Болезни Военный билет Призыв

Как определить показатели вариации. Показатели вариации и их значение в статистике. Правила построения рядов распределения

Показатели вариации и способы их расчета

Понятие вариации

Различие индивидуальных значений признака внутри изучаемой совокупности в статистике называется вариацией признака. Величины признаков колеблются, варьируют под действием различных причин и условий, которые в статистике называются факторами. Среди них есть существенные факторы, определяющие величину вариантов данного признака у всех единиц совокупности. Но есть и несущественные (случайные), которые на одни единицы совокупности могут оказывать влияние, на другие нет.

Вариация, порождаемая существенными факторами, носит систематический характер, т.е. наблюдается последовательное изменение вариантов признака в определенном направлении. Такая вариация называется систематической . В систематической вариации проявляются взаимосвязи между явлениями, их признаками, в такой связи - один как причина (фактор), другой как следствие (результат) его действия. Точнее говоря, проявляется зависимость вариации одного признака от вариации другогоили от нескольких других.

Вариация, обусловленная случайными факторами, называется случайной вариацией. Здесь не наблюдается систематического изменения вариантов зависимого признака от случайных факторов; все изменения носят хаотический характер, поскольку нет устойчивой связи этих факторов с единицами изучаемой совокупности.

Вариация зависимого признака, образовавшаяся под действием всех без исключения влияющих на него факторов, называется общей вариацией . Следовательно, общая вариация слагается из систематической и случайной вариации. Но систематическая вариация, если между признаками имеется довольно существенная связь, в конце концов пробивает себе дорогу через хаос случайных колебаний вариантов зависимого признака и проявляет себя.

Наличие вариации признаков, изучаемых статистикой явлений, ставит задачу определить меру вариации, ее измерение, найти соответствующие измерители - показатели, характеризующие размеры этой вариации, а также выявить сущность и методы вычисления определяющих ее факторов.

Показатели вариации и способы их расчета

Средняя величина дает обобщающую характеристику всей совокупности изучаемого явления. Средняя применяется в качестве своего рода центра тяжести, вокруг которого происходит колебание, рассеяние значений признака. Исчислив среднюю арифметическую по данным вариационного ряда, мы не знаем о том, как отдельные значения изучаемого признака группируются вокруг средней. Для вариационного ряда важно изучать степень сплоченности всех отдельных значений признака вокруг его среднего значения, степень разбросанности этих значений, степень их колеблемости. Для этого в теории статистики используются показатели вариации.

Показатели вариации делятся на две группы: абсолютные и относительные. К абсолютным показателям вариации относятся: размах вариации, среднее линейное отклонение, дисперсия и среднее квадратическое отклонение. К относительным показателям вариации относятся: коэффициенты вариации, осцилляции, относительное линейное отклонение и др. Относительные показатели вычисляются как отношение абсолютных показателей вариации к средней величине.

1.Размах вариации (R )представляет собой разность между максимальным (x max ) и минимальным (x min ) значением признака исследуемой совокупности:

.

Размах вариации (амплитуда колебаний) дает лишь самое общее представление о размерах вариации, характеризует предел изменения значений признака в исследуемой совокупности. Этот показатель вариации обладает существенным недостатком: он характеризует только отклонения и не дает представление о распределении отклонений по все совокупности. Его величина определяется двумя крайними значениями признака, в то время как колеблемость последнего в целом складывается из всех его значений. Для анализа вариации необходим показатель, который бы отражал все колебания варьирующего признака и давал обобщенную его характеристику.

2. Среднее линейное отклонение ()– это среднее из абсолютных отклонений значений признака от средней арифметической:

, .

Поскольку сумма отклонений значений признака от средней величины равна нулю, приходится все отклонения брать по модулю.

Таково в среднем линейное отклонение вариантов признака от их средней величины. Если среднее линейное отклонение по сравнению со средней величиной признака небольшое, это свидетельствует о том, что данная совокупность в отношении нашего признака однородна, а средняя – типична. Таким образом, среднее линейное отклонение дает обобщенную характеристику степени колеблемости признака в совокупности.

3. Дисперсия – это среднее из квадратов отклонений индивидуальных значений признака от средней величины:

, .

Математические свойства дисперсии

1) Дисперсия постоянной величины равна нулю:

.

2) Дисперсия не изменится, если все значения признака увеличить или уменьшить на некоторую постоянную величину А.

.

3) Если все значения варьирующего признака разделить (умножить) на одну и ту же величину h , то дисперсия уменьшится (увеличится) в h 2 раз.

, .

4)Средний квадрат отклонений индивидуальных значений признака от любой величины А , отличающейся от средней арифметической (A ≠ ), всегда больше среднего квадрата отклонений, исчисленного от средней арифметической:

или .

Средний квадрат отклонений при этом будет больше на вполне определенную величину – на квадрат разности средней от этой условно взятой величины А , т.е. на .

Другими словами, дисперсия от средней имеет свойство минимальности, т.е. она всегда меньше дисперсий, исчисленных от любых других величин.

или .

В случае когда А приравнивается нулю и, следовательно, отклонения не вычисляются, формула принимает следующий вид:

, или .

4.Среднее квадратическое отклонение находится как корень из дисперсии. Показывает (как и среднее линейное отклонение) на сколько в среднем индивидуальные значения признака отклоняются от средней арифметической:

,
.

5.Коэффициент вариации – это относительный показатель, исчисляемый как отношение среднего квадратического отклонения к средней арифметической:

Считается, что если коэффициент вариации превышает 33%, то совокупность нельзя признать качественно однородной. Если K v ≤ 33%, то можно утверждать, что совокупность более или менее однородна, а следовательно, средняя, рассчитанная по такой совокупности, типична. Необходимость исчисления коэффициента вариации вызвана тем, что показатели вариации в абсолютных величинах, как правило, непосредственно несравнимы.



Таблица 8.1 – Распределение предприятий по объему продаж

Алгоритм расчета показателей вариации следующий:

1) определим размах вариации:

R = 21 – 1 = 20 млн. руб.

2) найдем середину интервалов по исходным данным (x i ) и запишем в табл. 8.2;

3) определим среднее значение по формуле средней арифметической взвешенной, для этого введем графу (x i f i ):

млн. руб.

4) для расчета среднего линейного отклонения введем графы и :

млн. руб.

Таково в среднем отклонение вариантов признака от их средней величины.

5) для расчета дисперсии введем графы и .

Как доказать, что закономерность, полученная при изучении экспериментальных данных, не является результатом совпадения или ошибки экспериментатора, что она достоверна? С таким вопросом сталкиваются начинающие исследователи.Описательная статистика предоставляет инструменты для решения этих задач. Она имеет два больших раздела – описание данных и их сопоставление в группах или в ряду между собой.

Показатели описательной статистики

Существует несколько показателей, которые использует описательная статистика.

Итак, представим, что перед нами стоит задача описать рост всех студентов в группе из десяти человек. Вооружившись линейкой и проведя измерения, мы получаем маленький ряд из десяти чисел (рост в сантиметрах):

168, 171, 175, 177, 179, 187, 174, 176, 179, 169.

Если внимательно посмотреть на этот линейный ряд, то можно обнаружить несколько закономерностей:

  • Ширина интервала, куда попадает рост всех студентов, – 18 см.
  • В распределении рост наиболее близок к середине этого интервала.
  • Встречаются и исключения, которые наиболее близко расположены к верхней или нижней границе интервала.

Совершенно очевидно, что для выполнения задачи по описанию роста студентов в группе нет необходимости приводить все значения, которые будут измеряться. Для этой цели достаточно привести всего два, которые в статистике называются параметрами распределения. Это среднеарифметическое и стандартное отклонение от среднего арифметического. Если обратиться к росту студентов, то формула будет выглядеть следующим образом:

Среднеарифметическое значение роста студентов = (Сумма всех значений роста студентов) / (Число студентов, участвовавших в измерении)

Если свести все к строгим математическим терминам, то определение среднего арифметического (обозначается греческой буквой – μ («мю»)) будет звучать так:

Среднее арифметическое – это отношение суммы всех значений одного признака для всех членов совокупности (X) к числу всех членов совокупности (N).

Если применить эту формулу к нашим измерениям, то получаем, что μ для роста студентов в группе 175,5 см.

Если присмотреться к росту студентов, который мы измерили в предыдущем примере, то понятно, что рост каждого на сколько-то отличается от вычисленного среднего (175,5 см). Для полноты описания нужно понять, какой является разница между средним ростом каждого студента и средним значением.

На первом этапе вычислим параметр дисперсии. Дисперсия в статистике (обозначается σ 2 (сигма в квадрате)) – это отношение суммы квадратов разности среднего арифметического (μ) и значения члена ряда (Х) к числу всех членов совокупности (N). В виде формулы это рассчитывается понятнее:

Значения, которые мы получим в результате вычислений по этой формуле, мы будем представлять в виде квадрата величины (в нашем случае – квадратные сантиметры). Характеризовать рост в сантиметрах квадратными сантиметрами, согласитесь, нелепо. Поэтому мы можем исправить, точнее, упростить это выражение и получим среднеквадратичное отклонение формулу и расчёт, пример:

Таким образом, мы получили величину стандартного отклонения (или среднего квадратичного отклонения) – квадратный корень из дисперсии. С единицами измерения тоже теперь все в порядке, можем посчитать стандартное отклонение для группы:

Получается, что наша группа студентов исчисляется по росту таким образом: 175,50±5,25 см.

Среднее квадратичное отклонение хорошо работает с рядами, в которых разброс значений не очень велик (это хорошо прослеживалось на примере роста, где интервал был всего 18 см). Если бы ряд наших измерений был значительнее, а варьирование роста было сильнее, то стандартное отклонение стало непоказательным и нам потребовался бы критерий, который может отразить разброс в относительных единицах (т. е. в процентах, относительно средней величины).

Для этих целей предусмотрены абсолютные и относительные показатели вариации в статистике, характеризующие вариационные масштабы:

  • Размах вариации.

Квадратический коэффициент вариации (обозначается как Vσ) – это отношение среднеквадратичного отклонения к среднеарифметическому значению, выраженное в процентах.

Для нашего примера со студентами, определить Vσ несложно - он будет равен 3,18%. Основная закономерность – чем больше будет изменяться значение коэффициента, тем больше разброс вокруг среднего значения и тем менее однородна выборка.

Преимущество коэффициента вариации в том, что он показывает однородность значений (асимметрия) в ряду наших измерений, кроме того, на него не оказывают влияния масштаб и единицы измерения. Эти факторы делают коэффициент вариации особенно популярным в биомедицинских исследованиях. Будет считаться , что эксцесс значения Vσ =33% отделяет однородные выборки от неоднородных.

Если найти в ряду значений роста (первый пример) максимальное и минимальное значения, то получим размах вариации (обозначается как R, иногда ещё называется колеблемостью). В нашем примере – это значение будет равно 18 см. Эта характеристика используется для расчёта коэффициента осцилляции:

Коэффициент осцилляции – показывает как размах вариации будет относиться к среднему арифметическому ряда в процентном отношении.

Расчёты в Microsoft Ecxel 2016

* — в таблице указан диапазон A1:A10 для примера, при расчётах нужно указать требуемый диапазон.

Итак, обобщим информацию :

  1. Среднее арифметическое – это значение, позволяющее найти среднее значение показателя в ряду данных.
  2. Дисперсия – это среднее значение отклонений возведенное в квадрат.
  3. Стандартное отклонение (среднеквадратичное отклонение) – это корень квадратный из дисперсии, для приведения единиц измерения к одинаковым со среднеарифметическим.
  4. Коэффициент вариации – значение отклонений от среднего, выраженное в относительных величинах (%).

Отдельно следует отметить, что все приведённые в статье показатели, как правило, не имеют собственного смысла и используются для того, чтобы составлять более сложную схему анализа данных. Исключение из этого правила — коэффициент вариации, который является мерой однородности данных.

Вариационными называют ряды распределения, построенные по количественному признаку. Значения количественных признаков у отдельных единиц совокупности не постоянны, более или менее различаются между собой. Такое различие в величине признака носит название вариации. Отдельные числовые значения признака, встречающиеся в изучаемой совокупности, называют вариантами значений. Наличие вариации у отдельных единиц совокупности обусловлено влиянием большого числа факторов на формирование уровня признака. Изучение характера и степени вариации признаков у отдельных единиц совокупности является важнейшим вопросом всякого статистического исследования. Для описания меры изменчивости признаков используют показатели вариации.

Другой важной задачей статистического исследования является определение роли отдельных факторов или их групп в вариации тех или иных признаков совокупности. Для решения такой задачи в статистике применяются специальные методы исследования вариации, основанные на использовании системы показателей, с помощью которых измеряется вариация. В практике исследователь сталкивается с достаточно большим количеством вариантов значений признака, что не дает представления о распределении единиц по величине признака в совокупности. Для этого проводят расположение всех вариантов значений признака в возрастающем или убывающем порядке. Этот процесс называют ранжированием ряда. Ранжированный ряд сразу дает общее представление о значениях, которые принимает признак в совокупности.

Недостаточность средней величины для исчерпывающей характеристики совокупности заставляет дополнять средние величины показателями, позволяющими оценить типичность этих средних путем измерения колеблемости (вариации) изучаемого признака. Использование этих показателей вариации дает возможность сделать статистический анализ более полным и содержательным и тем самым глубже понять сущность изучаемых общественных явлений.

Для измерения вариации признака применяются различные абсолютные и относительные показатели. К абсолютным показателям вариации относятся среднее линейное отклонение, размах вариации, дисперсия, среднее квадратическое отклонение.

Размах вариации (R) представляет собой разность между максимальным и минимальным значениями признака в изучаемой совокупности: R = Xmax – Xmin. Этот показатель дает лишь самое общее представление о колеблемости изучаемого признака, так как показывает разницу только между предельными значениями вариантов. Он совершенно не связан с частотами в вариационном ряду, т. е. с характером распределения, а его зависимость может придавать ему неустойчивый, случайный характер только от крайних значений признака. Размах вариации не дает никакой информации об особенностях исследуемых совокупностей и не позволяет оценить степень типичности полученных средних величин.

Для характеристики вариации признака нужно обобщить отклонения всех значений от какой-либо типичной для изучаемой совокупности величины. Такие показатели вариации, как среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, основаны на рассмотрении отклонений значений признака отдельных единиц совокупности от средней арифметической.

Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных значений отклонений отдельных вариантов от их средней арифметической:

абсолютное значение (модуль) отклонения варианта от средней арифметической; f– частота.

Существует и другой способ усреднения отклонений вариантов от средней арифметической. Этот очень распространенный в статистике способ сводится к расчету квадратов отклонений вариантов от средней величины с их последующим усреднением. При этом мы получаем новый показатель вариации – дисперсию.

Дисперсия – средняя из квадратов отклонений вариантов значений признака от их средней величины:

В экономико-статистическом анализе вариацию признака принято оценивать чаще всего с помощью среднего квадратического отклонения. Среднее квадратическое отклонение представляет собой корень квадратный из дисперсии:

Среднее линейное и среднее квадратическое отклонения показывают, на сколько в среднем колеблется величина признака у единиц исследуемой совокупности, и выражаются в тех же единицах измерения, что и варианты.

В статистической практике часто возникает необходимость сравнения вариации различных признаков. Например, большой интерес представляет сравнение вариаций возраста персонала и его квалификации, стажа работы и размера заработной платы и т. д. Для подобных сопоставлений показатели абсолютной колеблемости признаков – среднее линейное и среднее квадртическое отклонение – не пригодны. Нельзя, в самом деле, сравнивать колеблемость стажа работы, выражаемую в годах, с колеблемостью заработной платы, выражаемой в рублях и копейках.

При сравнении изменчивости различных признаков в совокупности удобно применять относительные показатели вариации. Эти показатели вычисляются как отношение абсолютных показателей к средней арифметической (или медиане). Коэффициент вариации – наиболее часто применяемый показатель относительной колеблемости, характеризующий однородность совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33 % для распределений, близких к нормальному.

Тема 6. Виды и методы анализа рядов динамики

  1. Ряды динамики. Виды рядов динамики.
  2. Основные показатели рядов динамики
  3. Средние показатели рядов динамики

1. Явления общественной жизни, изучаемые социально-экономической статистикой, находятся в непрерывном изменении и развитии. С течением времени – от месяца к месяцу, от года к году – изменяются численность населения и его состав, объем производимой продукции, уровень производительности труда и т. д., поэтому одной из важнейших задач статистики является изучение изменения общественных явлений во времени – процесса их развития, их динамики. Эту задачу статистика решает путем построения и анализа рядов динамики (временных рядов).

Ряд динамики (хронологический, динамический, временной ряд) – это последовательность упорядоченных во времени числовых показателей, характеризующих уровень развития изучаемого явления. Ряд включает два обязательных элемента: время и конкретное значение показателя (уровень ряда).

Каждое числовое значение показателя, характеризующее величину, размер явления, называется уровнем ряда. Кроме уровней каждый ряд динамики содержит указания о тех моментах либо периодах времени, к которым относятся уровни.

При подведении итогов статистического наблюдения получают абсолютные показатели двух видов. Одни из них характеризуют состояние явления на определенный момент времени: наличие на этот момент каких-либо единиц совокупности или наличие того или иного объема признака. К таким показателям относится численность населения, парк автомобилей, жилищный фонд, товарные запасы и т. д. Величину таких показателей можно определить непосредственно только по состоянию на тот или иной момент времени, а потому эти показатели и соответствующие ряды динамики и называются моментными.

Другие показатели характеризуют итоги какого-либо процесса за определенный период (интервал) времени (сутки, месяц, квартал, год и т. п.). Такими показателями являются, например, число родившихся, количество произведенной продукции, ввод в действие жилых домов, фонд заработной платы и др. Величину этих показателей можно подсчитать только за какой-нибудь интервал (период) времени, поэтому такие показатели и ряды их значений называются интервальными.

Каждый уровень интервального ряда уже представляет собой сумму уровней за более короткие промежутки времени. При этом единица совокупности, входящая в состав одного уровня, не входит в состав других уровней, поэтому в интервальном ряду динамики уровни за примыкающие друг к другу периоды времени можно суммировать, получая итоги (уровни) за более продолжительные периоды (так, суммируя месячные уровни, получим квартальные, суммируя квартальные, получим годовые, суммируя годовые – многолетние).

В моментном динамическом ряду одни и те же единицы совокупности обычно входят в состав нескольких уровней, поэтому суммирование уровней моментного ряда динамики само по себе не имеет смысла, так как получающиеся при этом итоги лишены самостоятельной экономической значимости.

При построении и перед анализом ряда динамики нужно прежде всего обратить внимание на то, чтобы уровни ряда были сопоставимы между собой, так как только в этом случае динамический ряд будет правильно отражать процесс развития явления. Сопоставимость уровней ряда динамики – это важнейшее условие обоснованности и правильности выводов, полученных в результате анализа этого ряда. При построении динамического ряда надо иметь в виду, что ряд может охватывать большой период времени, в течение которого могли произойти изменения, нарушающие сопоставимость (территориальные изменения, изменения круга охвата объектов, методологии расчетов и т. д.).

При изучении динамики общественных явлений статистика решает следующие задачи:

Измеряет абсолютную и относительную скорость роста либо снижения уровня за отдельные промежутки времени;

Дает обобщающие характеристики уровня и скорости его изменения за тот или иной период;

Выявляет и численно характеризует основные тенденции развития явлений на отдельных этапах;

Дает сравнительную числовую характеристику развития данного явления в разных регионах или на разных этапах;

Выявляет факторы, обусловливающие изменение изучаемого явления во времени;

Делает прогнозы развития явления в будущем.

2 . Простейшими показателями анализа, которые используются при решении ряда задач, в первую очередь при измерении скорости изменения уровня ряда динамики, являются абсолютный прирост, темпы роста и прироста, а также абсолютное значение (содержание) одного процента прироста. Расчет этих показателей основан на сравнении между собой уровней ряда динамики. При этом уровень, с которым производится сравнение, называется базисным, так как он является базой сравнения. Обычно за базу сравнения принимается либо предыдущий, либо какой-либо предшествующий уровень, например первый уровень ряда.

Если каждый уровень сравнивается с предыдущим, то полученные при этом показатели называются цепными, так как они представляют собой как бы звенья «цепи», связывающей между собой уровни ряда. Если же все уровни связываются с одним и тем же уровнем, выступающим как постоянная база сравнения, то полученные при этом показатели называются базисными.

Часто построение ряда динамики начинают с того уровня, который будет использован в качестве постоянной базы сравнения. Выбор этой базы должен быть обоснован историческими и социально-экономическими особенностями развития изучаемого явления. В качестве базисного целесообразно брать какой-либо характерный, типичный уровень, например конечный уровень предыдущего этапа развития (или средний его уровень, если на предыдущем этапе уровень то повышался, то понижался).

Абсолютный прирост показывает, на сколько единиц увеличился (или уменьшился) уровень по сравнению с базисным, т. е. за тот или иной промежуток (период) времени. Абсолютный прирост равен разности между сравниваемыми уровнями и измеряется в тех же единицах, что и эти уровни:

где уi – уровень i-го года; yi-1 – уровень предшествующего года; y0 – уровень базисного года.

Абсолютный прирост за единицу времени (месяц, год) измеряет абсолютную скорость роста (или снижения) уровня. Цепные и базисные абсолютные приросты связаны между собой: сумма последовательных цепных приростов равна соответствующему базисному приросту, т. е. общему приросту за весь период.

Более полную характеристику роста можно получить только тогда, когда абсолютные величины дополняются относительными. Относительными показателями динамики являются темпы роста и темпы прироста, характеризующие интенсивность процесса роста.

Темп роста (Тр) – статистический показатель, который отражает интенсивность изменения уровней ряда динамики и показывает, во сколько раз увеличился уровень по сравнению с базисным, а в случае уменьшения – какую часть базисного уровня составляет сравниваемый уровень; измеряется отношением текущего уровня к предыдущему или базисному:

Между цепными и базисными темпами роста, выраженными в форме коэффициентов, существует определенная взаимосвязь: произведение последовательных цепных темпов роста равно базисному темпу роста за весь соответствующий период.

Темп прироста (Тпр) характеризует относительную величину прироста, т. е. представляет собой отношение абсолютного прироста к предыдущему или базисному уровню:

Темп прироста, выраженный в процентах, показывает, на сколько процентов увеличился (или уменьшился) уровень по сравнению с базисным, принятым за 100 %.

При анализе темпов развития никогда не следует упускать из виду, какие абсолютные величины – уровни и абсолютные приросты – скрываются за темпами роста и прироста. Нужно, в частности, иметь в виду, что при снижении (замедлении) темпов роста и прироста абсолютный прирост может возрастать.

В связи с этим важно изучать еще один показатель динамики – абсолютное значение (содержание) 1 % прироста, который определяется как результат деления абсолютного прироста на соответствующий темп прироста:

3. С течением времени изменяются не только уровни явлений, но и показатели их динамики – абсолютные приросты и темпы развития, поэтому для обобщающей характеристики развития, для выявления и измерения типичных основных тенденций и закономерностей и решения других задач анализа используются средние показатели временного ряда – средние уровни, средние абсолютные приросты и средние темпы динамики.

При вычислении средних показателей динамики необходимо иметь в виду, что к этим средним показателям полностью относятся общие положения теории средних величин. Это означает прежде всего, что динамическая средняя будет типичной, если она характеризует период с однородными, более или менее стабильными условиями развития явления. Выделение таких периодов – этапов развития – в определенном отношении аналогично группировке. Если же динамическая средняя величина исчислена за период, в течение которого условия развития явления существенно менялись, т. е. период, охватывающий разные этапы развития явления, то такой средней величиной нужно пользоваться с большой осторожностью, дополняя ее средними величинами за отдельные этапы.

Наиболее просто вычисляется средний уровень интервального ряда динамики абсолютных величин с равностоящими уровнями. Расчет производится по формуле простой средней арифметической:

где n – число фактических уровней за последовательные равные отрезки времени.

Для моментного ряда с разностоящими уровнями расчет среднего уровня ряда производится по формуле

Средний абсолютный прирост показывает, на сколько единиц увеличивался или уменьшался уровень по сравнению с предыдущим периодом в среднем за единицу времени (в среднем ежемесячно, ежегодно и т. д.). Средний абсолютный прирост характеризует среднюю абсолютную скорость роста (или снижения) уровня и всегда является интервальным показателем. Он вычисляется путем деления общего прироста за весь период на длину этого периода в тех или иных единицах времени:

Расчет среднего абсолютного цепного прироста:

Расчет среднего абсолютного базисного прироста:

где – цепные абсолютные приросты за последовательные промежутки времени; n – число цепных приростов; У0 – уровень базисного периода.

Средний темп роста, выраженный в форме коэффициента, показывает, во сколько раз увеличивается уровень по сравнению с предыдущим периодом в среднем за единицу времени (в среднем ежегодно, ежемесячно и т. п.).

Для средних темпов роста и прироста сохраняет силу та же взаимосвязь, которая имеет место между обычными темпами роста и прироста:

Средний темп прироста (или снижения), выраженный в процентах, показывает, на сколько процентов увеличивался (или снижался) уровень по сравнению с предыдущим периодом в среднем за единицу времени (в среднем ежегодно, ежемесячно и т. п.). Средний темп прироста характеризует среднюю интенсивность роста, т. е. среднюю относительную скорость изменения уровня.

Из всех показателей вариации среднеквадратическое отклонение в наибольшей степени используется для проведения других видов статистического анализа. Однако среднеквадратическое отклонение дает абсолютную оценку меры разбросанности значений и чтобы понять, насколько она велика относительно самих значений, требуется относительный показатель. Такой показатель называется он коэффициент вариации .

Формула коэффициента вариации:

Данный показатель измеряется в процентах (если умножить на 100%).

В статистике принято, что, если коэффициент вариации

меньше 10%, то степень рассеивания данных считается незначительной,

от 10% до 20% - средней,

больше 20% и меньше или равно 33% - значительной,

значение коэффициента вариации не превышает 33%, то совокупность считается однородной,

если больше 33%, то – неоднородной.

Средние, рассчитанные для однородной совокупности – значимы, т.е. действительно характеризуют эту совокупность, для неоднородной совокупности – незначимы, не характеризуют совокупность из-за значительного разброса значений признака в совокупности.

Возьмем пример с расчетом среднего линейного отклонения.

И график для напоминания

По этим данным рассчитаем: среднее значение, размах вариации, среднее линейное отклонение, дисперсию и стандартное отклонение.

Среднее значение – это обычная средняя арифметическая.

Размах вариации – разница между максимумом и минимумом:

Среднее линейное отклонение считается по формуле:

Дисперсия считается по формуле:

Среднеквадратическое отклонение – квадратный корень из дисперсии:

Расчет сведем в табличку.

Вариация показателя отражает изменчивость процесса или явления. Ее степень может измеряться с помощью нескольких показателей.

    Размах вариации – разница между максимумом и минимумом. Отражает диапазон возможных значений.

    Среднее линейное отклонение – отражает среднее из абсолютных (по модулю) отклонений всех значений анализируемой совокупности от их средней величины.

    Дисперсия – средний квадрат отклонений.

    Среднеквадратическое отклонение – корень из дисперсии (среднего квадрата отклонений).

    Коэффициент вариации – наиболее универсальных показатель, отражающий степень разбросанности значений независимо от их масштаба и единиц измерения. Коэффициент вариации измеряется в процентах и может быть использован для сравнения вариации различных процессов и явлений.

Таким образом, в статистическом анализе существует система показателей, отражающих однородность явлений и устойчивость процессов. Часто показатели вариации не имеют самостоятельного смысла и используются для дальнейшего анализа данных. Исключением является коэффициент вариации, который характеризует однородность данных, что является ценной статистической характеристикой.

Вариация – это изменение (колеблемость) значений признака в пределах изучаемой совокупности при переходе от одного объекта (группы объектов), или от одного случая к другому. Абсолютные и относительные показатели вариации, характеризующие колеблемость значений варьирующего признака, позволяют, в частности, измерить степень связи и взаимозависимости между признаками, определить степень однородности совокупности, типичности и устойчивости средней, определить величину погрешности выборочного наблюдения, статистически оценить закон распределения совокупности и т. п.

В этой теме необходимо уяснить сущность (смысл), назначение и способы вычисления каждого показателя вариации, рассматриваемого в курсе теории статистики: размах вариации, среднее линейное отклонение, средний квадрат отклонений (дисперсию), среднее квадратическое отклонение, относительные коэффициенты вариации (коэффициент осцилляции, коэффициент среднего линейного отклонения, коэффициент вариации).

Размах вариации (R ) представляет собой разность между максимальным (х max) и минимальным (х min) значениями признака в совокупности (в ряду распределения):

R = х max - х min. (5.1)

Мерой других показателей вариации является разность не между крайними значениями признака, а средняя разность между каждым значением признака и средней величиной этих признаков. Разность между отдельным значением признака и средней называют отклонением.

Среднее линейное отклонение вычисляется по следующим формулам:

по индивидуальным (несгруппированным) данным

; (5.2)

по вариационным рядам (сгруппированным данным)

. (5.3)

Так как алгебраическая сумма отклонений индивидуальных значений признака от средней (согласно нулевому свойству) всегда равна нулю, то при расчете среднего линейного отклонения используется арифметическая сумма отклонений, взятая по модулю, т.е.
.

Среднее линейное отклонение имеет ту же размерность, что и признак, для которого оно исчисляется.

Дисперсия и среднее квадратическое отклонение. Среднее линейное отклонение относительно редко применяется для оценки вариации признака. Поэтому обычно вычисляются дисперсия ( 2) и среднее квадратическое отклонение (). Эти показатели применяются не только для оценки вариации признака, но и для измерения связи между ними, для оценки величины ошибки выборочного наблюдения и других целей.

Дисперсия признака рассчитывается по формулам:

по первичным данным

; (5.4)

по вариационным рядам

. (5.5)

Среднее квадратическое отклонение представляет собой корень квадратный из дисперсии:

по первичным данным

; (5.6)

по вариационным рядам

. (5.7)

Среднее квадратическое отклонение так же, как и среднее линейное отклонение, имеет ту же размерность, что и сам исходный признак.

Дисперсию можно определить и как разность между средним квадратом вариантов и квадратом их средней величины, т. е.
. (5.8)

В этом случае по первичным данным дисперсия равна:

(5.9)

Применительно к сгруппированным данным, расчет дисперсии этим способом в развернутом виде представим в таком виде:

. (5.10)

Для рядов распределения с равными интервалами значение дисперсии можно вычислить, применяя способ условных моментов, т. е.

, (5.11)

где
- первый условный момент; (5.12)

- второй условный момент. (5.13)

Среднее квадратическое отклонение по способу условных моментов определяется по формуле:

(5.14)

Преобразуя выражение расчета дисперсии по способу условных моментов, получим формулу вида:
(5.15)

На основе одних и тех же исходных данных получим одинаковое значение дисперсии.

Относительные показатели вариации вычисляются как отношение ряда абсолютных показателей вариации к их средней арифметической и выражаются в процентах:

коэффициент осцилляции -
; (5.16)

коэффициент относительного линейного отклонения -
; (5.17)

коэффициент вариации -
. (5.18)

Задача 1 . Рассмотрим способы расчета показателей вариации на основе данных табл. 5.1.

Таблица 5.1. Исходные данные для расчета показателей вариации

Затраты времени на производство деталей мин

Количество деталей, шт. (f)

Середина интервала (х)

; к = 2

Приведенный ряд распределения ранжированный, поэтому здесь легко найти минимальное значение признака, оно равно 8 мин. (10 - 2), и максимальное, равное 18 мин. (16 + 2). Значит, размах вариации признака в этом ряду составит 10 мин., т. е.

R = x max – x min = 18 – 8 = 10 мин.

Вычислим среднее линейное отклонение. Прежде всего необходимо вычислить среднюю величину . Все вычисления будем вести в табличной форме (табл. 5.1.), отводя для каждой вычислительной операции графу в таблице.

Поскольку исходные данные представлены рядом распределения, то

мин.

мин.

Покажем способы расчета дисперсии:

а) обычным способом (по определению):

;

б) как разность между средним квадратом и квадратом средней величины:

Для определения величины дисперсии по этой формуле необходимо вычислить средний квадрат вариантов признака по формуле:

;

 2 =178,6 – (13,2) 2 =4,36;

в) по способу условных моментов:

;

;

г) на основе преобразования формулы расчета дисперсии по способу условных моментов имеем:

Дисперсия – число отвлеченное, не имеющее единиц измерения.

Среднее квадратическое отклонение вычислим путем извлечения корня квадратного из дисперсии:

мин.

По способу условных моментов величину среднего квадратического отклонения определим так:

Вычислим относительные показатели вариации:

%;

%;

%.

Основным относительным показателем вариации является коэффициент вариации (V). Он используется для сравнительной оценки меры колеблемости признаков, выраженных в различных единицах измерения.

Наряду с вариацией количественных признаков может наблюдаться и вариация качественных признаков (в частности альтернативной изменчивости качественных признаков). В этом случае каждая единица изучаемой совокупности либо обладает каким-то свойством, либо нет (например, каждый взрослый человек либо работает, либо нет). Наличие признака у единиц совокупности обозначают 1, а отсутствие –0; долю же единиц совокупности, обладающих изучаемым признаком, обозначают p, а не обладающих им – q. Дисперсия альтернативного признака определяется по формуле:

; (5.19)

p + q = 1 (5.20)

Если, например, доля поступивших в университет равна 30%, а не поступивших – 70%, то дисперсия равна 0,21(0,3 · 0,7). максимальное значение произведения pq равно 0,25 (при условии, когда одна половина единиц обладает данным признаком, а другая половина нет: (0,5 · 0,5 = 0,25).

Способ разложения общей дисперсии. Для оценки влияния различных факторов, определяющих колеблемость индивидуальных значений признака, воспользуемся разложением общей дисперсии на составляющие: на так называемую групповую дисперсию и среднюю из внутригрупповых дисперсий:

, (5.21)

где
– общая дисперсия, характеризующая вариацию признака как результат влияния всех факторов, определяющих индивидуальные различия единиц совокупности.

Вариацию признака, обусловленную влиянием фактора, положенного в основу группировки, характеризует межгрупповая дисперсия  2 , которая является мерой колеблемости частных средних по группам
вокруг общей средней и исчисляется по формуле:

, (5.22)

где n j – число единиц совокупности в каждой группе;

j – порядковый номер группы.

Вариацию признака, обусловленную влиянием всех прочих факторов, кроме группировочного (факторного), характеризует в каждой группе внутригрупповая дисперсия:

, (5.23)

где i – порядковый номер x и f в пределах каждой группы.

По совокупности в целом средняя из внутригрупповых дисперсий определяется по формуле:

(5.24)

Отношение межгрупповой дисперсии  2 к общей
даст коэффициент детерминации:

(5.25)

который характеризует долю вариации результативного признака, обусловленную вариацией факторного признака, положенного в основание группировки.

Показатель, полученный как корень квадратный из коэффициента детерминации, называется коэффициентом эмпирического корреляционного отношения, т.е.:

(5.26)

Он характеризует тесноту связи между результативным и факторным (положенным в основу группировки) признаками. Численное значение коэффициента эмпирического корреляционного отношения имеет два знака: . При решении вопроса о том, с каким знаком его следует брать, необходимо иметь ввиду: если вариация факторного и результативного признаков идет синхронно в одном и том же направлении (возрастает или убывает), то корреляционные отношение берется со знаком плюс; если же изменение этих признаков идет в противоположных направлениях, то оно берется со знаком минус.

Для вычисления групповых и межгрупповых дисперсий можно применять любой из описанных выше способов исчисления среднего квадрата отклонений.

Задача 2. Вычислим все названные дисперсии по исходным данным табл. 5.2.

Таблица 5.2. Распределение посевной площади озимой пшеницы по урожайности

Номер участка

Урожайность, ц/га

Посевная площадь, га

Вычислим среднюю урожайность озимой пшеницы по всем участкам (общая средняя):

ц/га.

Общую дисперсию найдем по формуле:

В гр. 6 табл. 5.2. вычислим значения для расчета среднего квадрата вариантов признака:

.

Находим общую дисперсию:

Урожайность зависит от многих факторов (качество почвы, размер внесения органических и минеральных удобрений, качество семян, сроки сева, уход за посевами и др.) Общая дисперсия в данном случае измеряет колеблемость урожайности за счет всех факторов.

Задача 3. Разобьем совокупность участков на две группы: I группа – посевные площади, на которых не вносились органические удобрения; II – площади, на которых они вносились. К первой группе отнесем участки 1-4, а ко второй – 4-8. По данным этих групп рассчитаем остальные из необходимых нам дисперсий, используя уже произведенные в табл. 5.2. вычисления.

Таблица 5.3. Расчетные данные для вычисления межгрупповой и групповых дисперсий

Номер участка

Урожайность, ц/га (х)

Посевная площадь, га (f)

Номер участка

Урожайность, ц/га (х)

Посевная площадь, га (f)

Определяем:

для I группы:

для II группы:

а) групповую среднюю

а) групповую среднюю

ц/га;

ц/га;

б) средний квадрат вариантов признака

;

;

в) групповую дисперсию

в) групповую дисперсию

Определяем среднюю из групповых дисперсий:

.

Находим межгрупповую дисперсию:

Средняя из групповых дисперсий измеряет колеблемость признака за счет всех прочих факторов, кроме положенного в основание группировки (разграничения на группы), а межгрупповая – за счет именно этого фактора. Сумма этих дисперсий должна дать общую дисперсию, а именно:

Отношение межгрупповой дисперсии к общей в нашем примере даст следующее значение коэффициента детерминации:

, или 71,8%,

т. е. вариация урожайности озимой пшеницы на 71,8% зависит от вариации размеров внесения органических удобрений. Остальные же 28,2% вариации урожайности зависит от влияния всех остальных факторов, кроме размеров внесения органических удобрений.

Коэффициент эмпирического корреляционного отношения составит:

.

Это говорит о том, что внесение органических удобрений оказывает весьма существенное влияние на урожайность.