Болезни Военный билет Призыв

Гис технологии в экологии. Геоинформационные системы в экологии и природопользовании

В ходе экологического наблюдения (мониторинга) осуществляют сбор и совместную обработку данных, относящихся к различным природным средам, моделирование и анализ экологических процессов и тенденций их развития, а также использование данных при принятии решений по управлению качеством окружающей среды. Результат экологического исследования представляет оперативные данные трех типов: констатирующие (измеренные параметры состояния экологической обстановки в момент обследования), оценочные (результаты обработки измерений и получение на этой основе оценок экологической ситуации), прогнозные (прогнозирующие развитие обстановки на заданный период времени). Совокупность перечисленных типов данных составляет основу экологического мониторинга. Особенностью представления данных в системах экологического мониторинга является то, что на экологических картах в большей степени представлены ареальные геообъекты, чем линейные.

В экологических ГИС применяются в первую очередь динамические модели, в которых большую роль играют технологии создания электронных карт.

Относительно цифрового моделирования принципиальным следует считать использование цифровых моделей типа цифровая модель явления, поле и т.п.

На уровне сбора информации наряду с топографическими характеристиками дополнительно определяются параметры, характеризующие экологическую обстановку. Это увеличивает объем атрибутивных данных в экологических ГИС по сравнению с типовыми ГИС; соответственно возрастает роль семантического моделирования.

На уровне моделирования используют специальные методы расчета параметров, характеризующих экологическое состояние среды и определяющих форму представления цифровых карт.

На уровне представления при экологических исследованиях осуществляют выдачу не одной, а серии карт, особенно при прогнозировании явлений. В некоторых случаях карты выдаются с применением методов динамической визуализации, что можно наблюдать при метеопрогнозах, показываемых по телевидению.

Например, объектами мониторинга города являются атмосферный воздух, поверхностные и подземные воды, почва, зеленые насаждения, радиационная обстановка, среда обитания и состояние здоровья населения.

Большое число организаций (федеральных, муниципальных, ведомственных) занимаются независимо друг от друга сбором данных о состоянии параметров объектов окружающей среды. Производится контроль состава атмосферного воздуха, количества выбросов промышленных предприятий и автотранспорта, качества поверхностных и подземных вод и т.д. Эти работы выполняют различные организации - от ГАИ до санэпидемстанций. Недостатками существующего порядка сбора экологических данных являются бессистемность, разрозненность, разобщенность городских природоохранных организаций и отсутствие комплексных оценок и прогнозов развития экологической обстановки.

Главная задача городского экомониторинга - получение комплексной оценки экологической ситуации в городе на базе интеграции всех видов данных, поступающих от различных организаций. Интеграционной основой множества данных является карта. Следовательно, решение задач экомониторинга города неизбежно приводит к применению ГИС. Для этого объединяют существующие сети различных измерений и специализированные мониторинги природоохранных служб. Создание системы основано на внедрении современных средств контроля на базе единого информационного пространства.

Геоинформационные системы являются оптимальным средством для представления и анализа пространственно-распределенных экологических данных, т.к. они могут обеспечить эффективное использование накапливаемых данных, комплексную их обработку и совершенные методы моделирования и представления. Структура такой системы может включать два уровня.

Нижний уровень системы экомониторинга:

§ федеральные, городские, ведомственные подсистемы специализированных мониторингов (атмосферы, поверхностных вод, здоровья населения, радиологический мониторинг, мониторинг санитарной очистки территории города, недр и подземных вод, почв, зеленых насаждений, акустический и градостроительный мониторинг);

§ территориальные центры сбора и обработки данных.

Эти подсистемы обеспечивают сбор полной и по возможности качественной информации о состоянии окружающей среды на всей территории города. В локальных центрах проводится также анализ информации и ее отбор для передачи на верхний уровень. Территориальные центры обеспечивают сбор информации по источникам антропогенного загрязнения на территории административных округов.

Верхний уровень системы экомониторинга составляет информационно-аналитический центр, в задачи которого входят:

§ оперативная оценка экологической ситуации в городе;

§ расчет интегральных оценок экологической ситуации;

§ прогноз развития экологической обстановки;

§ подготовка проектов управляющих воздействий и оценка последствий принимаемых решений.

Интеграция данных в единую систему происходит двумя путями:

1. на основе конвертирования форматов данных в единый для всей системы формат;

2. на основе выбора единого программного обеспечения ГИС.

Кроме ведения баз данных возможно моделирование и получение тематических карт. В системе может производиться расчет платежей за использование природных ресурсов, расчет полей концентрации загрязняющих веществ в атмосфере, воде, почве.

Система экологического мониторинга предусматривает обмен данными между его участниками, поэтому одним из главных требований, предъявляемых к программному обеспечению всех подсистем, является возможность конвертирования файлов данных в стандартные форматы (DBF для файлов баз данных и DXF для графических файлов).

геоинформационная технология экология природопользование

Географические информационные системы (ГИС) появились в 60-х годах XX века как инструменты для отображения географии Земли и расположенных на ее поверхности объектов. Сейчас ГИС представляют собой сложные и многофункциональные инструменты для работы с данными о Земле.

Возможности, предоставляемые пользователю ГИС:

работа с картой (перемещение и масштабирование, удаление и добавление объектов);

печать в заданном виде любых объектов территории;

вывод на экран объектов определенного класса;

вывод атрибутивной информации об объекте;

обработка информации статистическими методами и отображение результатов такого анализа непосредственным наложением на карту

Так, с помощью ГИС специалисты могут оперативно спрогнозировать возможные места разрывов трубопроводы, проследить на карте пути распространения загрязнений и оценить вероятный ущерб для природной среды, вычислить объем средств, необходимых для устранения последствий аварии. С помощью ГИС можно отобрать промышленные предприятия, осуществляющие выбросы вредных веществ, отобразить розу ветров и грунтовые воды в окружающей их местности и смоделировать распространение выбросов в окружающей среде.

В 2004г. президиумом Российской академии наук было принято решение о проведении работ по программе «Электронная Земля», суть которой заключается в создании многопрофильной геоинформационной системы, характеризующей нашу планету, практически - цифровой модели Земли.

Зарубежные аналоги программы «Электронная Земля» можно подразделить на локальные (централизованные, данные хранят на одном сервере) и распределенные (данные хранятся и распространяются различными организациями на разных условиях).

Безусловным лидером в создании локальных баз данных является ESRI (Environmental Systems Research Institute, Inc., США) Сервер ArcAtlas “Our Earth” содержит более 40 тематических покрытий, которые широко используются во всем мире. Практически все картографические проекты масштаба 1:10 000 000 и более мелких масштабов создаются с его использованием.

Наиболее серьезным проектом по созданию распределенной базы данных является «Цифровая Земля» (Digital Earth). Этот проект был предложен вице-президентом США Гором в 1998г., основным исполнителем является NASA. В проекте участвуют министерства и государственные ведомства США, университеты, частные организации, Канада, Китай, Израиль и Европейский союз. Все проекты распределенных баз данных испытывают серьезные трудности в вопросах стандартизации метаданных и совместимости отдельных ГИС и проектов, созданных разными организациями с применением разного программного обеспечения.

Деятельность человека постоянно связана с накоплением информации об окружающей среде, ее отбором и хранением. Информационные системы, основное назначение которых - информационное обеспечение пользователя, то есть предоставление ему необходимых сведений по конкретной проблеме или вопросу, помогают человеку решать задачи быстрее и качественнее. При этом одни и те же данные могут использоваться при решении разных задач и наоборот. Любая информационная система предназначена для решения некоторого класса задач и включает в себя как хранилище данных, так и средства для реализации различных процедур.

Информационное обеспечение экологических исследований реализуется главным образом за счет двух информационных потоков:

информация, возникшая при проведении экологических исследований;

научно-техническая информация по мировому опыту разработки экологических проблем по различным направлениям.

Общей целью информационного обеспечения экологических исследований является изучение информационных потоков и подготовка материалов для принятия решений на всех уровнях управления в вопросах выполнения экологических исследований, обоснования отдельных научно-исследовательских работ, а также распределения финансирования.

Поскольку объектом описания и изучения является планета Земля, и экологическая информация имеет общие черты с геологической, то перспективно построение географических информационных систем для сбора, хранения и обработки фактографической и картографической информации:

о характере и степени экологических нарушений естественного и техногенного происхождения;

об общих экологических нарушениях естественного и техногенного происхождения;

об общих экологических нарушениях в определенной сфере человеческой деятельности;

о недроиспользовании;

об экономическом управлении определенной территорией.

Географические информационные системы рассчитаны, как правило, на установку и подключение большого количества автоматизированных рабочих мест, располагающих собственными базами данных и средствами вывода результатов. Экологи на автоматизированном рабочем месте на основе пространственно привязанной информации может решить задачи различного спектра:

анализ изменения окружающей среды под влиянием природных и техногенных факторов;

рациональное использование и охрана водных, земельных, атмосферных, минеральных и энергетических ресурсов;

снижение ущерба и предотвращение техногенных катастроф;

обеспечение безопасного проживания людей, охрана их здоровья.

Все потенциально экологически опасные объекты и сведения о них, о концентрации вредных веществ, допустимых нормах и т.д. сопровождаются географической, геоморфологической, ландшафтно-геохимической, гидрогеологической и другими типами информации. Рассеянность и нехватка информационных ресурсов в экологии легла в основу разработанных ИГЕМ РАН аналитических справочно-информационных систем (АСИС) по проектам в области экологии и охраны окружающей среды на территории Российской Федерации АСИС «ЭкоПро», а также разработка автоматизированной системы для Московской области, призванной осуществить ее экомониторинг. Разница задач обоих проектов обуславливается не только территориальными границами (в первом случае это территория всей страны, а во втором непосредственно Московская область), но и по областям применения информации. Система «ЭкоПро» предназначена для накопления, обработки и анализа данных об экологических проектах прикладного и исследовательского характера на территории РФ за иностранные деньги. Система мониторинга Московской области призвана служить источником информации об источниках и реальном загрязнении окружающей среды, предотвращения катастроф, экологических мероприятиях в области охраны окружающей среды, платежах предприятий на территории области в целях экономического управления и контроля со стороны государственных органов. Так как информация по природе своей обладает гибкостью, то можно сказать, что и та, и другая система, разработанная ИГЕМ РАК может использоваться как с целью проведения исследований, так и для управления. То есть задачи двух систем могут переходить одна в другую.

В качестве более частного примера базы данных, хранящей информацию по охране окружающей среды, можно привести работу О.С. Брюховецкого и И.П. Ганина «Проектирование базы данных по методам ликвидации локальных техногенных загрязнений в массивах горных пород». В ней рассматривается методология построения такой базы данных, дается характеристика оптимальных условий ее применения.

При оценке чрезвычайных ситуаций информационная подготовка занимает 30-60% времени, а информационные системы в состоянии быстро предоставить информацию и обеспечить нахождение эффективных методов урегулирования. В условиях чрезвычайной ситуации решения не могут быть смоделированы в явном виде, однако основой для их принятия может служить большой объем разнообразной информации, хранимой и передаваемой базой данных. По предоставленным результатам управленческий персонал на основе своего опыта и интуиции принимает конкретные решения.

Моделирование процессов принятия решений становится центральным направлением автоматизации деятельности лица, принимающего решения (ЛПР). К задачам ЛПР относится принятие решений в геоинформационной системе. Современную геоинформационную систему можно определить как совокупность аппаратно-программных средств, географических и семантических данных, предназначенную для получения, хранения, обработки, анализа и визуализации пространственно-распределенной информации. Экологические геоинформационные системы позволяют работать с картами различных экологических слоев и автоматически строить аномальную зону по заданному химическому элементу. Это достаточно удобно, так как эксперту-экологу не нужно в ручную рассчитывать аномальные зоны и производить их построение. Однако, для полного анализа экологической обстановки эксперту-экологу требуется распечатывать карты всех экологических слоев и карты аномальных зон для каждого химического элемента. Берштейн Л.С., Целых А.Н. Гибридная экспертная система с вычислительным модулем для прогноза экологических ситуаций. Труды международного симпозиума “Интеллектуальные системы - ИнСис - 96”, г.Москва, 1996г.В геоинформационной системе построение аномальных зон производилось для тридцати четырех химических элементов. Сначала он должен получить сводную карту загрязнения почвы химическими элементами. Для этого путем последовательного копирования на кальку со всех карт, строится карта загрязнения почвы химическими элементами Алексеенко В.А. Геохимия ландшафта и окружающая cреда. - М.:Недра, 1990. -142с.:ил.. Затем полученную карту таким же образом сопоставляют с картами гидрологии, геологии, геохимических ландшафтов, глин. На основании сопоставления строится карта качественной оценки опасности окружающей среды для человека. Таким образом осуществляется мониторинг окружающей среды. Этот процесс требует много времени и высокой квалификации эксперта, для того, чтобы точно и объективно оценить обстановку. При таком большом объеме информации, одновременно, обрушивающейся на эксперта могут возникать ошибки. Поэтому возникла необходимость в автоматизации процесса принятия решений. Для этого существующая геоинформационная система была дополнена подсистемой принятия решений. Особенностью разработанной подсистемы является то, что одна часть данных с которыми работает программа, представлена в виде карт. Другая часть данных обрабатывается и на их основе строится карта, которая затем также подлежит обработке. Для реализации системы принятия решений был избран аппарат теории нечетких множеств. Это вызвано тем, что с помощью нечетких множеств можно создавать методы и алгоритмы способные моделировать приемы принятия решений человеком в ходе решения различных задач. В качестве математической модели слабоформализованных задач выступают нечеткие алгоритмы управления, позволяющие получать решение хотя приближенные, но не худшие, чем при использовании точных методов. Под нечетким алгоритмом управлению будем понимать упорядоченную последовательность нечетких инструкций (могут иметь место и отдельные четкие инструкции), обеспечивающую функционирование некоторого объекта или процесса. Методы теории нечетких множеств позволяют, во-первых, учитывать различного рода неопределенности и неточности, вносимые субъектом и процессами управления, и формализовать словесную информацию человека о задаче; во-вторых, существенно уменьшить число исходных элементов модели процесса управления и извлечь полезную информацию для построения алгоритма управления. Сформулируем основные принципы построения нечетких алгоритмов. Нечеткие инструкции, используемые в нечетких алгоритмах, формируются или на основе обобщения опыта специалиста при решении рассматриваемой задачи, или на основе тщательного изучения и содержательного ее анализа. Для построения нечетких алгоритмов учитываются все ограничения и критерии, вытекающие из содержательного рассмотрения задачи, однако полученные нечеткие инструкции используются не все: выделяются наиболее существенные из них, исключаются возможные противоречия и устанавливается порядок их выполнения, приводящий к решению задачи. С учетом слабоформализованных задач существуют два способа получения исходных нечетких данных - непосредственный и как результат обработки четких данных. В основе обоих способов лежит необходимость субъективной оценки функций принадлежности нечетких множеств.

Логическая обработка данных проб почвы и построение сводной карты загрязнения почвы химическими элементами.

Программа являлась развитием уже существующей версии программы “ТагЭко”, дополняет существующую программу новыми функциями. Для работы новых функций необходимы данные содержащиеся в предыдущей версии программы. Этим обусловлено использование методов доступа к данным разработанных в предыдущей версии программы. Используется функция для получения информации, хранящейся в базе данных. Это необходимо для получения координат каждой точки пробы, хранящейся в базе данных. Также используется функция для расчета величины аномального содержания химического элемента в ландшафте. Таким образом через эти данные и эти функции происходит взаимодействие предыдущей программы с подсистемой принятия решений. В случае изменения в базе данных значения пробы или координат пробы это будет автоматически учитываться в подсистеме принятия решений. Необходимо отметить, что при программировании используется динамический стиль выделения памяти и данные хранятся в виде односвязных, либо двусвязных списков. Это обусловлено тем, что заранее неизвестно количество проб или количество участков поверхности на которые будет разбита карта.

Построение карты качественной оценки влияния окружающей среды на человека.

Построение карты происходит согласно алгоритму, описанному выше. Пользователь указывает интересующую его область, а также шаг с которым будет производиться анализ карт. Перед началом обработки данных производится считывание информации из WMF файлов и формирование списков, элементами которых являются указатели на полигоны. Для каждой карты составляется свой список. Затем после формирования списков полигонов производится формирование карты загрязнения почвы химическими элементами. По окончании формирования всех карт и ввода исходных данных формируются координаты точек, в которых будет производиться анализ карт. Данные, получаемые функциями опроса заносятся в специальную структуру. Завершив формирование структуры программа производит ее классификацию. Каждая точка сетки опроса получает номер эталонной ситуации. Этот номер с указанием номера точки заносится в двусвязный список, чтобы потом можно было бы построить карту графически. Специальная функция анализирует этот двусвязный список и производит графическое построение изолиний вокруг точек, имеющих одинаковые классификационные ситуации. Она считывает точку из списка и анализирует значение номера ее ситуации с номерами соседних точек, и в случае совпадения объединяет рядом расположенные точки в зоны. В результате работы программы вся территория г.

Таганрога окрашивается в один из трех цветов. Каждый цвет характеризует качественную оценку экологической обстановки в городе. Так красный цвет указывает на “особо опасные участки”, желтый на “опасные участки”, зеленый на “безопасные участки”. Таким образом информация представляется в доступной для пользователя и удобной для восприятия форме. Берштейн Л.С., Целых А.Н. Гибридная экспертная система с вычислительным модулем для прогноза экологических ситуаций. Труды международного симпозиума “Интеллектуальные системы - ИнСис - 96”, г.Москва, 1996г.

Опыт комплексных географических исследований и системного тематического картографирования позволил геоинформационному картографированию занять ведущие позиции в развитии картографической науки и производства.

Сопоставление разновременных и разнотематических карт позволяет перейти к прогнозам на основе выявленных взаимосвязей и тенденций развития явлений и процессов. Прогноз по картам позволяет прогнозировать и современные, но еще не известные явления, например, прогнозы погоды или неизвестные полезные ископаемые.

В основе прогноза лежат картографические экстраполяции, трактуемые как распространение закономерностей, полученных в ходе картографического анализа какого-либо явления, на неизученную часть этого явления, на другую территорию или на будущее время. Картографические экстраполяции, как и любые другие (математические, логические), не универсальны. Их достоинство в том, что они хорошо приспособлены для прогнозирования и пространственных, и временных закономерностей. В практике прогнозирования по картам широко применяют также известные в географии методы аналогий, индикации, экспертные оценки, расчет статистических регрессий и др.

Литература:

1. Трифонова Т.А., Мищенко Н.В., Краснощеков А.Н. Геоинформационные системы и дистанционное зондирование в экологических исследованиях: Учебное пособие для вузов. - М., 2005. – 352 с.

2. Стурман В.И. Экологическое картографирование: Учебное пособие. – Москва, 2003.

Тема 14. Содержание и методы составления экологических карт. План:

1. Картографирование атмосферных проблем.

2. Картографирование загрязнения вод суши.

3. Качественные и количественные оценки экологических ситуаций.

1. Картографирование атмосферных проблем

Атмосфера как наиболее динамичная среда характеризуется сложной пространственно-временной динамикой уровней содержания примесей. В каждый данный момент времени уровень загрязненности атмосферы над некоторой территорией или в той или иной точке определяется балансом по отдельным поллютантам и их совокупности. В приходной части баланса находятся:

♦ поступление загрязняющих веществ от совокупности техногенных и естественных источников в пределах рассматриваемой территории;

♦ поступление загрязняющих веществ от источников за пределами рассматриваемой территории, в том числе отдаленных (дальний перенос);

♦ образование загрязняющих веществ в результате вторичных химических процессов, протекающих в самой атмосфере.

В расходной части баланса находятся:

♦ вынос загрязняющих веществ за пределы рассматриваемой территории;

♦ осаждение загрязняющих веществ на земную поверхность;

♦ разрушение загрязняющих веществ в результате процессов самоочищения.

Факторы интенсивности осаждения и самоочищения для разных веществ в значительной степени совпадают. Поэтому концентрации разных веществ обычно меняются относительно согласованно, подчиняясь одним и тем же временным и пространственным закономерностям.

Поступление загрязняющих веществ от естественных и техногенных пылящих источников усиливается при усилении ветра (в сочетании с наличием незакрепленных поверхностей), при вулканических процессах.

Таким образом, картографирование загрязнения атмосферы складывается из:

♦ картографирования потенциала загрязнения атмосферы;

♦ картографирования источников загрязнения;

♦ картографирования уровней загрязнения.

Экологические проблемы часто требуют незамедлительных и адекватных действий, эффективность которых напрямую связана с оперативностью обработки и представления информации. При комплексном подходе, характерном для экологии, обычно приходится опираться на обобщающие характеристики окружающей среды, вследствие чего, объемы даже минимально достаточной исходной информации, несомненно, должны быть большими. В противном случае обоснованность действий и решений вряд ли может быть достигнута. Однако простого накопления данных тоже, к сожалению, недостаточно. Эти данные должны быть легко доступны, систематизированы в соответствии с потребностями. Хорошо, если есть возможность связать разнородные данные друг с другом, сравнить, проанализировать, просто просмотреть их в удобном и наглядном виде, например, создав на их основе необходимую таблицу, схему, чертеж, карту, диаграмму. Группировка данных в нужном виде, их надлежащее изображение, сопоставление и анализ целиком зависят от квалификации и эрудированности исследователя, выбранного им подхода интерпретации накопленной информации. На этапе обработки и анализа собранных данных существенное, но отнюдь не первое, место занимает техническая оснащенность исследователя, включающая подходящие для решения поставленной задачи аппаратные средства и программное обеспечение. В качестве последнего во всем мире все чаще применяется современная мощная технология географических информационных систем.

ГИС имеет определенные характеристики, которые с полным правом позволяют считать эту технологию основной для целей обработки и управления информацией. Средства ГИС намного превосходят возможности обычных картографических систем, хотя естественно, включают все основные функции получения высококачественных карт и планов. В самой концепции ГИС заложены всесторонние возможности сбора, интеграции и анализа любых распределенных в пространстве или привязанных к конкретному месту данных. Если необходимо визуализировать имеющуюся информацию в виде карты, графика или диаграммы, создать, дополнить или видоизменить базу данных, интегрировать ее с другими базами - единственно верным путем будет обращение к ГИС. В традиционном представлении возможные пределы интеграции разнородных данных искусственно ограничиваются. Близким к идеалу считают, например, возможность создания карты урожайности полей путем объединения данных о почвах, климате и растительности. ГИС позволяет пойти значительно дальше. К вышеприведенному набору данных можно добавить демографическую информацию, сведения о земельной собственности, благосостоянии и доходах населения, объемах капитальных вложений и инвестиций, зонировании территории, состоянии хлебного рынка и т.д. В результате появляется возможность напрямую определить эффективность запланированных или проводящихся мероприятий по сохранению природы, их влияние на жизнь людей и экономику сельского хозяйства. Можно пойти еще дальше и, добавив данные о распространении заболеваний и эпидемий, установить, есть ли взаимосвязь между темпами деградации природы и здоровьем людей, определить возможность возникновения и распространения новых заболеваний. В конечном счете, удается достаточно точно оценить все социально-экономические аспекты любого процесса, например сокращения площади лесных угодий или деградации почв.

В управлении землепользованием и в ведении городского хозяйства одним из основных видов продукции является информация (в том чис­ле картографическая), получаемая на основе имеющихся данных. При решении экологических задач с помощью ГИС акцент на продукцию несколько иной. В ходе экологического наблюдения (мониторинга) осу­ществляют сбор и совместную обработку данных, относящихся к раз­личным природным средам, моделирование и анализ экологических про­цессов и тенденций их развития, а также использование данных при при­нятии решений по управлению качеством окружающей среды.

Результат экологического исследования, как правило, представляет оперативные данные трех типов:констатирующие (измеренные пара­метры состояния экологической обстановки в момент обследования), оценочные (результаты обработки измерений и получение на этой ос­нове оценок экологической ситуации),прогнозные (прогнозирующие развитие обстановки на заданный период времени).

Из этого следует, что в экологических ГИС применяются в первую очередь динамические модели. В силу этого большую роль в них игра­ют технологии создания электронных карт.

Совокупность всех перечисленных трех типов данных составляет основу экологического мониторинга.

Особенностью представления данных в системах экологического мониторинга является то, что на экологических картах в большей степе­ни представлены ареальные геообъекты, чем линейные.

Относительно цифрового моделирования принципиальным следует считать использование цифровых моделей типа цифровая модель явле­ния, поле и т.п.

На уровне сбора наряду с топографическими характеристиками дополнительно определяются параметры, характеризующие экологичес­кую обстановку. Это увеличивает объем атрибутивных данных в эколо­гических ГИС по сравнению с типовыми ГИС. Соответственно возрас­тает роль семантического моделирования.

На уровне моделирования используют специальные методы расчета параметров, характеризующих экологическое состояние среды и определяющих форму представления цифровых карт.

На уровне представления при экологических исследованиях осуществляют выдачу не одной, а, как правило, серии карт, особенно при прогнозировании явлений. В некоторых случаях карты выдаются с применением методов динамической визуализации, что довольно часто можно наблюдать при метеопрогнозах, показываемых по телевидению.

В качестве примера рассмотрим систему экологического монито­ринга, создаваемую для Москвы". Объектами мониторинга Москвы яв­ляются: атмосферный воздух, поверхностные и подземные воды, почва, зеленые насаждения, радиационная обстановка, среда обитания и со­стояние здоровья населения.

Большое число организаций (федеральных, муниципальных, ведом­ственных) в Москве занимаются независимо друг от друга сбором дан­ных о состоянии параметров объектов окружающей среды. Производится контроль состава атмосферного воздуха, количества выбросов промыш­ленных предприятий и автотранспорта, качества поверхностных и под­земных вод и т. д. Эти работы выполняют различные организации - от ГАИ до санэпидемстанций. Недостатки существующего порядка сбора экологических данных - разрозненность и бессистемность, ра­зобщенность городских природоохранных организаций и отсутствие ком­плексных оценок и прогнозов развития экологической обстановки.

Главная задача городского экомониторинга - получение комплекс­ной оценки экологической ситуации в городе на базе интеграции всех видов данных, поступающих от различных организаций. Интеграцион­ной основой множества данных, естественно, является карта. Следова­тельно, решение задач экомониторинга города неизбежно приводит к созданию и применению ГИС.

(‘Пупырев Е.И., Бутаков П.Д., Дронина Н.П. Роль и место геоинформаци­онных технологий в системе экомониторинга Москвы // ГИС - Обозрение. -Лето, 1995.-С. 34-36.)

Для этого объединяют существующие сети различных измерений и специализированные мониторинги природоохранных служб. Создание системы основано на внедрении современных средств контроля на базе единого информационного пространства.

Структура системы экомониторинга Москвы включает два уровня.

Нижний уровень системы включает:

Федеральные, городские и ведомственные подсистемы специали­зированных мониторингов (мониторинг атмосферы, поверхностных вод, здоровья населения, радиодогический мониторинг, мониторинг санитар­ной очистки территории города, мониторинг недр и подземных вод, почв, зеленых насаждений, акустический мониторинг, градостроительный мо­ниторинг);

Территориальные центры сбора и обработки данных, созданные на базе территориальных отделений Москомприроды.

Эти подсистемы обеспечивают сбор полной и по возможности каче­ственной информации о состоянии окружающей среды на всей террито­рии города. В локальных центрах проводятся также анализ информации и ее отбор для передачи на верхний уровень.

Территориальные центры обеспечивают сбор информации по источ­никам антропогенного загрязнения на территории административных округов и используют данные территориальных подразделений феде­ральных служб и городских хозяйственных организаций.

Верхний уровень системы экомониторинга составляет информа­ционно-аналитический центр. В задачи верхнего уровня системы входят:

Оперативная оценка экологической ситуации в городе;

Расчет интегральных оценок экологической ситуации;

Прогноз развития, экологической обстановки;

Подготовка проектов управляющих воздействий и оценка последствий принимаемых решений.

Очевидно, что информационная система экомониторинга Москвы имеет ярко выраженный распределенный характер. Поэтому она стро­ится на основе распределенной информационной сети.

Для эффективного использования накапливаемых данных необхо­димы комплексная обработка и совершенные методы моделирования и представления данных.

Геоинформационные системы являются оптимальным средством для представления и анализа пространственно - распределенных экологичес­ких данных.

Подсистема специализированных мониторингов охватывает ряд организаций (Москомзем, НПО "Радон", НИиПИ Генплана), имеющих инструментальные пакеты ГИС. Другие организации (Мослесопарк, МГЦСЭН) подобного программного обеспечения не имеют. Интегра­ция данных в единую систему происходит двумя путями:

На основе конвертирования форматов данных в единый для всей системы формат;

На основе выбора единого программного обеспечения ГИС. Программный комплекс, разрабатываемый АО "Прима", обеспечи­вая решение задач территориальных отделений Москомприроды иди ко­митетов по охране природы крупных и средних городов, выполняет сле­дующие функции:

Формирование и ведение баз экологической информации по терри­ториям, предприятиям, средам (воздух, вода, почва);

Ведение базы данных нормативно-законодательных документов в области экологии;

Ведение базы данных нормативов содержания загрязняющих ве­ществ в воздухе, воде, почве и продуктах питания;

Ведение базы данных приборов экологического контроля.

Кроме ведения баз данных предусмотрены работы по моделирова­нию и получению тематических карт. В частности, в системе произво­дятся следующие виды расчетов: расчет платежей за использование при­родных ресурсов и расчет полей концентрации загрязняющих веществ в атмосфере, воде и почве.

Система экологического мониторинга предусматривает обмен данными между его участниками. Поэтому одним из главных требо­ваний, предъявляемых к программному обеспечению всех подсистем, является возможность конвертирования файлов данных в стандарт­ные форматы (dbf для файлов баз данных и DXF для графических файлов).

При создании системы экомониторинга Москвы использовалась еди­ная система координат для всех подразделений экомониторинга. Все геоинформационные (включая экологические) данные должны иметь единую координатную привязку, и тогда при обмене информацией в циф­ровом виде не возникает никаких проблем.

Масштабы карт, на которых работают разные подсистемы экомо­ниторинга, могут быть различными: от 1: 2 000 для территориаль­ных отделений Москомприроды до 1: 38 000 для верхнего уровня системы.

В организации экомониторинга Москвы геоинформационные тех­нологии составляют основу, поскольку они обеспечивают решение за­дач экологического мониторинга Москвы.