Болезни Военный билет Призыв

Как выглядит кожура яблока под микроскопом. Практическая работа «Строение клубня. Сам себе учёный

Цель: Ознакомиться со строением крахмальных зерен основных пищевых растений

Методические указания. Наиболее распространенное запасное вещество растений – полисахарид крахмал. Первичный крахмал образуется из продуктов фотосинтеза в листьях растений и имеет вид мелких крупинок. Здесь он не хранится, а транспортируется для построения органов растений или откладывается в виде запасного вещества в плодах.

Рис. 6. Крахмальные зерна различных видов растений

А – из клубней картофеля: 1 – простое; 2 – сложное; 3 – полусложное;

Б – пше-ница (простое); В – овес (сложное); Г – кукуруза (простое);

Д – рис (сложное); Е – гречиха (простое)

Здесь он не хранится, а транспортируется для построения органов растений или откладывается в виде запасного вещества в плодах.

Вторичный или запасной крахмал образуется в лейкопластах (амилопластах) в специализированных органах – корневищах, клубнях, семенах, плодах. Из этого крахмала образуются простые, полусложные и сложные зерна.

Если в лейкопласте имеется одна точка, вокруг которой откладываются слои крахмала, то формируется простое крахмальное зерно (рис. А1, Б, Г).

Сложное зерно образуется, если точек отложения две и больше (рис. А2; В, Д, Е).

Полусложные зерна образуются в том случае, если крахмал сначала откладывается вокруг нескольких точек, а затем после их соприкосновения образуются общие слои (рис.6,А3). Простые крахмальные зерна имеют пшеница, рожь, кукуруза, сложные – рис, овес, гречиха. В клубнях картофеля встречаются все три типа крахмальных зерен. Форма, размер, строение крахмальных зерен специфичны для каждого вида растений. Поэтому при анализе продовольственного сырья растительного происхождения, в частности муки, по строению крахмальных зерен можно идентифицировать и установить в них наличие примесей.

Задание: Изготовить препараты крахмальных зерен картофеля, пшеницы, овса, риса, гречихи. Произвести окраску (реакцию) раствором йода. Зарисовать при большом увеличении крахмальные зерна, указанных выше растений, сохраняя при этом между ними пропорции. Подписать рисунки, указав вид растения и тип крахмальных зерен.

Последовательность выполнения работы:

Крахмальные зерна картофеля. Отрезают небольшой кусочек клубня и делают им мазок по предметному стеклу с предварительно нанесенной на него каплей воды. Каплю накрывают покровным стеклом, микроскопируют при малом, затем при большом увеличении. Необходимо постараться найти все три типа крахмальных зерен (иногда этого сделать не удается). При рассмотрении слоистости крахмальных зерен прикрывают диафрагму и слегка вращают микровинт. Зарисовать увиденную картину.

Осуществляют окраску препарата раствором йода и, глядя в микроскоп, наблюдают процесс окрашивания.

Препараты крахмальных зерен пшеницы, овса, риса и гречихи лучше готовить из разбухших семян. При этом, разрезав зерновку, извлекают содержимое ее (эндосперм) и переносят его в каплю воды на предметное стекло. Далее поступают, как в предыдущем случае, и рассматривают при большом увеличении.

Необходимо зарисовать форму крахмальных зерен пшеницы, овса, риса и гречихи. Необходимо научиться дифференцировать их по строению и определять видовую принадлежность.

Даже невооружённым глазом, а ещё лучше под лупой можно видеть, что мякоть зрелого арбуза, помидора, яблока состоит из очень мелких крупинок, или зёрнышек. Это клетки — мельчайшие «кирпичики», из которых состоят тела всех живых организмов.

Что делаем. Изготовим временный микропрепарат плода помидора.

Предметное и покровное стекла протрите салфеткой. Пипеткой нанесите каплю воды на предметное стекло (1).

Что делать. Препаровальной иглой возьмите маленький кусочек мякоти плода и положите его в каплю воды на предметное стекло. Разомните мякоть препаровальной иглой до получения кашицы (2).

Накройте покровным стеклом, Излишек воды удалите фильтровальной бумагой (3).

Что делать. Рассмотрите временный микропрепарат с помощью лупы.

Что наблюдаем. Хорошо видно, что мякоть плода помидора имеет зернистое строение (4).

Это клетки мякоти плода помидора.

Что делаем: Рассмотрите микропрепарат под микроскопом. Найдите отдельные клетки и рассмотрите при малом увеличении (10х6), а затем (5) при большом (10х30).

Что наблюдаем. Цвет клетки плода помидора изменился.

Изменила свой цвет и капля воды.

Вывод: основные части растительной клетки — это оболочка клетки, цитоплазма с пластидами, ядро, вакуоли. Наличие в клетке пластид, — характерный признак всех представителей царства растений.

Станислав Яблоков, Ярославский государственный университет им. П. Г. Демидова

Вот уже два года, как я наблюдаю за микромиром у себя дома, и год, как снимаю его на фотокамеру. За это время собственными глазами увидел, как выглядят клетки крови, чешуйки, опадающие с крыльев бабочек, как бьётся сердце улитки. Конечно, многое можно было бы узнать из учебников, видеолекций и тематических сайтов. Но при этом не было бы ощущения присутствия, близости к тому, что не видно невооружённым глазом. Что это не просто слова из книжки, а личный опыт. Опыт, который сегодня доступен каждому.

Кожица лука. Увеличение 1000×. Окраска йодом. На фотографии видно клеточное ядро.

Кожица лука. Увеличение 1000×. Окраска азур-эозином. На фотографии в ядре заметно ядрышко.

Картофель. Синие пятна - зёрна крахмала. Увеличение 100×. Окраска йодом.

Плёнка на спине таракана. Увеличение 400×.

Кожура сливы. Увеличение 1000×.

Крыло жучка бибиониды. Увеличение 400×.

Крыло бабочки боярышницы. Увеличение 100×.

Чешуйки с крыльев моли. Увеличение 400×.

Хлоропласты в клетках травы. Увеличение 1000×.

Детёныш улитки. Увеличение 40×.

Лист клевера. Увеличение 100×. Некоторые клетки содержат тёмно-красный пигмент.

Лист земляники. Увеличение 40×.

Хлоропласты в клетках водоросли. Увеличение 1000×.

Мазок крови. Окраска азур-эозином по Романовскому. Увеличение 1000×. На фотографии: эозинофил на фоне эритроцитов.

Мазок крови. Окраска азур-эозином по Романовскому. Увеличение 1000×. На фотографии: слева - моноцит, справа - лимфоцит.

Что купить

Театр начинается с вешалки, а микросъёмка с покупки оборудования, и прежде всего - микроскопа. Одна из основных его характеристик - набор доступных увеличений, которые определяются произведением увеличений окуляра и объектива.

Не всякий биологический образец хорош для просмотра при большом увеличении. Связано это с тем, что чем больше увеличение оптической системы, тем меньше глубина резкости. Следовательно, изображение неровных поверхностей препарата частично будет размыто. Поэтому важно иметь набор объективов и окуляров, позволяющий вести наблюдения с увеличением от 10-20 до 900-1000×. Иногда бывает оправданно добиться увеличения 1500× (окуляр 15 и объектив 100×). Большее увеличение бессмысленно, так как более мелкие детали не позволяет видеть волновая природа света.

Следующий немаловажный момент - тип окуляра. «Сколькими глазами» вы хотите рассматривать изображение? Обычно выделяют монокулярную, бинокулярную и тринокулярную его разновидности. В случае монокуляра придётся щуриться, утомляя глаз при длительном наблюдении. В бинокуляр смотрят обоими глазами (не следует путать его со стереомикроскопом, дающим объёмное изображение). Для фото- и видеосъёмки микрообъектов понадобится «третий глаз» - насадка для установки аппаратуры. Многие производители выпускают специальные камеры для своих моделей микроскопов, но можно использовать и обычный фотоаппарат, купив к нему переходник.

Наблюдение при больших увеличениях требует хорошего освещения в силу небольшой апертуры объективов. Световой пучок от осветителя, преобразованный в оптическом устройстве - конденсоре, освещает препарат. В зависимости от характера освещения существует несколько способов наблюдения, самые распространённые из которых - методы светлого и тёмного поля. В первом, самом простом, знакомом многим ещё со школы, препарат освещают равномерно снизу. При этом через оптически прозрачные детали препарата свет распространяется в объектив, а в непрозрачных он поглощается и рассеивается. На белом фоне получается тёмное изображение, отсюда и название метода. С тёмнопольным конденсором всё иначе. Световой пучок, выходящий из него, имеет форму конуса, лучи в объектив не попадают, а рассеиваются на непрозрачном препарате, в том числе и в направлении объектива. В итоге на тёмном фоне виден светлый объект. Такой метод наблюдения хорош для исследования прозрачных малоконтрастных объектов. Поэтому, если вы планируете расширить набор методов наблюдения, стоит выбирать модели микроскопов, в которых предусмотрена установка дополнительного оборудования: конденсора тёмного поля, тёмнопольной диафрагмы, устройств фазового контраста, поляризаторов и т.п.

Оптические системы не идеальны: прохождение света через них сопряжено с искажениями изображения - аберрациями. Поэтому объективы и окуляры стараются изготавливать так, чтобы эти аберрации максимально устранить. Всё это сказывается на их конечной стоимости. Из соображений цены и качества имеет смысл покупать планахроматические объективы для профессиональных исследований. Сильные объективы (с увеличением, например, 100×) имеют числовую апертуру больше 1 при использовании иммерсии, масла с высоким показателем преломления, раствора глицерина (для УФ-области) или просто воды. Поэтому, если кроме «сухих» объективов вы берёте ещё и иммерсионные, стоит заранее позаботиться об иммерсионной жидкости. Её показатель преломления обязательно должен соответствовать конкретному объективу.

Иногда следует обратить внимание на устройство предметного столика и рукояток для управления им. Стоит выбрать и тип осветителя, которым может быть как обычная лампа накаливания, так и светодиод, который ярче и греется меньше. Микроскопы тоже имеют индивидуальные особенности. Каждая дополнительная опция - это добавка в цене, поэтому выбор модели и комплектации остаётся за потребителем.

Сегодня нередко покупают недорогие микроскопы для детей, монокуляры с небольшим набором объективов и скромными параметрами. Они могут послужить хорошей отправной точкой не только для исследования микромира, но и для ознакомления с основными принципами работы микроскопа. После этого ребёнку уже стоит купить более серьёзное устройство.

Как смотреть

Можно купить далеко не дешёвые наборы готовых препаратов, но тогда не таким ярким будет ощущение личного участия в исследовании, да и наскучат они рано или поздно. Поэтому следует позаботиться и об объектах для наблюдения, и о доступных средствах для подготовки препаратов.

Наблюдение в проходящем свете предполагает, что исследуемый объект достаточно тонок. Даже кожура ягоды или фрукта слишком толста, поэтому в микроскопии исследуют срезы. В домашних условиях их делают обычными бритвенными лезвиями. Чтобы не смять кожуру, её помещают между кусочками пробки или заливают парафином. При определённой сноровке можно достигнуть толщины среза в несколько клеточных слоёв, а в идеале следует работать с моноклеточным слоем ткани - несколько слоёв клеток создают нечёткое сумбурное изображение.

Исследуемый препарат помещают на предметное стекло и в случае необходимости закрывают покровным. Купить стёкла можно в магазине медицинской техники. Если препарат плохо прилегает к стеклу, его фиксируют, слегка смачивая водой, иммерсионным маслом или глицерином. Не всякий препарат сразу открывает свою структуру, иногда ему нужно «помочь», подкрасив его форменные элементы: ядра, цитоплазму, органеллы. Неплохими красителями служат йод и «зелёнка». Йод достаточно универсальный краситель, им можно окрашивать широкий спектр биологических препаратов.

При выезде на природу следует запастись баночками для набора воды из ближайшего водоёма и маленькими пакетиками для листьев, высохших остатков насекомых и т.п.

Что смотреть

Микроскоп приобретён, инструменты закуплены - пора начинать. И начать следует с самого доступного - например, кожуры репчатого лука. Тонкая сама по себе, подкрашенная йодом, она обнаруживает в своём строении чётко различимые клеточные ядра. Этот опыт, хорошо знакомый со школы, и стоит провести первым. Луковую кожуру нужно залить йодом на 10-15 минут, после чего промыть под струёй воды.

Кроме того, йод можно использовать для окраски картофеля. Срез необходимо сделать как можно более тонким. Буквально 5-10 минут его пребывания в йоде проявят пласты крахмала, который окрасится в синий цвет.

На балконах часто скапливается большое количество трупиков летающих насекомых. Не торопитесь от них избавляться: они могут послужить ценным материалом для исследования. Как видно из фотографий, вы обнаружите, что на крыльях насекомых есть волоски, которые защищают их от намокания. Большое поверхностное натяжение воды не позволяет капле «провалиться» сквозь волоски и коснуться крыла.

Если вы когда-нибудь задевали крыло бабочки или моли, то, наверное, замечали, что с неё слетает какая-то «пыль». На снимках отчётливо видно, что это не пыль, а чешуйки с крыльев. Они имеют разную форму и довольно легко отрываются.

Кроме того, с помощью микроскопа можно изучить строение конечностей насекомых и пауков, рассмотреть, например, хитиновые плёнки на спине таракана. И при должном увеличении убедиться, что такие плёнки состоят из плотно прилегающих (возможно, сросшихся) чешуек.

Не менее интересный объект для наблюдения - кожура ягод и фруктов. Однако либо её клеточное строение может быть неразличимым, либо её толщина не позволит добиться чёткого изображения. Так или иначе, придётся сделать немало попыток, прежде чем получится хороший препарат: перебрать разные сорта винограда, чтобы найти тот, у которого красящие вещества кожуры имели бы интересную форму, или сделать несколько срезов кожицы сливы, добиваясь моноклеточного слоя. В любом случае вознаграждение за проделанную работу будет достойным.

Ещё более доступны для исследования трава, водоросли, листья. Но, несмотря на повсеместную распространённость, выбрать и приготовить из них хороший препарат бывает непросто. Самое интересное в зелени - это, пожалуй, хлоропласты. Поэтому срез должен быть исключительно тонким.

Приемлемой толщиной нередко обладают зелёные водоросли, встречающиеся в любых открытых водоёмах. Там же можно найти плавучие водоросли и микроскопических водных обитателей - мальков улитки, дафний, амёб, циклопов и туфелек. Маленький детёныш улитки, оптически прозрачный, позволяет разглядеть у себя биение сердца.

Сам себе исследователь

После изучения простых и доступных препаратов захочется усложнить технику наблюдения и расширить класс исследуемых объектов. Для этого понадобится и специальная литература, и специализированные средства, свои для каждого типа объектов, но всё-таки обладающие некоторой универсальностью. Например, метод окраски по Граму, когда разные виды бактерий начинают различаться по цвету, можно применить и для других, не бактериальных, клеток. Близок к нему и метод окраски мазков крови по Романовскому. В продаже имеется как уже готовый жидкий краситель, так и порошок, состоящий из его компонентов - азура и эозина. Их можно купить в специализированных магазинах либо заказать в интернете. Если раздобыть краситель не удастся, можно попросить у лаборанта, делающего вам анализ крови в поликлинике, стёклышко с окрашенным её мазком.

Продолжая тему исследования крови, следует упомянуть камеру Горяева - устройство для подсчёта количества клеток крови и оценки их размеров. Методы исследования крови и других жидкостей с помощью камеры Горяева описаны в специальной литературе.

В современном мире, где разнообразные технические средства и устройства находятся в шаговой доступности, каждый сам решает, на что ему потратить деньги. Это может быть дорогостоящий ноутбук или телевизор с запредельным размером диагонали. Находятся и те, кто отводит свой взор от экранов и направляет его далеко в космос, приобретая телескоп. Микроскопия может стать интересным хобби, а для кого-то даже и искусством, средством самовыражения. Глядя в окуляр микроскопа, проникают глубоко внутрь той природы, часть которой мы сами.

«Наука и жизнь» о микросъёмке:

Микроскоп «Аналит» - 1987, № 1.

Ошанин С. Л. С микроскопом у пруда. - 1988, № 8.

Ошанин С. Л. Невидимая миру жизнь. - 1989, № 6.

Милославский В. Ю. . - 1998, № 1.

Мологина Н. . - 2007, № 4.

Словарик к статье

Апертура - действующее отверстие оптической системы, определяемое размерами зеркал, линз, диафрагм и других деталей. Угол α между крайними лучами конического светового пучка называется угловой апертурой. Числовая апертура А = n sin(α/2), где n - показатель преломления среды, в которой находится объект наблюдения. Разрешающая способность прибора пропорциональна А, освещённость изображения А 2 . Чтобы увеличить апертуру, применяют иммерсию.

Иммерсия - прозрачная жидкость с показателем преломления n > 1. В неё погружают препарат и объектив микроскопа, увеличивая его апертуру и тем самым повышая разрешающую способность.

Планахроматический объектив - объектив с исправленной хроматической аберрацией, который создаёт плоское изображение по всему полю. Обычные ахроматы и апохроматы (аберрации исправлены для двух и для трёх цветов соответственно) дают криволинейное поле, которое исправить невозможно.

Фазовый контраст - метод микроскопических исследований, основанный на изменении фазы световой волны, прошедшей сквозь прозрачный препарат. Фаза колебания не видна простым глазом, поэтому специальная оптика - конденсор и объектив - превращает разность фаз в негативное или позитивное изображение.

Моноциты - одна из форм белых клеток крови.

Хлоропласты - зелёные органеллы растительных клеток, отвечающие за фотосинтез.

Эозинофилы - клетки крови, играющие защитную роль при аллергических реакциях.

Клубни отличаются от корневищ тем, что у них стебель короткий и толстый, а листья недоразвиты. Как и на всяком побеге, у них имеются почки и расположены они на верхушке и в пазухах недоразвитых листьев. Придаточные корни на клубнях не развиваются. Клубни у картофеля вырастают из подземных почек не сразу. Сначала из почки растёт длинный белый подземный побег — столон. Столон живёт меньше года. Верхушка со временем начинает утолщаться и превращается к осени в клубень.

В клубне накапливается много крахмала в виде мелких зёрен. Клубень картофеля — это видоизменённый побег с утолщённым стеблем и мелкими листьями.

Что делать. Рассмотрите внешнее строение клубня картофеля.

Что наблюдать. Найдите на его поверхности верхушечную и пазушные почки (глазки), рубцы от листьев (бровки) и рубец от отделившегося столона.

Что делать. Подсчитайте число глазков на клубне.

Что наблюдать. Найдите на клубне верхушку и основание.

Обратите внимание на неравномерное распределение глазков на утолщённом стебле.

Ту часть клубня, где больше глазков, называют верхушкой, а противоположную где рубец от столона — основанием.

Что делать. Разрежьте клубень на две части. На разрез клубня капните каплю раствора иода.

  • Как изменилась окраска разреза клубня?
  • Какие вещества отложены в клетках клубня?
  • Каково значение клубня в жизни растения?

Подготовить к отчёту. Зарисуйте в тетради внешний вид клубня и подпишите его части. Запишите признаки, доказывающие, что клубень — это побег.

Ткань (мякоть) картофеля, овощей и плодов состоит из тон­костенных клеток, разрастающихся примерно одинаково во всех направлениях. Такую ткань называют паренхимной. Содер­жимое отдельных клеток представляет собой полужидкую мас­су - цитоплазму, в которую погружены различные клеточные элементы (органеллы) - вакуоли, пластиды, ядра, крахмальные зерна и др. (рис. 9.2). Все органеллы клетки окружены мембрана­ми. Каждая клетка покрыта оболочкой, представляющей собой первичную клеточную стенку.

Оболочки каждых двух соседних клеток скрепляются с по­мощью срединных пластинок, образуя остов паренхимной ткани (рис. 9.3).

Контакт между содержимым клеток осуществляется через плазмодесмы, которые представляют собой тонкие цитоплазматические тяжи, проходящие через оболочки.

Поверхность отдельных экземпляров овощей и плодов по­крыта покровной тканью - эпидермисом (плоды, наземные овощи) или перидермой (картофель, свекла, репа и др.).

Поскольку в свежих овощах содержится значительное коли­чество воды, то все структурные элементы их паренхимной ткани в той илиЧшой степени гидратированы. Вода как растворитель оказывает важное влияние на механические свойства растительной ткани. Гидратируя в той или иной степени гидрофильные соединения, она пластифицирует структуру стенок и срединных пластин. Это обеспечивает достаточно высокое тургорное дав­ление в тканях.

Тургор - состояние напряжения, возникающее вследствие давле­ния содержимого клеток на их эластичные оболочки и давления оболо­чек на содержимое клеток.

Тургорное давление может снижаться, например, при увядании или подсыхании овощей и плодов или возрастать, что наблюдается при погружении увядших овощей в воду. Это свойство овощей и плодов можно учитывать при их кулинарной переработке. Так, картофель и корнеплоды с ослабленным тур-гором перед механической очисткой рекомендуют замачивать в течение нескольких часов для сокращения времени обработки и снижения количества отходов.

Рис. 9.2. Строение растительной клетки

Рис. 9.3. Стенка растительной ткани:

1 -- срединная пластинка; 2 - плазмалемма.

Увеличение х 45000 (по Ж.-К. Ролан, А. Сёлеши, Д. Сёлеши)

Вакуоль - самый крупный элемент, расположенный в цен­тре клетки. Она представляет собой своеобразный пузырек, запол­ненный клеточным соком, и является наиболее гидратированным элементом клетки паренхимы овощей и плодов (95...98 % воды). В состав сухого остатка клеточного сока входят в том или ином количестве практически все водорастворимые пищевые вещества.



Основная масса Сахаров, содержащихся в картофеле, овощах и плодах в свободном состоянии, растворимого пектина, органи­ческих кислот, водорастворимых витаминов и полифенольных соединений концентрируется в вакуолях.

В клеточном соке содержится примерно 60... 80 % мине­ральных веществ от общего их количества в овощах и плодах. Со­ли одновалентных металлов (калия, натрия и др.) практически полностью концентрируются в клеточном соке. Солей же каль­ция, железа, меди, магния содержится в нем несколько меньше, так как они входят в состав других элементов тканей.

Клеточный сок содержит как свободные аминокислоты, так и растворимые белки, которые образуют в вакуолях растворы от­носительно слабой концентрации.

Тонкий слой цитоплазмы с другими органеллами занима­ет в клетке пристенное положение. В состав цитоплазмы входят в основном белки, ферменты и в небольшом количестве липиды (соотношение белков и липидов 90:1). В цитоплазме, как и в ва­куолях, они находятся в виде раствора, но более концентриро­ванного (10 %).



Пластиды - это органеллы, которые присутствуют только в растительных клетках. Наиболее типичные из них - хлоропласты, которые содержат хлорофилл. В определенных физиологи­ческих условиях пластиды не образуют хлорофилл; в этих случа­ях они вырабатывают либо белки (протеопласты), либо липиды и пигменты (хромопласты), но чаще всего такие пластиды выпол­няют резервные функции, и тогда в них накапливается крахмал (амилопласты), поэтому пластиды бывают окрашенными и бес­цветными. Последние называют лейкопластами.

В состав хлоропластов кроме хлорофилла входят белки и липиды в соотношении 40:30, а также крахмальные зерна.

В процессе развития хромопластов образуются крупные глобулы, или кристаллы, содержащие каротиноиды, в том числе и каротины. Присутствие этих пигментов в зеленых овощах и не­которых плодах (крыжовник, виноград, слива ренклод и др.) обусловливает различные оттенки их зелено-желтой окраски. Каротины придают желто-оранжевую окраску моркови, репе и др. Однако не всегда оранжевая окраска указывает на высокое содержание их в плодах и овощах; например, окраска апельси­нов, мандаринов обусловлена другим пигментом - криптоксантином. В то же время в зеленых овощах относительно высокое содержание каротина может быть замаскировано хлорофиллом.

Амилопласты заполнены в основном крупными гранула­ми крахмала. Следует отметить, что в растительных клетках все содержащиеся в них крахмальные зерна находятся в пространст­ве, ограниченном оболочкой амилопластов или других пластид.

Ядро клетки содержит хроматин (деспирализованные хро­мосомы), состоящий из ДНК и основных белков (гистонов), и ядрышки, богатые РНК.

Мембраны - это активный молекулярный комплекс, спо­собный осуществлять обмен веществ и энергии.

Цитоплазма на границе с клеточной оболочкой покрыта про­стой мембраной, называемой плазмалеммой. Внешнюю гра-ни1ДУ плазмалеммы можно увидеть при рассмотрении под микро­скопом препаратов растительной ткани, обработанных концент рированным раствором поваренной соли. Из-за разности между осмотическим давлением внутри клетки и вне ее происходит пе­реход воды из клетки в окружающую среду, вызывающий плазмо­лиз - отделение цитоплазмы от клеточной оболочки. Аналогич­но плазмолиз можно вызвать, обрабатывая срезы растительной ткани концентрированными растворами Сахаров или кислот.

Цитоплазматические мембраны регулируют клеточную про­ницаемость, избирательно задерживая либо пропуская молекулы и ионы тех или иных веществ в клетку и за ее пределы.

Вакуоль, как и цитоплазма, также окружена простой мембра­ной, называемой тонопластом.

Основные структурные компоненты мембран - белки и по­лярные липиды (фосфолипиды). Существуют различные типы строения цитоплазматической мембраны: трехслойное (из двух слоев белка с биомолекулярной прослойкой липидов), грануляр­ное (из частиц, диаметр которых составляет около 100 Ю- 10 м, или из более мелких частиц - субъединиц). В настоящее время мембрану рассматривают как жидкую структуру, пронизанную белками.

Поверхность ядер, пластид и других цитоплазматических структур покрыта двойной мембраной, состоящей из двух рядов простых мембран, разделенных перинуклеарным пространст­вом. Эти мембраны препятствуют также смешиванию содержи­мого двух соседних органелл. Отдельные вещества переходят из одних органелл в другие лишь в строго определенных количест­вах, необходимых для протекания физиологических процессов в тканях.

Клеточные оболочки в совокупности со срединны­ми пластинками называют клеточными стенками. В от­личие от мембран они характеризуются полной проницаемостью.

Клеточные стенки составляют 0,7...5,0 % сырой массы ово­щей и плодов. Так, в овощах плодовой группы, например в ка­бачках, количество их не превышает 0,7 %. В листовых овощах - белокочанной капусте, салате, шпинате - около 2 %. Наиболь­шим содержанием клеточных стенок отличаются корнеплоды - 2...4%.

В состав клеточных стенок входят в основном полисахариды (80...95 %) - клетчатка, гемицеллюлозы и протопектин, поэтому их часто называют углеводами клеточных стенок. В со­став клеточных оболочек входят все перечисленные выше поли­сахариды. Считают, что срединные пластинки состоят в основном из кислых полисахаридов (протопектина), играющих роль межклеточного цементирующего вещества, которому иногда со­путствуют протеиновые соединения, а в наиболее старых тка­нях - лигнин.

Таб.9.1. Содержание экстенсина и оксипролина

в клеточных стенках некоторых растительных продуктов (%)

Кроме углеводов в клеточных стенках содержатся азотистые вещества, лигнин, липиды, воска, минеральные вещества.

Из азотистых веществ в клеточных стенках растительной тка­ни обнаружен структурный белок экстенсии - полимер из груп­пы гликопротеидов, белковая часть которого связана с углевода­ми - остатками арабинозы и галактозы. Молекулярная масса белковой части таких макромолекул равна 50 000, экстенсии имеет форму жесткого стержня, на 50 % состоит из оксипролина. В клеточной стенке присутствует несколько фракций белка, раз­личающихся содержанием оксипролина.

Экстенсии в некоторых отношениях напоминает белок кол­лаген, выполняющий аналогичные функции в животных тканях. Содержание экстенсина и оксипролина в клеточных стенках раз­личных овощей и картофеля неодинаково (табл. 9.1). Клеточные стенки картофеля состоят примерно на 1/5 из экстенсина. В кле­точных стенках корнеплодов его содержится в 2 раза меньше, чем в клеточных стенках картофеля; в клеточных стенках дыни содержание экстенсина не превышает 5 %.

Соотношение углеводов и экстенсина в клеточных стенках зависит от вида растительной ткани. Клеточные стенки многих растительных продуктов состоят примерно на 1/3 из целлюлозы, на 1/3 из гемицеллюлоз и на 1/3 из пектиновых веществ и белка. В клеточных стенках томатов между углеводами и белком суще­ствует другое соотношение -1:1.

Лигнин - природный полимер сложного строения, фор­мирующий клеточные стенки растений. Играет роль инкрусти­рующего вещества, скрепляющего волокна целлюлозы и геми­целлюлоз. Ковалентно связан с полисахаридами гемицеллюлоз (кспланом), с пектиновыми веществами и белком. Содержание лигнина в тканях растений зависит от их вида и степени одревес­нения. Значительное количество лигнина содержится в клеточ­ных стенках свеклы, моркови, меньше его накапливается в бело­кочанной капусте.

В связи с тем, что размягчение картофеля, овощей и плодов, происходящее в процессе их тепловой кулинарной обработки, связывают с деструкцией клеточных стенок, представляется це­лесообразным рассмотреть строение последних.

По современным представлениям, клеточная стенка - это вы­соко специализированный агрегат, состоящий из различных по­лимеров (целлюлозы, гемицеллюлоз, пектиновых веществ, белков и др.), структура которых у разных растений закодирована с той же степенью точности, что и структура молекул белков.

На рис. 9.4 представлена модель структуры первичной клеточной стенки.

Первичная клеточная стенка состоит из волокон (микрофиб­рилл) целлюлозы, которые занимают менее 20 % объема гидратированной стенки. Располагаясь в клеточных стенках парал­лельно, целлюлозные волокна с помощью водородных связей образуют мицеллы, которые имеют правильную, почти кристал­лическую упаковку. Одна мицелла целлюлозы может отстоять от другой на расстоянии, равном десяти ее диаметрам. Пространст­во между мицеллами целлюлозы заполнено аморфным основ­ным веществом (матриксом), состоящим из пектиновых ве­ществ, гемицеллюлоз (ксилоглюкан и арбиногалантан) и струк­турного белка, связанного с тетрасахаридами.

Первичная стенка клетки рассматривается как целая мешко­образная макромолекула, компоненты которой тесно взаимо­связаны. Между мицеллами целлюлозы и ксилоглюканом суще­ствуют многочисленные водородные связи. В свою очередь, кси­логлюкан ковалентно связан с боковыми галактановыми цепями пектиновых веществ, а пектиновые вещества через арабиногалактан ковалентно связаны со структурным белком.

Учитывая, что клеточные стенки многих овощей и плодов от­личаются относительно высоким содержанием двухвалентных катионов, в основном Са и Mg (0,5... 1,0 %), между пектиновыми молекулами, содержащими свободные карбоксильные группы, могут возникать хелатные связи в виде солевых мостиков.

Рис. 9.4. Структура первичной клеточной стенки (по Альберсхейму):

1 - микрофибрилла целлюлозы: 2 - ксилоглюкан; 3 - главные

рамногалактуроновые цепи пектиновых веществ; 4 - боковые

галактановые цепи пектиновых веществ; 5- структурный белок

с арабинозными тетрасахаридами; 6- арабиногалактан

Вероятность образования солевых мостиков и степень этерификации полигалактуроновых кислот связаны обратной зависи­мостью. Солевые мостики способствуют упрочнению клеточных стенок и паренхимной ткани в целом.

Покровные ткани клубней картофеля, корнеплодов и других овощей характеризуются пониженной пищевой цен­ностью из-за концентрации в них клетчатки и гемицеллюлоз, поэтому при кулинарной обработке картофеля и большинства овощей эти ткани удаляют.