°27") и по-разному разворачивается к нему: то северным, то южным полушарием. Соответственно, лучи Солнца падают отвесно или под углом — в зависимости от этого земная поверхность нагревается больше или меньше.

Человечество относится к космосу, как к чему-то неизведанному и таинственному. Космическое пространство — это пустота, существующая между небесными телами. Атмосферы твердых и газообразных небесных тел ( и планеты) не имеют фиксированного верхнего предела, но постепенно становятся тоньше по мере увеличения расстояния до небесного тела. На определенной высоте это называется началом пространства. Какая температура в космосе, и прочие сведения будут рассказаны в этой статье.

Вконтакте

Общее понятие

В космическом пространстве существует высокий вакуум с низкой плотностью частиц. Воздух в космосе отсутствует. Из чего состоит космос? Это не пустое пространство, оно содержит:

  • газы;
  • космическую пыль;
  • элементарные частицы (нейтрино, космические лучи);
  • электрические, магнитные и гравитационные поля;
  • также электромагнитные волны (фотоны).

Абсолютный вакуум, или почти полный, делает пространство прозрачным, и позволяет наблюдать чрезвычайно удаленные объекты, такие как другие галактики. Но туман межзвездной материи также может серьезно затруднить представление о них.

Важно! Понятие пространства не следует отождествлять со Вселенной, которая включает в себя все космические объекты, даже звезды и планеты.

Поездки или перевозки в космическом пространстве или через него, называются космическими поездками.

Где начинается космос

Нельзя точно сказать с какой высоты начинается космическое пространство. Международная авиационная федерация определяет край пространства на высоте 100 км над уровнем моря, линия Кармана.

Нужно, чтобы летательный аппарат двигался с первой космической скоростью, тогда будет достигнута подъемная сила. ВВС США определили высоту в 50 миль (около 80 км), как начало пространства.

Обе высоты предложены в качестве пределов верхних слоёв . На международном уровне определения края пространства не существует.

Линия Кармана Венеры расположена примерно в 250 км высоты, Марса — около 80 километров. У небесных тел, которые не имеют, или почти не имеют никакой атмосферы, такие как Меркурий, Луна Земли или астероид, пространство начинается прямо на поверхности тела.

При повторном входе космического аппарата в атмосферу определяют высоту атмосферы для расчета траектории так, чтобы к точке повторного входа ее влияния было минимальным. Как правило, повторно начальный уровень, равен или выше, чем линия Карманы. НАСА использует значение 400000 футов (около 122 км).

Какое давление и температура в космосе

Абсолютный вакуум недостижим даже в космосе. Так как найдётся несколько атомов водорода на определённый объем. При этом, величины космического вакуума недостаточно, чтобы человек лопнул, как воздушный шарик, который перекачали. Не произойдет это той простой причине, что наше тело достаточно прочное, чтобы удержать свою форму, но это его всё равно не спасёт организм от смерти.

И дело тут не в прочности. И даже не в крови, хоть в ней есть примерно 50% воды, она находится в закрытой системе под давлением. Максимум – вскипит слюна, слёзы, и жидкости, что смачивают альвеолы в лёгких. Грубо говоря, человек погибнет от удушья. Даже на относительно малых высотах в атмосфере условия враждебны человеческому телу.

Ученый ведут спор : полный вакуум или нет в космосе, но все-таки склоняются ко мнению, полное значение недостижимо за счет молекул водорода.

Высота, в которой атмосферное давление соответствует давлению паров воды при температуре человеческого тела, н азывается линией Армстронга . Она расположена на высоте около 19.14 км. В 1966 году астронавт испытывал скафандр и был подвержен декомпрессии на высоте 36500 метров. За 14 секунд он отключился, но не взорвался, а выжил.

Максимальные и минимальные значения

Исходная температура в открытом космосе, установленная фоновым излучением Большого Взрыва, составляет 2.73 кельвина (К), что равно -270.45 °C.

Это самая низкая температура в космосе. Само пространство не имеет температуры, а только материя, которая в нем находится, и действующая радиация. Если быть более точным, то абсолютный ноль — это температура в -273.15 °C. Но в рамках такой науки как термодинамика, это невозможно.

Из-за радиации в космосе и держится температура в 2.7 К. Температура вакуума измеряется в единицах кинетической активности газа, как и на Земле. Излучение, заполняющее вакуум, имеет другую температуру, чем кинетическая температура газа, а это означает, что газ и излучение не находятся в термодинамическом равновесии.

Абсолютный ноль — это и есть самая низкая температур а в космосе.

Локально распределенная в пространстве материя может иметь очень высокие температуры . Земная атмосфера на большой высоте достигает температуры около 1400 К. Межгалактический плазменный газ с плотностью менее одного атома водорода на кубический метр может достигать температур нескольких миллионов К. Высокая температура в открытом космосе обусловлена ​скоростью частиц. Однако общий термометр будет показывать температуры вблизи абсолютного ноля, потому что плотность частиц слишком мала, чтобы обеспечить измеримую передачу тепла.

Вся наблюдаемая вселенная заполнена фотонами, которые были созданы во время Большого Взрыва. Он известен как космическое микроволновое фоновое излучение. Имеется большое количество нейтрино, называемое космическим нейтринным фоном. Текущая температура черного тела фонового излучения составляет около 3-4 К. Температура газа в космическом пространстве всегда является по меньшей мере температурой фонового излучения, но может быть намного выше. Например, корона имеет температуры, превышающие 1.2-2.6 миллионов К.

Человеческое тело

С температурой связано другое заблуждение, которое касается тела человека . Как известно, наше тело в среднем состоит на 70% из воды. Теплу, которое она выделяет в вакууме, некуда деться, соответственно, теплообмен в космосе не происходит и человек перегревается.

Но пока он успеет это сделать, то умрёт от декомпрессии. По этой причине, одной из проблем с которой сталкиваются космонавты – это жара. А обшивка корабля, который находится на орбите под открытым солнцем, может сильно нагреваться. Температура в космосе по Цельсию может составить 260 °C на металлической поверхности.


Твердые тела
в околоземном или межпланетном пространстве испытывают большое излучающее тепло на стороне, обращенной к солнцу. На солнечной стороне или, когда тела находятся в тени Земли, они испытывают сильный холод, потому что выделяют свою тепловую энергию в космос.

Например, костюм космонавта, совершающего выход в пространство на Международной космической станции, будет иметь температуру около 100 °C на стороне, обращенной к солнцу.

На ночной стороне Земли солнечное излучение затеняется, а слабое инфракрасное излучение земли заставляет скафандр остыть. Его температура в космосе по Цельсию будет составлять примерно до -100 °C.

Теплообмен

Важно! Теплообмен в космосе возможен одним единственным видом – излучением.

Это хитрый процесс и его принцип используется для охлаждения поверхностей аппаратов. Поверхность поглощает лучистую энергию, что падает на неё, и в то же время излучает в пространство энергию, которая равна сумме поглощённой и подводимой изнутри.

Неизвестно точно сказать, каким может быть давление в космосе, но оно очень маленькое.

В большинстве галактик наблюдения показывают, что 90% массы находится в неизвестной форме, называемой тёмной материей, которая взаимодействует с другим веществом через гравитационные, но не электромагнитные силы.

Большая часть массовой энергии в наблюдаемой вселенной, является плохо понимаемой вакуумной энергией пространства, которую астрономы и называют тёмной энергией. Межгалактическое пространство занимает большую часть объема Вселенной, но даже галактики и звёздные системы почти полностью состоят из пустого пространства.

Исследования

Люди начали в течение 20-го века с появлением высотных полетов на воздушном шаре, а затем пилотируемых ракетных запусков.

Земная орбита была впервые достигнута Юрием Гагариным из Советского Союза в 1961 году, а беспилотные космические аппараты с тех пор добрались до всех известных .

Из-за высокой стоимости полёта в космос, пилотируемый космический полет был ограничен низкой земной орбитой и Луной.

Космическое пространство представляет собой сложную среду для изучения человека из-за двойной опасности: вакуума и излучения. Микрогравитация также отрицательно влияет на физиологию человека, которая вызывает, как атрофию мышц, так и потерю костной массы. В дополнение к этим проблемам здравоохранения и окружающей среды, экономическая стоимость помещения объектов, в том числе людей, в космос очень высока.

Насколько холодно в космосе? Может быть температура еще ниже?

Температуры в разных точках вселенной

Вывод

Поскольку свет имеет конечную скорость, ограничиваются размеры непосредственно наблюдаемой вселенной. Это оставляет открытым вопрос о том, является ли Вселенная конечной или бесконечной. Космос продолжает быть загадкой для человека , полной феноменов. На многие вопросы современная наука пока не может дать ответы. Но какая температура в космосе, уже удалось выяснить, а какое давление в пространстве — со временем удастся измерять.