Болезни Военный билет Призыв

Сущность математического доказательства понятие умозаключения. Построение математических доказательств

Формальными доказательствами занимается специальная ветвь математики - теория доказательств . Сами формальные доказательства математики почти никогда не используют, поскольку для человеческого восприятия они очень сложны и часто занимают очень много места. Обычно доказательство имеет вид текста, в котором автор, опираясь на аксиомы и доказанные ранее теоремы, с помощью логических средств показывает истинность некоторого утверждения. В отличие от других наук, в математике недопустимы эмпирические доказательства: все утверждения доказываются исключительно логическими способами. В математике важную роль играют математическая интуиция и аналогии между разными объектами и теоремами; тем не менее, все эти средства используются учёными только при поиске доказательств, сами доказательства не могут основываться на таких средствах. Доказательства, написанные на естественных языках, могут быть не очень подробными в расчёте на то, что подготовленный читатель сам сможет восстановить детали. Строгость доказательства гарантируется тем, что его можно представить в виде записи на формальном языке (это и происходит при компьютерной проверке доказательств).

Ошибочным доказательством называется текст, содержащий логические ошибки, то есть такой, по которому нельзя восстановить формальное доказательство. В истории математики были случаи, когда выдающиеся учёные публиковали неверные «доказательства», однако обычно их коллеги или они сами довольно быстро находили ошибки (одна из наиболее часто неправильно доказывавшихся теорем - Великая теорема Ферма . До сих пор встречаются люди, не знающие о том, что она доказана, и предлагающие новые неверные «доказательства» ). Ошибочным может быть только признание доказательством «доказательства» на естественном или формальном языке; формальное доказательство ошибочным не может быть по определению.

В математике существуют нерешённые проблемы, решение которых учёным очень хотелось бы найти. Некоторые из них можно найти в статье «Гипотеза ». За доказательства особенно интересных и важных утверждений математические общества назначают премии.

Теория называется полной , если для любого утверждения доказуемо оно или его отрицание, и непротиворечивой , если в ней не существует утверждений, которые можно доказать вместе с их отрицаниями (или, эквивалентно, если в ней существует хотя бы одно недоказуемое утверждение). Большинство «достаточно богатых» математических теорий, как показывает первая теорема Гёделя о неполноте , являются неполными либо противоречивыми. Самым распространённым набором аксиом в наше время является аксиоматика Цермело - Френкеля с аксиомой выбора (хотя некоторые математики выступают против использования последней). Теория на основе этой системы аксиом не полна (например, континуум-гипотеза не может быть ни доказана, ни опровергнута в ней - в предположении, что эта теория непротиворечива). Несмотря на повсеместное использование этой теории в математике, её непротиворечивость не может быть доказана методами её самой. Тем не менее, подавляющее большинство математиков верит в её непротиворечивость, считая, что в противном случае противоречия уже давно были бы обнаружены.

Исторический очерк

Первые доказательства использовали простейшие логические построения. В частности Фалес Милетский , доказавший что диаметр делит круг пополам, углы при основании равнобедренного треугольника равны, две пересекающиеся прямые образуют равные углы, видимо, использовал в своих доказательствах методы перегибания и наложения фигур. По словам греческого философа Прокла (V век н. э.) «Иногда он рассматривал вопрос несколько общо, иногда опираясь на наглядность». Уже при Пифагоре доказательство переходит от конкретных представлений к чисто логическим заключениям . Известно, что доказательство несоизмеримости стороны и диагонали квадрата, которое является основой понятия иррациональности , скорее всего принадлежит пифагорейцам , хотя впервые приведено в Началах Евклида (X), происходит от противного и основано на теории делимости чисел на два . Возможно, что расхождение во взглядах на роль математического доказательство явилось одной из причин конфликта между Евдоксом и Платоном .

Что и требовалось доказать

Традиционно окончание доказательства обозначалось сокращением «Q.E.D. », от латинского выражения лат. Quod Erat Demonstrandum («Что и требовалось доказать»).

Сейчас для обозначения окончания доказательства чаще используется знак □ или ■ , ‣ , //, а также русская аббревиатура «ч. т. д. ».

Литература

  • С древнейших времён до начала Нового времени // История математики / Под редакцией Юшкевича А. П. , в трёх томах. - М .: Наука, 1970. - Т. I.

Примечания

См. также

  • Конструктивное доказательство (англ. )

Приведем пример использования неполной индукции в работе с дошкольниками: используя игру «Чудесный мешочек» с объемными геометрическими фигурами, лаем задание ребенку: «Достань фигуру и назови». После нескольких попыток ребенок делает предположе­ние:

Шар. Шар. Шар. Здесь, наверное, все шары.

Задание 14

Предложите дальнейшие рассуждения для того, чтобы убедиться в истинности (или ложности) полученного утверждения.

Невозможно переоценить значение доказательств в нашей жиз­ни и особенно в науке. К доказательствам прибегают все, но не всегда задумываются, что значит «доказать*. Практические навыки доказательства и интуитивные представления о нем достаточны для многих бытовых целей, но не для научных.

Доказать какое-либо утверждение - это показать, что это логи­ческое утверждение логически следует из системы истинных и связан­ных с ним утверждений.

Доказательство является логической операцией обоснования ис­тинности какого-либо утверждения с помощью других истинных и связанных с ним утверждений.

В доказательстве выделяют три структурных элемента:

1) доказываемое утверждение;

2) систему истинных утверждений, с помощью которых обосно­вывается истинность доказываемого;

3) логическую связь между пп. 1 и 2.

Основным способом математического доказательства является дедуктивный вывод.

По своей форме доказательство - это дедуктивное умозаключе­ние или цепочка дедуктивных умозаключений, ведущих от истин­ных посылок к доказываемому утверждению.

В математическом доказательстве важен порядок расположения умозаключений. По способу ведения различают прямые и косвенные доказательства. К прямым доказательствам относится полная индук­ция, речь о которой шла в п.1.6.

Полная индукция - способ доказательства, при котором истин­ность утверждения следует из его истинности во всех частных слу­чаях.

Полная индукция часто применяется в играх с дошкольниками типа: «Назови одним словом».

Пример прямого доказательства высказывания «Сумма углов в любом четырехугольнике равна 360°»:

«Рассмотрим произвольный четырехугольник. Проведя в нем диагональ, получим 2 треугольника. Сумма углов четырехугольника будет равна сумме углов двух образовавшихся треугольников. Так как сумма углов в любом треугольнике 180°, то, сложив 180° и 180°, получим сумму углов в двух треугольниках, она составит 360°. Сле­довательно, сумма углов в любом четырехугольнике равна 360", что и требовалось доказать».

В приведенном доказательстве можно выделить следующие умо­заключения:

1. Если фигура четырехугольник, то в ней можно начертить диа­гональ, которая разобьет четырехугольник на 2 треугольника. Дан­ная фигура четырехугольник. Следовательно, его можно разбить на 2 треугольника, построив диагональ.


2. В любом треугольнике сумма углов равна ISO". Данные фигу­ры треугольники. Следовательно, сумма углов каждого из них равна 180°.

3. Если четырехугольник составлен из двух треугольников, то сумма его углов равна сумме углов этих треугольников. Данный че­тырехугольник составлен из двух треугольников с суммой углов по 180°. 180о+180о=360°. Следовательно, сумма углов в данном четы­рехугольнике равна 360°.

Все приведенные умозаключения выполнены по правилу заклю­чения, следовательно, являются дедуктивными.

Примером косвенного доказательства является доказательство методом от противного. В этом случае допускают, что заключение ложно, следовательно, его отрицание истинно. Присоединив это предложение к совокупности истинных посылок, проводят рассуж­дения, пока не получат противоречие.

Приведем пример доказательства от противного теоремы: «Если две прямые а и Ь параллельны третьей прямой с, то они параллель­ны между собой»:

«Допустим, что прямые а и b не параллельны, тогда они пересе­кутся в некоторой точке А, не принадлежащей прямой с. Тогда по­лучим, что через точку А можно провести две прямые а и Ь, парал­лельные с. Это противоречит аксиоме параллельности: «Через точ-


8. Сформулируйте правила явного определения через род и видовое отличие.

9. Какое определение называется:

Контекстуальным;

Остенсивным?

10. Что такое высказывание, а что такое высказывательная форма?

11. Когда предложения видов «А и В», «А или В», «Не А» истинны, а когда ложны?

12. Перечислите кванторы общности и кванторы существования. Как установить значение истинности предложений с различными квантора­ми?

13. Когда между предложениями имеется отношение следования, а когда отношение равносильности? Как они обозначаются?

14. Что такое умозаключение? Какое умозаключение называется де­дуктивным?

15. Запишите при помощи символов правила заключения, правило от­рицания, правило силлогизма.

16. Какие умозаключения называются неполной индукцией, а какие умозаключениями по аналогии?

17. Что значит доказать какое-либо утверждение?

18. Что такое математическое доказательство?

19. Дайте определение полной индукции.

20. Что такое софизмы?

Способы математического доказательства

В обыденной жизни часто, когда говорят о доказательстве, имеют в виду просто проверку высказанного утверждения. В математике проверка и доказательство – это разные вещи, хотя и связанные между собой. Пусть, например, требуется доказать, что если в четырехугольнике три угла прямые, то он – прямоугольник.

Если мы возьмем какой-либо четырехугольник, у которого три угла прямые, и, измерив четвертый, убедимся в том, что он действительно прямой, то эта проверка сделает данное утверждение более правдоподобным, но еще не доказанным.

Чтобы доказать данное утверждение, рассмотрим произвольный четырехугольник, в котором три угла прямые. Так как в любом выпуклом четырехугольнике сумма углов 360⁰, то и в данном она составляет 360⁰. Сумма трех прямых углов равна 270⁰ (90⁰ 3 = 270⁰), и, значит, четвертый имеет величину 90⁰ (360⁰ - 270⁰). Если все углы четырехугольника прямые, то он – прямоугольник Следовательно, данный четырехугольник будет прямоугольником. Что и требовалось доказать.

Заметим, что сущность проведенного доказательства состоит в построении такой последовательности истинных утверждений (теорем, аксиом, определений), из которых логически следует утверждение, которое нужно доказать.

Вообще доказать какое-либо утверждение – это значит показать, что это утверждение логически следует из системы истинных и связанных с ним утверждений .

В логике считают, что если рассматриваемое утверждение логически следует из уже доказанных утверждений, то оно обоснованно и также истинно, как и последние.

Таким образом, основой математического доказательства является дедуктивный вывод. А само доказательство – это цепочка умозаключений, причем заключение каждого из них (кроме последнего) является посылкой в одном из последующих умозаключений.

Например, в приведенном выше доказательстве можно выделить следующие умозаключения:

1. В любом выпуклом четырехугольнике сумма углов равна 360⁰; данная фигура – выпуклый четырехугольник, следовательно, сумма углов в нем 360⁰.

2. Если известна сумма всех углов четырехугольника и сумма трех из них, то вычитанием можно найти величину четвертого; сумма всех углов данного четырехугольника равна 360⁰, сумма трех 270⁰ (90⁰ 3 = 270⁰), то величина четвертого 360⁰ - 270⁰ = 90⁰.

3. Если в четырехугольнике все углы прямые, то этот четырехугольник – прямоугольник; в данном четырехугольнике все углы прямые, следовательно, он прямоугольник.

Все приведенные умозаключения выполнены по правилу заключения и, следовательно, являются дедуктивными.

Самое простое доказательство состоит из одного умозаключения. Таким, например, является доказательство утверждения о том, что 6 < 8.

Итак, говоря о структуре математического доказательства, мы должны понимать, что она, прежде всего, включает в себя утверждение, которое доказывается, и систему истинных утверждений, с помощью которых ведут доказательство.

Следует еще заметить, что математическое доказательство – это не просто набор умозаключений, это умозаключения, расположенные в определенном порядке.

По способу ведения (по форме) различают прямые и косвенные доказательства. Рассмотренное ранее доказательство было прямым – в нем, основываясь на некотором истинном предложении и с учетом условия теоремы, строилась цепочка дедуктивных умозаключений, которая приводила к истинному заключению.

Примером косвенного доказательства является доказательство методом от противного . Сущность его состоит в следующем. Пусть требуется доказать теорему

А ⇒ В. При доказательстве методом от противного допускают, что заключение теоремы (В) ложно, а, следовательно, его отрицание истинно. Присоединив предложение «не В» к совокупности истинных посылок, используемых в процессе доказательства (среди которых находится и условие А), строят цепочку дедуктивных умозаключений до тех пор, пока не получится утверждение, противоречащее одной из посылок и, в частности, условию А. Как только такое противоречие устанавливают, процесс доказательства заканчивают и говорят, что полученное противоречие доказывает истинность теоремы

Задача 1. Доказать, что если а + 3 > 10, то а ≠ 7. Метод от противного.

Задача 2. Доказать, что если х² - четное число, то х – четно. Метод от противного.

Задача 3. Даны четыре последовательных натуральных числа. Верно ли, что произведение средних чисел этой последовательности больше произведения крайних на 2? Метод неполной индукции.

Полная индукция – это такой метод доказательства, при котором истинность утверждения следует из истинности его во всех частных случаях.

Задача 4. Доказать, что каждое составное натуральное число, большее 4, но меньшее 20, представимо в виде суммы двух простых чисел.

Задача 5. Верно ли, что если натуральное число n не кратно 3, то значение выражения n² + 2 кратно 3? Метод полной индукции.

Основные выводы

В этом пункте познакомились с понятиями: умозаключение, посылка и заключение, дедуктивные (правильные) умозаключения, неполная индукция, аналогия, прямое доказательство, косвенное доказательство, полная индукция.

Мы выяснили, что неполная индукция и аналогия тесно связаны с дедукцией: выводы, полученные с помощью неполной индукции и аналогии, надо либо доказывать, либо опровергать. С другой стороны, дедукция не возникает на пустом месте, а является результатом предварительного индуктивного изучения материала.

Дедуктивные умозаключения позволяют из уже имеющегося знания получать новые истины, и притом с помощью рассуждения, без обращения к опыту, интуиции и т.д.

Мы выяснили, что математическое доказательство – это цепочка дедуктивных умозаключений, выполняемых по определенным правилам. Познакомились с простейшими из них: правилом заключения, правилом отрицания, правилом силлогизма. Узнали, что проверять правильность умозаключений можно с помощью кругов Эйлера.

Доказать какое-либо утверждение – это значит показать, что это утверждение логически следует из системы истинных и связанных с ним утверждений.

Доказательство – это логическая операция, в процессе которой обосновывается истинность какого-либо утверждения с помощью других истинных и связанных с ним утверждений. Для этого строится конечная цепочка умозаключений, причем заключение каждого из них (кроме последнего) является посылкой в одном из последующих умозаключений.

Основные законы логики :

1. Закон тождества. Каждая мысль, повторяясь в рассуждении, должна быть тождественной самой себе.

Закон тождества означает, что в процессе рассуждения нельзя подменять одну мысль другой, одно понятие другим. Нельзя тождественные мысли выдавать за различные, а различные – за тождественные.

2. Закон непротиворечия. Высказывание и его отрицание не могут быть одновременно истинными; по крайней мере одно из них обязательно ложно.

Если в мышлении (и речи) человека обнаружено формально-логическое противоречие, то такое мышление считается неправильным, а суждение, из которого вытекает противоречие, считается ложным.

3. Закон исключенного третьего. Из двух противоречивых высказываний об одном и том же предмете одно – истинно, а другое – ложно, третьего не дано.

4. Закон достаточного основания. Всякое истинное утверждение должно быть обосновано с помощью других утверждений, истинность которых доказана.

Когда речь идет о математическ4ом доказательстве, надо:

¾ иметь то утверждение, истинность которого нужно доказывать;

¾ понимать, что доказательство – это цепочка дедуктивных умозаключений; оно выполняется по правилам и законам логики;

¾ понимать, какие другие истинные утверждения можно использовать в процессе доказательства.

По способу ведения различают прямые и косвенные доказательства.

Прямое доказательство утверждения А В - это построение цепочки дедуктивных умозаключений, выполняемых последовательно от А к В с соблюдением правил и законов логики и с помощью системы утверждений, истинность которых доказана.

(Если в четырехугольники три угла прямые, то он прямоугольник)

Примером косвенного доказательства является доказательство методом от противного. Сущность его состоит в следующем. Пусть требуется доказать теорему А В. При доказательстве методом от противного допускают, что заключение теоремы (В) ложно, а, следовательно, его отрицание истинно. Присоединив предложение В к совокупности истинных посылок, используемых в процессе доказательства (среди которых находится и условие А), строят цепочку дедуктивных умозаключений до тех пор, пока не получится утверждение, противоречащее одной из посылок и, в частности, условию А.

(а+3> 10, то а ¹7)

Билет 15 Понятие соответствия между множествами. Способы задания соответствий. Взаимно - однозначные соответствия. Равномощные множества. Примеры соответствий (в том числе и взаимно - однозначных).

Доказать какое-либо утверждение – это значит показать, что это утверждение логически следует из системы истинных и связанных утверждений.

В логике считают, что если рассматриваемое утверждение логически следует из уже доказанных утверждений, то оно обосновано и также истинно, как и последние.

Таким образом, основой математического доказательства является дедуктивный метод. Доказательство – это совокупность логических приемов обоснования истинности какого-либо утверждения с помощью других истинных и связанных с ним утверждений.

Математическое доказательство – это не просто набор умозаключений, это умозаключения, расположенные в определенном порядке.

Доказательства различают прямые и косвенные.

Прямые доказательства .

1) Основываясь на некоторых истинных предложениях и условии теоремы строится цепочка дедуктивных умозаключений, которые приводят к истинному заключению.

Пример. Докажем, что вертикальные углы равны. Углы 1 и 2 – смежные, следовательно,
Ð 1 + Ð 2 = 180 о. Углы 2 и 3 – смежные, следовательно, Ð 2 + Ð 3 = 180 о. Имеем: Ð 1 = 180 о – Ð 2 Ð 3 = 180 о – Ð 2 Þ Ð 1 = Ð 2.

2

2) Метод математической индукции. Утверждение справедливо для всякого натурального числа п , если: оно справедливо для п = 1 и из справедливости утверждения для какого-либо произвольного натурального п = k следует его справедливость для п = k + 1. (Подробнее будет рассмотрено на старших курсах.)

3) Полная индукция (смотри ранее).

Косвенные доказательства.

1) Метод от противного. Пусть требуется доказать теорему А Þ В . Допускают, что ее заключение ложно, а значит, его отрицание истинно. Присоединив предложение к совокупности истинных посылок, используемых в процессе доказательства (среди которых есть и условие А ), строят цепочку дедуктивных умозаключений до тех пор, пока не получится утверждение, противоречащее одной из посылок. Полученное противоречие доказывает теорему.

Пример . Если две прямые параллельны одной и той же прямой, то они параллельны между собой.

Дано: х úú с , у úú с . Доказать, что х úú у .

Доказательство. Пусть прямая х не параллельна прямой у , т.е. прямые пересекаются в некоторой точке А . Следовательно, через точку А проходят две прямые, параллельные прямой с , что невозможно по аксиоме параллельности.

2) Доказательство, основанное на законе контрапозиции: вместо теоремы А Þ В доказывают равносильную ей теорему . Если она истинна, то исходная теорема тоже истинна.

Пример . Если х 2 – четное число, то х – четное число.

Доказательство. Предположим, что х нечетное число, т.е. х = 2k + 1 Þ х 2 = (2k + 1) 2 =
= 4k 2 + 4k + 1 = 2(2k 2 + 2k ) + 1 – нечетное.

Контрольные вопросы

1. Что называется умозаключением?

2. Какое умозаключение называется дедуктивным?

3. Дайте определения неполной и полной индукции.

4. Дайте определение умозаключения по аналогии.

5. Запишите схемы дедуктивных умозаключений и докажите тождественную истинность формул, лежащих в основе этих правил.

6. Как проверить правильность умозаключений с помощью кругов Эйлера? Какие еще известны способы проверки правильности умозаключений?

7. Какое умозаключение называется софизмом?

8. Что значит доказать утверждение?

9. Какие доказательства различают по способу ведения?

10. Опишите способы ведения рассуждения при различных формах прямого и косвенного доказательства.