Болезни Военный билет Призыв

Сверхтяжелые элементы. Алхимии отцовой пережитки. Элементы, которых нет в природе

Другие распались и не дожили до наших дней. Уран еще распадается - это радиоактивный элемент.

Все элементы после урана – тяжелее его. Они образовались когда-то в процессе нуклеосинтеза (процесс, в котором ядра сложных, тяжелых химических элементов, образуются из более простых и легких атомных ядер), но не дожили до наших дней. Сегодня их можно получить только искусственным способом.

Открытие в 1940-1941 годах первых искусственных элементов, нептуния и плутония, стало началом нового направления ядерной физики и химии по исследованию свойств трансурановых элементов и их применению во многих областях науки и техники. В результате многолетней и интенсивной работы физиками-ядерщиками были синтезированы несколько новых элементов.

Существуют три признанных во всем мире исследовательских центра по синтезу тяжелых элементов: в Дубне (Россия), в Беркли (США) и в Дармштадте (Германия). Все новые элементы, начиная с 93-го (нептуний) были получены именно в этих лабораториях. Новый элемент не считается открытым до тех пор, пока одна группа исследователей не получит надежных результатов по исследованию его атомов и пока другая (независимая) группа ученых не подтвердит эти результаты. Поэтому дальние клеточки Периодической таблицы заполняются очень медленно.

В 1940 – 1953 годах профессором Гленом Сиборгом и его коллегами в Радиационной национальной лаборатории (Беркли, США) были синтезированы искусственные элементы с Z = 93 – 100. Они были получены в реакциях последовательного захвата нейтронов ядрами изотопа урана – 235U в длительных облучениях на мощных ядерных реакторах. Все более тяжелые ядра были получены на ускорителях заряженных частиц, в которых сталкиваются разогнанные до высоких скоростей ядра и частицы. В результате столкновений образуются ядра сверхтяжелых элементов, которые существуют очень короткое время, а затем вновь распадаются. Благодаря следам этого распада и определяют, что синтез тяжелого ядра удался.

Элементы тяжелее Z=100 были синтезированы в реакциях с ускоренными тяжелыми ионами, когда в ядро-мишень вносится комплекс протонов и нейтронов. С 1960-х годов началась эпоха ускорителей элементарных частиц – циклотронов, эпоха ускорения тяжелых ионов, когда синтез новых элементов стали производить только при взаимодействии двух тяжелых ядер. Однако в середине 1970-х было практически невозможно исследовать химические свойства 104, 105,106 и 107 элементов, так как время их жизни – доли микросекунды – не позволяли проводить полноценные химические исследования. Все они были синтезированы в реакциях холодного синтеза (холодное слияние массивных ядер открыто в 1974 году; при нем выделяется один или два нейтрона с относительно небольшими энергиями.)

104 элемент был впервые синтезирован в Дубне в 1964 году. Его получила группа ученых Лаборатории ядерных реакций во главе с Георгием Флеровым. В 1969 году элемент был получен группой ученых в университете Беркли, Калифорния. В 1997 году элемент получил название резерфордий, символ Rf.

105 элемент был синтезирован в 1970 году двумя независимыми группами исследователей в Дубне (СССР) и Беркли (США). Получил название дубний в честь города Дубна, где располагается Объединенный институт ядерных исследований, в котором синтезированы несколько химических элементов, символ Db.

Впервые 106 элемент был получен в СССР Георгием Флеровым с сотрудниками в 1974 году, практически одновременно был синтезирован в США Гленом Сиборгом с сотрудниками. В 1997 году Международный союз теоретической и прикладной химии (ИЮПАК) утвердил для 106 элемента название сиборгий (в честь Сиборга), символ Sg.

Реакции холодного слияния массивных ядер были успешно использованы для синтеза шести новых элементов, от 107 до 112, в Национальном ядерно-физическом центре GSI в Дармштадте (Германия). Первые опыты по получению 107 элемента были выполнены в СССР Юрием Оганесяном с сотрудниками в 1976 году. Первые надежные сведения о ядерных свойствах 107 элемента были получены в ФРГ в 1981 и 1989 годах. В 1997 году ИЮПАК утвердил для 107 элемента название борий (в честь Нильса Бора), символ Bh.

Первые опыты по получению 108 элемента были выполнены в СССР в 1983 1984 годах. Надежные данные о ядерных свойствах 108 элемента были получены в ФРГ в 1984 и 1987 годах. В 1997 году ИЮПАК утвердил для 108 элемента название хассий (по земле Гессен, Германия), символ Hs.

Впервые 109 элемент был получен в ФРГ в 1982 году и подтвержден в 1984 году. В 1994 году ИЮПАК утвердил для 109 элемента название мейтнерий (в честь Лизы Мейтнер), символ Mt.

110 элемент открыт в 1994 году в Центре исследований тяжелых ионов в Дармштатде (ФРГ) в ходе эксперимента по напылению на пластины специального сплава, содержащего свинец, и его бомбардировки изотопами никеля. Назван дармштадтий в честь города Дармштадт (Германия), где был обнаружен. Символ Ds.

111 элемент тоже был открыт в Германии, получил название рентгений (химический символ Rg) в честь германского ученого Вильгельма-Конрада Рентгена.

112 элемент носит рабочее название "унунбий" (Uub), образованное от от латинских цифр "один-один-два". Представляет собой трансурановый элемент, полученный при бомбардировке свинцовой мишени ядрами цинка. Период его полураспада составляет около 34 секунд.

Унунбий был впервые получен в феврале 1996 года на ускорителе тяжелых ионов в Дармштадте. Для получения атомов нового элемента команда ученых использовала ионы цинка с атомным номером 30, которые разгонялись до очень больших энергий в 120-метровом ускорителе, после чего ударялись о мишень из свинца, атомный номер которого равен 82. При слиянии ядер цинка и свинца и происходило формирование ядер нового элемента, порядковый номер которого равен сумме атомных номеров исходных компонентов. В июне 2009 года ИЮПАК официально признала его существование.

Более тяжелые элементы – с атомными номерами 112-116 и самый тяжелый на данный момент 118-й элемент – были получены российскими учеными из Объединенного института ядерных исследований в Дубне в 2000-2008 годах, но пока еще ждут официального признания со стороны ИЮПАК.

В настоящее время российские физики из Лаборатории имени Флерова Объединенного института ядерных исследований в Дубне проводят эксперимент по синтезу 117-го элемента, место которого в таблице Менделеева между ранее полученными 116-м и 118-м элементами пока пустует.

При энергии ионов криптона вблизи кулоновского барьера наблюдалось три случая образования 118 элемента . Ядра 293 118 имплантировались в кремниевый детектор и наблюдалась цепочка шести последовательных α-распадов, которая заканчивалась на изотопе 269 Sg. Сечение образования 118 элемента составляло ~2 пикобарна. Период полураспада изотопа 293 118 равен 120 мс. На рис. 3 показана цепочка последовательных α-распадов изотопа 293 118 и приведены периоды полураспада дочерних ядер, образующихся в результате α-распадов.

На основе различных теоретических моделей были рассчитаны распадные характеристики сверхтяжелых ядер. Результаты одного из таких расчетов показаны на рис. 4. Приведены периоды полураспада четно-четных сверхтяжелых ядер относительно спонтанного деления (а), α-распада (б), β-распада (в) и для всех возможных процессов распада (г). Наиболее устойчивым ядром по отношению к спонтанному делению (рис. 4а) является ядро с Z = 114 и N = 184. Для него период полураспада по отношению к спонтанному делению ~10 16 лет. Для изотопов 114-го элемента, отличающихся от наиболее устойчивого на 6-8 нейтронов, периоды полураспада уменьшаются на 10-15 порядков. Периоды полураспада по отношению к α-распаду приведены на рис. 4б. Наиболее устойчивое ядро расположено в области Z < 114 и N = 184 (T 1/2 = 10 15 лет). Для изотопа 298 114 период полураспада составляет около 10 лет.

Стабильные по отношению к β-распаду ядра показаны на рис. 4в темными точками. На рис. 4г приведены полные периоды полураспада. Для четно-четных ядер, расположенных внутри центрального контура, составляют ~10 5 лет. Таким образом, после учета всех типов распада оказывается, что ядра в окрестности Z = 110 и N = 184 образуют "остров стабильности". Ядро 294 110 имеет период полураспада около 10 9 лет. Отличие величины Z от предсказываемого оболочечной моделью магического числа 114 связано с конкуренцией между делением (относительно которого ядро с Z = 114 наиболее стабильно) и α-распадом (относительно которого устойчивы ядра с меньшими Z). У нечетно-четных и четно-нечетных ядер периоды полураспада по отношению к α-распаду и спонтанному делению увеличиваются, а по отношению к β-распаду уменьшаются. Следует отметить, что приведенные оценки сильно зависят от параметров, использованных в расчетах, и могут рассматриваться лишь как указания на возможность существования сверхтяжелых ядер, имеющих времена жизни достаточно большие для их экспериментального обнаружения.

Результаты еще одного расчета равновесной формы сверхтяжелых ядер и их периодов полураспада показаны на рис. 5, 11.11 . На рис. 11.10 показана зависимость энергии равновесной деформации от количества нейтронов и протонов для ядер с Z = 104-120. Энергия деформации определяется как разность энергий ядер в равновесной и сферической форме. Из этих данных видно, что в области Z = 114 и N = 184 должны располагаться ядра, имеющие в основном состоянии сферическую форму. Все обнаруженные на сегодня сверхтяжелые ядра (они показаны на рис. 5 темными ромбами) деформированы. Светлыми ромбами показаны ядра стабильные по отношению к β-распаду. Эти ядра должны распадаться в результате α-распада или деления. Основным каналом распада должен быть α-распад.

Периоды полураспада для четно-четных β-стабильных изотопов показаны на рис. 6. Согласно этим предсказаниям для большинства ядер ожидаются периоды полураспада гораздо большие, чем наблюдались для уже обнаруженных сверхтяжелых ядер (0.1-1 мс). Так например, для ядра 292 110 предсказывается время жизни ~ 51 год.
Таким образом, согласно современным микроскопическим расчетам, стабильность сверхтяжелых ядер резко возрастает по мере приближения к магическому числу по нейтронам N = 184. До недавнего времени единственным изотопом элемента с Z = 112 был изотоп 277 112, имеющий период полураспада 0.24 мс. Более тяжелый изотоп 283 112 был синтезирован в реакции холодного слияния 48 Ca + 238 U. Время облучения 25 дней. Полное число ионов 48 Ca на мишени - 3.5·10 18 . Зарегистрированы два случая, которые были интерпретированы как спонтанное деление образовавшегося изотопа 283 112. Для периода полураспада этого нового изотопа получена оценка T 1/2 = 81 c. Таким образом видно, что увеличение числа нейтронов в изотопе 283 112 по сравнению с изотопом 277 112 на 6 единиц увеличивает время жизни на 5 порядков.

На рис. 7 показано измеренное время жизни изотопов сиборгия Sg (Z = 106) в сравнении с предсказаниями различных теоретических моделей . Обращает на себя внимание уменьшение почти на порядок времени жизни изотопа с N = 164 по сравнению с временем жизни изотопа с N = 162.
Наибольшего приближения к острову стабильности можно достичь в реакции 76 Ge + 208 Pb. Сверхтяжелое почти сферическое ядро может образоваться в реакции слияния с последующим испусканием γ-квантов или одного нейтрона. Согласно оценкам образующееся ядро 284 114 должно распадаться с испусканием α-частиц с периодом полураспада ~ 1 мс. Дополнительную информацию о заполненности оболочки в районе N = 162 можно получить, изучая α-распады ядер 271 108 и 267 106. Для этих ядер предсказываются периоды полураспада 1 мин. и 1 час. Для ядер 263 106, 262 107, 205 108, 271,273 110 ожидается проявление изомерии, причиной которой является заполнение подоболочек с j = 1/2 и j = 13/2 в районе N = 162 для ядер деформированных в основном состоянии.

На рис. 8 показаны экспериментально измеренные функции возбуждения реакции образования элементов Rf (Z = 104) и Hs (Z = 108)для реакций слияния налетающих ионов 50 Ti и 56 Fe с ядром-мишенью 208 Pb.
Образовавшееся компаунд-ядро охлаждается испусканием одного или двух нейтронов. Информация о функциях возбуждения реакций слияния тяжелых ионов особенно важны для получения сверхтяжелых ядер. В реакции слияния тяжелых ионов необходимо точно сбалансировать действие кулоновских сил и сил поверхностного натяжения. Если энергия налетающего иона недостаточно большая, то расстояние минимального сближения будет недостаточно для слияния двойной ядерной системы. Если энергия налетающей частицы будет слишком большой, то образовавшаяся в результате система будет иметь большую энергию возбуждения и с большой вероятностью произойдет развал ее на фрагменты. Эффективно слияние происходит в довольно узком диапазоне энергий сталкивающих частиц.

Реакции слияния с испусканием минимального числа нейтронов (1-2) представляют особый интерес, т.к. в синтезируемых сверхтяжелых ядрах желательно иметь максимально большое отношение N/Z. На рис. 9 показан потенциал слияния для ядер в реакции
64 Ni + 208 Pb 272 110. Простейшие оценки показывают, что вероятность туннельного эффекта для слияния ядер составляет ~ 10 -21 , что существенно ниже наблюдаемой величины сечения. Это можно объяснить следующим образом. На расстоянии 14 Фм между центрами ядер первоначальная кинетическая энергия 236.2 МэВ полностью компенсируется кулоновским потенциалом. На этом расстоянии находятся в контакте только нуклоны, расположенные на поверхности ядра. Энергия этих нуклонов мала. Следовательно существует высокая вероятность того, что нуклоны или пары нуклонов покинут орбитали в одном ядре и переместятся на свободные состояния ядра-партнера. Передача нуклонов от налетающего ядра ядру-мишени особенно привлекательна в случае, когда в качестве мишени используется дважды магический изотоп свинца 208 Pb. В 208 Pb заполнены протонная подоболочка h 11/2 и нейтронные подоболочки h 9/2 и i 13/2 . Вначале передача протонов стимулируется силами притяжения протон-протон, а после заполнения подоболочки h 9/2 - силами притяжения протон-нейтрон. Аналогично нейтроны перемещаются в свободную подоболочку i 11/2 , притягиваясь нейтронами из уже заполненной подоболочки i 13/2 . Из-за энергии спаривания и больших орбитальных моментов передача пары нуклонов более вероятна, чем передача одного нуклона. После передачи двух протонов от 64 Ni 208 Pb кулоновский барьер уменьшается на 14 МэВ, что способствует более тесному контакту взаимодействующих ионов и продолжению процесса передачи нуклонов.
В работах [В.В. Волков. Ядерные реакции глубоконеупругих передач. М. Энергоиздат, 1982; В.В. Волков. Изв. АН СССР серия физич., 1986 т. 50 с. 1879] был детально исследован механизм реакции слияния. Показано, что уже на стадии захвата формируется двойная ядерная система после полной диссипации кинетической энергии налетающей частицы и нуклоны одного из ядер постепенно оболочка за оболочкой передаются другому ядру. То есть оболочечная структура ядер играет существенную роль в образовании компаунд-ядра. На основе этой модели удалось достаточно хорошо описать энергию возбуждения составных ядер и сечение образования 102-112 элементов в реакциях холодного синтеза.
В Лаборатории ядерных реакций им. Г.Н. Флерова (Дубна) синтезирован элемент с Z = 114. Была использована реакция

Идентификация ядра 289 114 проводилась по цепочке α-распадов. Экспериментальная оценка периода полураспада изотопа 289 114 ~30 с. Полученный результат находится в хорошем согласии с ранее выполненными расчетами .
При синтезе 114 элемента в реакции 48 Cu + 244 Pu максимальный выход дает канал с испарением трех нейтронов. При этом энергии возбуждения составного ядра 289 114 была 35 МэВ.
Теоретически предсказываемая последовательность распадов, происходящих с ядром 296 116, образующемся в реакции , приведена на рис.10.



Рис. 10. Схема распада ядра 296 116

Ядро 296 116 охлаждается испусканием четырех нейтронов и превращается в изотоп 292 116, который далее с 5% -ой вероятностью в результате двух последовательных e-захватов превращается в изотоп 292 114. В результате α-распада (T 1/2 = 85 дней) изотоп 292 114 превращается в изотоп 288 112. Образование изотопа 288 112 происходит и по каналу

Конечное ядро 288 112, образующееся в результате обеих цепочек, имеет период полураспада около 1 часа и распадается в результате спонтанного деления. Примерно с 10%-ой вероятностью в результате α-распада изотопа 288 114 может образовываться изотоп 284 112. Приведенные выше периоды и каналы распада получены расчетным путем.
Анализируя различные возможности образования сверхтяжелых элементов в реакциях с тяжелыми ионами нужно учитывать следующие обстоятельства.

  1. Необходимо создать ядро с достаточно большим отношением числа нейтронов к числу протонов. Поэтому в качестве налетающей частицы надо выбирать тяжелые ионы, имеющие большое N/Z.
  2. Необходимо, чтобы образующееся компаунд-ядро имело малую энергию возбуждения и небольшую величину момента количества движения, так как в противном случае будет снижаться эффективная высота барьера деления.
  3. Необходимо, чтобы образующееся ядро имело форму близкую к сферической, так как даже небольшая деформация будет приводить к быстрому делению сверхтяжелого ядра.

Весьма перспективным методом получения сверхтяжелых ядер являются реакции типа 238 U + 238 U, 238 U + 248 Cm, 238 U + 249 Cf, 238 U + 254 Es. На рис. 11 приведены оценочные сечения образования трансурановых элементов при облучении ускоренными ионами 238 U мишеней из 248 Cm, 249 Cf и 254 Es. В этих реакциях уже получены первые результаты по сечениям образования элементов с Z > 100. Для увеличения выходов исследуемых реакций толщины мишеней выбирались таким образом, чтобы продукты реакции оставались в мишени. После облучения из мишени сепарировались отдельные химические элементы. В полученных образцах в течение нескольких месяцев регистрировались продукты α-распада и осколки деления. Данные, полученные с помощью ускоренных ионов урана, ясно указывают на увеличение выхода тяжелых трансурановых элементов по сравнениюю с более легкими бомбардирующими ионами. Этот факт чрезвычайно важен для решения проблемы синтеза сверхтяжелых ядер. Несмотря на трудности работы с соответствующими мишенями прогнозы продвижения к большим Z выглядят довольно оптимистично.

Продвижение в область сверхтяжелых ядер в последние годы оказалось ошеломляюще впечатляющим. Однако, пока все попытки обнаружить остров стабильности не увенчались успехом. Поиск его интенсивно продолжается.

Атомное ядро это система нуклонов, состоящая из Z протонов и N нейтронов, связанных ядерным взаимодействием. Энергия связи атомного ядра в жидко-капельной модели описывается формулой Бете-Вайцзеккера [3, 4 ]. В зависимости от времени жизни и соотношения между Z и N атомные ядра делятся на стабильные и радиоактивные. Явление радиоактивности было открыто А.А. Бекерелем в 1896 г., который обнаружил неизвестное ранее излучение, которое испускали соли урана .
В 1898 г. Пьер и Мария Кюри выделили новые элементы, радий Ra (Z = 88) и полоний Po (Z = 84) , также обладающие свойством радиоактивности. Э. Резерфорд в 1898 г. показал, что излучение урана имеет две компоненты: положительно заряженные α-частицы (ядра 4 He) и отрицательно заряженные β-частицы (электроны) [6, 9 ]. В 1900 году П. Виллардом было открыто γ-излучение урана .
Стабильные ядра расположены в так называемой долине стабильности (рис. 1). Отношение N к Z вдоль линии стабильности зависит от масового числа А = N + Z:

N/Z = 0.98 + 0.015А 2/3 . (1)

Рис. 1. NZ диаграмма атомных ядер

В настоящее время известно около 3500 атомных ядер, число стабильных ядер около 300. Слева от долины стабильности располагаются радиоактивные ядра, распадающиеся в результате β + -распада и е-захвата. При удалении от долины стабильности в сторону ядер, перегруженных протонами, уменьшается их период полураспада. Граница В р (N,Z) = 0 (В р (N,Z) энергия отделения протона в ядре (N,Z)) ограничивает область существования ядер слева.
При продвижении от долины стабильности в сторону ядер, перегруженных ней­тронами, также происходит уменьшение периода полураспада ядер. Справа область существования ядер ограничена соотношением В n (N,Z) = 0 (В n (N,Z) энергия отделения нейтрона в ядре (N,2)). Вне границ
В р (N,Z) = 0 и (В n (N,Z) = 0 атомные ядра существовать не могут, так как их распад происходит за характерное ядерное время τ яд = 10 -22 с.
Область ядер с протонным избытком экспериментально изучена практически пол­ностью вплоть до границы В р (N,Z) = 0. Что касается ядер с избытком нейтронов, то (за исключением легких ядер) область экспериментально обнаруженных ядер лежит довольно далеко от границы В n (N,Z) = 0. В этой области может располагаться еще около 2500 − 3000 неизвестных нам ядер.

Академик Г.Н. Флеров:
Ценность информации, полученной из исследования изотопа, находящегося далеко от области стабильности, значительно больше того, что мы узнаем, изучая изотопы, находящеся вблизи этой области. Это общий методологический подход, который используется и физиками, и химиками,
изучать свойства вещества в экстремальных условиях его существования. Изотопы, далекие от области (β-стабильности, являются предельными в том отношении, что в одном случае, когда протонов мало и число нейтронов относительно велико, основную роль играют ядерные силы; в другом случае, когда имеется избыток протонов, весьма существенную роль играют кулоновские силы отталкивания, вплоть до того, что становится возможным радиоактивный распад ядер с испусканием протонов.
В связи с этим становится понятным наш особый интерес к изучению ядер трансурановых элементов, где кулоновские силы настолько велики, что преодолевают ядерные силы притяжения. Почти исчезает потенциальный барьер, удерживающий в равновесии ядро как целое, и оно делится на осколки. В то же время специфические ядерные эффекты, связанные с внутренней структурой ядра, могут быть выражены чрезвычайно сильно. Именно в этой области элементов открыт новый вид ядерной изомерии изомерия формы. Здесь же возможен ряд других интересных явлений, связанных, например, с наличием второго минимума в энергии деформации ядра.

Доклад в Оргкомитет конференции ЮНЕСКО,
посвященный 100-летию создания таблицы Менделеева .

Ограничения на существование атомных ядер есть и со стороны сверхтяжелых элементов. Элементы с Z > 92 в естественных условиях не обнаружены. Расчеты по жидкокапельной модели ядра предсказывают исчезновение барьера деления для ядер с Z 2 /А ≈ 41 (примерно 104 элемент) . В проблеме существования сверхтяжелых ядер следует выделить два круга вопросов.

  • Какими свойствами должны обладать сверхтяжелые ядра? Будут ли существовать магические числа в этой области Z и N? Каковы основные каналы распада и периоды полураспада сверхтяжелых ядер?
  • Какие реакции следует использовать для синтеза сверхтяжелых ядер, типы бомбардирующих ядер, ожидаемые величины сечений, ожидаемые энергии возбуждения составного ядра и каналы снятия возбуждения образующихся ядер?

Проблема синтеза сверхтяжелых элементов тесно связана с тем фактом, что ядра с Z, N = 2, 8, 20, 28, 50, 82, N = 126 (магические числа) обладают повышенной стабильностью по отношению к различным типам радиоактивного распада. Это явление объясняется в рамках модели ядерных оболочек − магические числа соответствуют заполненным ядерным оболочкам [12, 13 ]. Естественно возникает вопрос о существовании следующих магических чисел по Z и N. В случае, если они существуют в области NZ- диаграммы атомных ядер N > 150, Z > 101, должны наблюдаться сверхтяжелые ядра, имеющие повышенные периоды полураспада, т.е. должен существовать Остров Стабильности. Применение метода


Сколько элементов в химической таблице Менделеева? Все ли они занимают стабильное, устойчивое и безусловное место? О границах существования элементов в природе, нейтронной материи и синтезе сверхтяжелых элементов - член-корреспондент РАН Юрий Оганесян и доктор физико-математических наук Михаил Иткис.

Тезисы для дискуссии:

Что мы знаем и что хотим понять по проблеме синтеза сверхтяжелых элементов?

Есть ли границы существования элементов в природе?

Как происходил нуклеосинтез элементов во Вселенной?

Что обуславливает возможную стабильность сверхтяжелых элементов?

Насколько эта проблема фундаментальна и есть ли у нее политический аспект?

Возможности современной экпериментальной техники для ее решения.

Что такое нейтронная материя? Можно ли изучать ее в лабораторных условиях, а не только в процессе исследования астрофизических объектов, таких как нейтронные звезды и т. д.? Тенденции в мировой науке.

Нужно ли обществу изучение вышеуказанных фундаментальных проблем науки? Приводит ли оно к появлению новых идей в виде новых технологий, источников энергии, медицинских приборов и т. п.

Обзор темы

Известно, что все элементы от самого легкого (водорода) до самого тяжелого (урана) составляют окружающий нас мир. Они существуют в Земле. Это значит, что время их жизни больше, чем возраст самой Земли. Все элементы после урана - тяжелее его. Они образовались когда-то в процессе нуклеосинтеза, но не дожили до наших дней. Сегодня их можно получить только искусственным способом.

Концепция атома общеизвестна: ядро, которое содержит всю массу атома и его положительный заряд, и электронные орбитали. Гипотетически оно может существовать до атомных номеров: 160 и, быть может, 170. Однако граница существования элементов намечается значительно раньше, и причина кроется в нестабильности самого ядра. Поэтому вопрос о пределах существования элементов должен быть адресован ядерной физике. Если посмотреть на ядра, которые содержат разное число протонов и нейтронов, то стабильные элементы встречаются только до свинца и висмута. Затем (рис. 1) расположен «небольшой полуостров», в котором обнаружены в Земле только торий и уран. Из этого следует, что вопрос о пределах существования элементов зависит от стабильности ядер, и должен быть адресован ядерной физике.

Рис. 1. Карта изотопов с атомными номерами 70 Zі. Стабильность атомов показана плотностью цвета согласно правой шкале. Для области 112 Zі и 165 Zі приведены теоретические предсказания периодов полураспада гипотетических сверхтяжелых атомов.

Как только мы продвигаемся за уран, время жизни ядер резко падает. Изотопы заурановых элементов радиоактивны, они испытывают альфа-распад. Время жизни ядер уменьшается в логарифмическом масштабе. Эта логарифмическая шкала показывает, что от урана (92-элемента) до 100-го элемента стабильность ядер уменьшается на 20 с лишним порядков.

На самом деле, положение оказалось еще более сложным. Спонтанное деление - четвертый тип радиоактивности - настигает альфа-распад в области 100-го элемента, и в дальнейшем время жизни ядер уменьшается значительно быстрее.

Спонтанное деление было открыто К. А. Петржаком и Г. Н. Флеровым 60 лет тому назад как редкая разновидность распада урана. Оно становится основным, когда речь заходит о более тяжелых элементах.

Объяснение явления спонтанного деления было дано Нильсом Бором в 1939 г. Согласно Н. Бору, подобный процесс может произойти, если предположить, что ядерное вещество обладает свойствами бесструктурной материи типа капли заряженной жидкости. Если капля испытывает деформацию под действием электрических сил, то ее потенциальная энергия растет до определенного предела, а затем уже необратимо уменьшается с ростом деформации до тех пор, пока капля не разделится на две части. Таким образом у ядра урана возникнет некий барьер, который удерживает это ядро от деления на протяжении 10 16 лет.

Если перейти от урана к более тяжелому элементу, в ядре которого кулоновские силы значительно больше, барьер понижается, и вероятность деления сильно возрастает. Наконец, при дальнейшем увеличении заряда ядра мы придем к пределу, когда уже нет никакого барьера, т. е. когда даже сферическая форма капли оказывается неустойчивой к разделению на две части.

Это и есть предел стабильности ядра. Согласно расчетам Бора и Уиллера этот предел ожидался для элементов с атомными номерами 104–106.

Совершенно неожиданным было обнаружение в 1962 г. в Дубнинской лаборатории ядерных реакций еще и другого периода полураспада у тяжелых ядер, включая уран. Т. е. у одного и того же ядра могут быть два однотипных распада с различной вероятностью, или два времени жизни. Для урана - одно время составляет 10 16 лет, что и было обнаружено Флеровым и Петржаком, а второе очень короткое, всего 0,3 микросекунды. При двух периодах полураспада надо полагать наличие у ядра двух состояний, из которых происходит деление. Это никаким образом не вписывается в представление о капле.

Два состояния могут быть только в том случае, если тело не аморфное, а имеет внутреннюю структуру.

Итак, ядерное вещество не является полным аналогом капли заряженной жидкости

Капля есть некое приближение к описанию ядерной материи; ядро же имеет внутреннюю структуру.

Вопросами ядерной структуры серьезно занялись теоретики-ядерщики; в нашей стране - В. М. Струтинский, С. Т. Беляев, В. В. Пашкевич и др. Они решали довольно сложную задачу - как объяснить, что барьер урана является двугорбым и как меняется структура ядра при его деформации.

И это было объяснено. Но если найденное теоретиками объяснение правильно отражает свойства ядер, то когда мы придем к сверхтяжелым элементам, картина будет совсем не такой, как прогнозировалось для капли жидкости. В тяжелых элементах эта структура будет проявляться в полной мере там, где капля несостоятельна, и будет возникать так называемый структурный барьер. А это означает, что ядро может жить очень долго.

Этот нетривиальный вывод теории привел, по существу, к предсказанию гипотетической области стабильности сверхтяжелых элементов, расположенных далеко от тех элементов, которые известны и с которыми мы привыкли работать.

Как только это было предсказано, все крупнейшие лаборатории мира буквально бросились на то, чтобы экспериментально проверить эту гипотезу. Этим занимались в Соединенных Штатах, во Франции, в Германии. Однако во всех опытах были получены отрицательные результаты.

Последние два года в Дубнинской лаборатории проводились эксперименты по синтезу новых, самых тяжелых элементов с атомными номерами 114 и 116. Задача состояла в том, чтобы получить атомы новых элементов, ядра которых обладают большим избытком нейтронов. Только в этом случае мы смогли бы приблизиться к границам гипотетического «острова стабильности» и наблюдать увеличение времени жизни сверхтяжелых ядер.

Результаты опытов привели к выводу о том, что «остров стабильности» действительно существует.

Каковы пути получения (синтеза) сверхтяжелых ядер? Сначала использовался нейтронный метод синтеза, когда в ядро вгоняется очень много нейтронов. В этом случае естественным было бы облучение исходно стартового вещества мощным потоком нейтронов. Для этого использовались все более и более мощные реакторы. Однако, реакторный способ синтеза исчерпал себя на фермии (элементе с атомным номером 100), потому что изотоп фермия с массой 258, который должен получаться в результате захвата нейтронов, живет всего 0,3 миллисекунды. Вся цепочка последовательного захвата нейтронов разорвалась на ступени захвата 20-го нейтрона. Здесь же необходимо пройти более 60 ступеней. Нейтронный метод не пошел.

Попытка американских исследователей использовать другой способ - получить сверхтяжелые элементы в ядерных взрывах, т. е. в мощном импульсном потоке нейтронов, в конечном итоге привела к образованию того же изотопа 100-го элемента с массой 257.

Бесперспективность нейтронного метода привела к идее использовать принципиально иной способ синтеза сверхтяжелых элементов, который начал развиваться в середине 50-х годов - «тяжело-ядерный». Он заключается в том, что два тяжелых ядра сталкиваются друг с другом в надежде на то, что они сольются и как результат получится ядро суммарной массы. Для того, чтобы произошла такая реакция, одно из ядер необходимо разогнать до скорости примерно 0,1 скорости света. Эту функцию выполняют ускорители. То, что мы знаем сегодня о свойствах тяжелых элементов второй сотни, было получено с помощью ускорителей тяжелых ионов в реакциях этого типа.

Каковы свойства трансурановых элементов?

Если 92-элемент - уран живет миллиард лет, то тяжелое ядро 112-элемента живет всего 0,1 миллисекунды. Действительно, увеличение атомного номера на 20 единиц приводит к уменьшению времени жизни ядра более чем в 10 20 раз. Однако, «остров стабильности» расположен там, где ядра содержат значительно больше нейтронов. Поэтому надо двигаться в сторону более нейтронно-избыточных ядер. Это трудно осуществить, так как в стабильных нуклидах отношение числа протонов к числу нейтронов строго определено. Было решено использовать реакции, в которых большой нейтронный избыток изначально задан как в ядре материала мишени, который нарабатывается в ядерном реакторе, так и в ядре-снаряде, который в данном случае был выбран в качестве ядра кальция-48.

Кальций-48 - стабильный изотоп кальция, элемента с атомным номером 20. Кальция в природе много. Но изотоп кальция с массой 48 крайне редок. Его содержание в обычном кальции всего 0,18%. Выделить его из кальция - задача неимоверно трудная. Тем не менее, если бы нам удалось ускорить ионы кальция-48, то, облучая уран, плутоний или кюрий, мы могли бы пробраться в заветную область, где ожидается подъем стабильности, и там должны были бы почувствовать эффект резкого подъема времени жизни сверхтяжелых элементов.

В конкретном эксперименте была выбрана реакция, где в качестве исходного вещества использовался плутоний (Z = 94), его самый тяжелый изотоп с массой 244, а в качестве бомбардирующего иона изотоп кальция-48. Мы рассчитывали на то, что реакция слияния этих ядер приведет к образованию 114-элемента, который должен быть более устойчивым по сравнению с элементами, поученными ранее.

Для того, чтобы поставить подобный опыт, нужно было создать ускоритель с мощностью пучка кальция-48, превосходящую все известные ускорители в десятки раз. При этом он должен был дать высокую интенсивность ускоренных ионов и расходовать как можно меньше дорогостоящего кальция-48. Это потребовало длительных и напряженных поисков решения задачи. В конце концов решение было найдено и в течение 5 лет такой ускоритель в Дубне был создан. При очень малом расходе вещества (0,3 мг/час) была получена интенсивность пучка в несколько единиц на 10 12 ионов в сек. Теперь можно было ставить эксперимент в сто и в тысячу раз более чувствительный, чем это делалось ранее дубнинцами и их коллегами в других странах на протяжении последних 25 лет.

Суть самого эксперимента состояла в следующем. Получив пучок кальция, облучается мишень из плутония. Тяжелый изотоп плутония-244 был предоставлен Ливерморской Национальной Лабораторией (США). Если в результате процесса слияния двух ядер образуются атомы нового элемента, то они должны вылетать из мишени и вместе с пучком продолжать движение вперед. Здесь их надо отделить от ионов кальция-48 и других продуктов реакции. Эту функцию выполняет сепаратор (рис. 2), в котором присутствует поперечное электрическое поле. Поскольку скорости ядер разные, пучок утыкается в стопер, в то время как тяжелые ядра отдачи 114-элемента совершают криволинейную траекторию и в конце концов доходят до детектора. Детектор распознает тяжелое ядро и фиксирует его распад.

Что, собственно говоря, можно ожидать дальше? Если справедлива гипотеза о том, что существует «остров стабильности» в области сверхтяжелых элементов и эти ядра очень устойчивы относительно спонтанного деления, они должны испытывать другой тип распада - альфа-распад.

Иными словами, ядра на вершине и вблизи вершины этого острова, устойчивые к спонтанному делению, должны быть альфа-радиоактивными. Альфа-радиоактивное ядро, как известно, спонтанно выбрасывает альфа-частицу (ядро гелия), состоящую из двух протонов и двух нейтронов, переходя в дочернее ядро. Для выбранной реакции - это переход 114-го в 112-й элемент. Ядра 112-го элемента тоже должны испытывать альфа-распад и переходить в ядра 110-го элемента и т. д. Но по мере последовательных альфа-распадов мы все дальше и дальше отдаляемся от вершины стабильности и в конце концов попадем в море нестабильности, где преобладающим типом распада будет спонтанное деление. Для экспериментатора это весьма яркая картина: в результате последовательных альфа-распадов, каждый из которых оставляет в детекторе энергию около 10 МэВ, происходит деление, в котором сразу высвобождается энергия около 200 МэВ. На этом цепочка распадов обрывается.

Такую цепочку можно наблюдать, если справедлива теоретическая гипотеза. Действительно, в течение эксперимента, который продолжался непрерывно три месяца, ученые впервые наблюдали то, что ждали.

Рис. 3а. Цепочки последовательных распадов сверхтяжелых атомов с Z = 114 и 116, зарегистрированных в ядерных реакциях с ионами 48 Са. Для каждого распада указаны значения энергии, времени прихода сигнала и его позиционной координаты на поверхности детектора площадью 50 см².

После того, как ядро отдачи пришло в детектор, который измеряет его энергию, скорость и координаты места его остановки с высокой точностью, была зарегистрирована альфа-частица с энергией 9,87 МэВ через секунду после остановки. Интересно, что в самом тяжелом ядре, синтезированном ранее, это время занимало всего одну десятитысячную долю секунды. Здесь - секунда.

Затем, спустя 10,3 секунды (тоже долгое время), вылетела вторая альфа-частица с энергией 9,21 МэВ и затем, спустя 14,5 секунд, произошло спонтанное деление. Вся цепочка распадов заняла время около 0,5 минут.

Второе событие было такое же, как первое. Оба эти события совпадают друг с другом по 13-ти параметрам. Поэтому вероятность случайных совпадений сигналов в детекторе, имитирующих подобный распад, составляет всего 10 −16 .

В этом же эксперименте наблюдалось и другое событие, значительно более долгоживущее. Здесь уже распад исчисляется минутами и десятками минут.

Если отклониться в область ядер с дефицитом нейтронов, то спонтанное деление становится все более и более вероятным, что и было обнаружено (когда вместо мишени из плутония-244 использовался более легкий изотоп - плутоний-242). Это точно воспроизводит сценарий, который был предсказан теорией о том, что остров находится справа, среди ядер, обогащенных нейтронами.

Таким образом, синтезированные ядра-изотопы 114-элемента и их дочерние продукты альфа-распада, новые изотопы 112 и 110 элементов уже испытывают действия этих структурных сил, формирующих «остров стабильности» сверхтяжелых элементов. И несмотря на то, что они находятся на значительном расстоянии от вершины острова, тем не менее, их времена составляют минуты и десятки минут (рис. 4). Это примерно на 5 порядков повышает их стабильность по сравнению с изотопами тех же элементов, находящихся вдали от границы острова.

Уникальное вещество - кюрий-248 было получено на мощном реакторе НИИ Атомных Реакторов в г. Димитровграде. Наблюдение цепочки распадов 116-элемента было бы еще одним доказательством получения 114-элемента - в первом случае он был получен непосредственно при облучении плутониевой мишени; в этой же реакции в результате распада более тяжелого родителя.

Рис. 4. Карта нуклидов с указанием цепочек радиоактивного распада атомов, синтезированных в ядерных реакциях под действием ускоренных ионов 48 Са. Топографический фон демонстрирует силу структурных эффектов в ядре атома.

Такой эксперимент был поставлен недавно - и здесь ученые пошли на некоторый риск.

Если в реакции образуется 116-элемент, то после его альфа-распада должно быть получено ядро 114-элемента; иными словами, в этом опыте ученые должны были еще раз (уже третий) наблюдать кроме 116-элемента всю цепочку распада 114-элемента.

После вылета альфа-частицы от распада 116-элемента, ускоритель выключался, и выключалось все силовое оборудование в лаборатории для того, чтобы создать абсолютно бесфоновые условия. Действительно, после того, как тяжелое ядро отдачи пришло в детектор, спустя 47 миллисекунд, вылетела альфа-частица с энергией 10,56 МэВ, которая отключила все мощное оборудование. После этого в совершенно спокойных условиях наблюдался вылет еще одной альфа-частицы, затем другой и следом - спонтанное деление.

Если сравнить цепочку распадов после отключения ускорителя с тем, что наблюдалось для 114-элемента, то можно увидеть полное совпадение по всем параметрам (рис. 3b). Это действительно был распад 114-го элемента, а, стало быть, предыдущая альфа-частица относится к 116-му. Произошло это 19 июля 2000 года. В 2001 году опыт был продолжен и в результате были синтезированы еще 2 ядра 116 элемента.

Теперь можно сравнить предсказание теории и результаты, полученные в эксперименте. Для 116-го элемента согласно теории с увеличением числа нейтронов в ядре от 166 до 176 время жизни ядра должно было возрасти на 5 порядков. Эксперимент дал величину примерно 6 порядков. Для 114-го элемента картина выглядит таким же образом. При увеличении числа нейтронов в этом ядре от 164 до 174 период полураспада возрастает более чем на 6 порядков. Для 112-элемента избыток в 10 нейтронов также увеличивает стабильность ядра на 5–6 порядков. Такая же картина характерна для изотопов 110-элемента.

Это хорошее согласие с теоретической гипотезой. Кроме того, эксперимент показывает, что сверхтяжелые нуклиды в этой области более долгоживущие, чем это следовало из теории.

Следует обратить внимание на вершину «острова стабильности». Эта вершина может составлять миллионы лет. Она не дотягивает до возраста Земли, который составляет 4,5 миллиарда лет. Однако, если принять во внимание, что в эксперименте мы имеем превышение стабильности над расчетными значениями на отрогах «острова стабильности», то не исключено присутствие сверхтяжелых элементов в природе, в нашей системе, либо в космических лучах, т. е. в других системах. Там могут существовать сверхтяжелые элементы, время жизни которых будет исчисляться миллионами лет.

Важно еще одно обстоятельство: теперь таблица элементов пополнилась новыми 114 и 116 элементами. Эксперименты дали новое звучание известным ранее 112, 110, 108 элементам, поскольку увеличение нейтронов привело к существенному возрастанию времени их жизни. Это дает возможность изучать химические свойства этих элементов. Элементы 112-ый, 110-ый и 108-ой, которые живут минуты, стали вполне доступны для исследования их химических свойств методами современной радиохимии. Можно ставить опыты по проверке фундаментального Закона Менделеева относительно унификации свойств в колонках. Применительно к сверхтяжелым элементам мы должны считать, что 112-ый элемент - гомолог кадмия, ртути; 114-ый элемент - аналог олова, свинца и т. д. Пока это просто экстраполяция наших представлений на ранее неизвестные элементы. Фундаментальный Закон периодичности химических свойств элементов можно теперь проверять экспериментально.

Стабильные элементы заканчиваются свинцом и висмутом. Ядра этих атомов являются магическими, что определяет повышенную энергию связи нуклонов в ядре. Затем следует область радиоактивных элементов, среди которых торий и уран наиболее устойчивы. Их период полураспада сравним с возрастом нашей планеты. По мере продвижения в сторону более тяжелых элементов время жизни ядер резко уменьшается. Полуостров радиоактивных элементов имеет выраженные границы. Теория предсказывала, что за «полуостровом» будут следовать «острова стабильности». Они будут расположены в области очень тяжелых элементов, ядра которых обогащены нейтронами.

Попытки получить эти ядра в мощных потоках нейтронов не увенчались успехом. С другой стороны, в реакциях с тяжелыми ионами, начиная с 50-х годов, удалось синтезировать 12 искусственных элементов с атомными номерами более 100. Но в ядрах этих элементов не удалось получить избыток нейтронов, который позволил бы ответить на вопрос: кончается мир «полуостровом» радиоактивных ядер или за ним будет следовать «остров стабильности» еще более тяжелых - сверхтяжелых элементов.

Используя пучки ускоренных ионов изотопа кальция-48 и выбирая в качестве мишени искусственные элементы - тяжелые изотопы плутония и кюрия, полученные в мощных реакторах, ученым удалось подойти лишь к границам этого гипотетического «острова стабильности» и уже здесь обнаружить значительное повышение стабильности сверхтяжелых элементов. Опыты продолжаются, на очереди - 118 элемент.

Что же дальше? Достигнутый успех породил новые замыслы освоения открытой terra incognita. Прежде всего, хотелось бы получать ядра сверхтяжелых элементов (СТЭ) в больших количествах. Конечно, сам факт открытия нового элемента всего по двум наблюденным атомам впечатляет, но для более полного изучения требуется значительно большее количество. Необходимо создание принципиально новых, более эффективных экспериментальных установок. На проектные работы ушло полгода и в настоящее время в Лаборатории осуществляется проект создания Масс-Анализатора Сверхтяжелых Атомов (MASHA). Аналогов такой экспериментальной установки в мире нет. С вводом ее в действие ученые рассчитывают получать уже десятки атомов СТЭ и исследовать их свойства более широко. Реализуется также проект DRIBs, в котором два мощных ускорителя объединяются в единый комплекс, что позволит ускорять атомы радиоактивных изотопов, в частности олова-132. Это даст принципиально новые возможности синтеза СТЭ.

Минатом подключил к программе свои организации и выделил необходимые финансы (по 15 млн руб. ежегодно в течение 4 лет). Миннауки выделил специальный грант в размере 1 млн руб. От РАО ЕС было получено эксклюзивное право на выделение электроэнергии для питания ускорителей при проведении экспериментов. Американцы из Ливермора прислали бесплатно плутоний-244. Губернатор Московской области Б. В. Громов выделил Объединенному институту ядерных исследований из своего резерва средства для финансирования исследований по сверхтяжелым элементам (10 млн руб. в 2001 г. и 15 млн руб. в 2002 г.). Не вызывает сомнений, что интеллектуальные и технические ресурсы, накопленные в Дубне и других аналогичных центрах России, необходимо использовать для развития современных высокотехнологичных и наукоемких процессов, которые только и могут обеспечить в будущем конкурентоспособность российской продукции на мировом рынке.

Библиография

Bohr N., Wheeler J. The Mechanism of Nuclear Fission//Phys. Rev. 1939. № 56.

Flerov G. N., Petrzhak K. A. Spontaneous fission of 238 U//Phys. Rev. 1940. № 58; J. Phys. USSR. 1940. № 3.

Oganessian Yu. Ts., Yeremin A. V., Popeko A. G. et al. Synthesis of nuclei of superheavy element 114 in reaction induced by 48 Ca//Nature. 1999. № 400.

Oganessian Yu. Ts., Utyonkov V. K., Lobanov Yu. V. et al. The synthesis of superheavy nuclei in the 48 Ca + 244 Pu reaction//Phys. Rev. Lett. 1999. № 83.

Oganessian Yu. Ts., Yeremin A. V., Popeko A. G. et al. Observation of the decay of 292 116//Phys. Rev. 2001. C 63. 011301/1–011301/2.