Болезни Военный билет Призыв

Простые и сложные высказывания. Отрицание высказывания. Сложные высказывания. Логические операции. Логические операции над высказываниями

Высказывание - более сложное образование, чем имя. При разложении высказываний на более простые части мы всегда получаем те или иные имена. Скажем, высказывание «Солнце есть звезда» включает в качестве своих частей имена «Солнце» и «звезда».

Высказывание - грамматически правильное предложение, взятое вместе с выражаемым им смыслом (содержанием) и являющееся истинным или ложным.

Понятие высказывания - одно из исходных, ключевых понятий современной логики. Как таковое оно не допускает точного определения, в равной мере приложимого в разных ее разделах.

Высказывание считается истинным, если даваемое им описание соответствует реальной ситуации, и ложным, если не соответствует ей. «Истина» и «ложь» называются «истинностными значениями высказываний».

Из отдельных высказываний разными способами можно строить новые высказывания. Например, из высказываний «Дует ветер» и «Идет дождь» можно образовать более сложные высказывания «Дует ветер и идет дождь», «Либо дует ветер, либо идет дождь», «Если идет дождь, то дует ветер» и т.п.

Высказывание называется простым, если оно не включает других высказываний в качестве своих частей.

Высказывание называется сложным, если оно получено с помощью логических связок из других более простых высказываний.

Рассмотрим наиболее важные способы построения сложных высказываний.

Отрицательное высказывание состоит из исходного высказывания и отрицания, выражаемого обычно словами «не», «неверно, что». Отрицательное высказывание является, таким образом, сложным высказыванием: оно включает в качестве своей части отличное от него высказывание. Например, отрицанием высказывания «10 - четное число» является высказывание «10 не есть четное число» (или: «Неверно, что 10 есть четное число»).

Обозначим высказывания буквами А, В, С, ... Полный смысл понятия отрицания высказывания задается условием: если высказывание А истинно, его отрицание ложно, и если А ложно, его отрицание истинно. Например, так как высказывание «1 есть целое положительное число» - истинно, его отрицание «1 не является целым положительным числом» - ложно, а так как «1 есть простое число» - ложно, его отрицание «1 не есть простое число» - истинно.

Соединение двух высказываний при помощи слова «и» дает сложное высказывание, называемое конъюнкцией. Высказывания, соединяемые таким образом, называются «членами конъюнкции».

Например, если высказывания «Сегодня жарко» и «Вчера было холодно» соединить таким способом, получится конъюнкция «Сегодня жарко и вчера было холодно».

Конъюнкция истинна только в случае, когда оба входящих в нее высказывания являются истинными; если хотя бы один из ее членов ложен, то и вся конъюнкция ложна.

В обычном языке два высказывания соединяются союзом «и», когда они связаны между собой по содержанию или смыслу. Характер этой связи не вполне ясен, но понятно, что мы не рассматривали бы конъюнкцию «Он шел в пальто, и я шел в университет» как выражение, имеющее смысл и способное быть истинным или ложным. Хотя высказывания «2 - простое число» и «Москва - большой город» истинны, мы не склонны считать истинной также их конъюнкцию «2 - простое число и Москва - большой город», поскольку составляющие се высказывания не связаны между собой по смыслу. Упрощая значение конъюнкции и других логических связок и отказываясь для этого от неясного понятия «связь высказываний по смыслу», логика делает значение этих связок одновременно и более широким, и более определенным.

Соединение двух высказываний с помощью слова «или» дает дизъюнкцию этих высказываний. Высказывания, образующие дизъюнкцию, называются «членами дизъюнкции».

Слово «или» в повседневном языке имеет два разных смысла. Иногда оно означает «одно или другое или оба», а иногда «одно или другое, но не оба вместе». Например, высказывание «В этом сезоне я хочу пойти на «Пиковую даму» или на «Аиду» допускает возможность двукратного посещения онеры. В высказывании же «Он учится в Московском или в Ярославском университете» подразумевается, что упоминаемый человек учится только в одном из этих университетов.

Первый смысл «или» называется неисключающим. Взятая в этом смысле дизъюнкция двух высказываний означает, что, по крайней мере, одно из этих высказываний истинно, независимо от того, истинны они оба или пет. Взятая во втором, исключающему или строгом, смысле дизъюнкция двух высказываний утверждает, что одно из высказываний истинно, а второе - ложно.

Неисключающая дизъюнкция истинна, когда хотя бы одно из входящих в нее высказываний истинно, и ложна, только когда оба ее члена ложны.

Исключающая дизъюнкция истинна, когда истинным является только один из ее членов, и она ложна, когда оба ее члена истинны или оба ложны.

В логике и математике слово «или» почти всегда употребляется в неисключающем значении.

Условное высказывание - сложное высказывание, формулируемое обычно с помощью связки «если..., то...» и устанавливающее, что одно событие, состояние и т.п. является в том или ином смысле основанием или условием для другого.

Например: «Если есть огонь, то есть дым», «Если число делится на 9, оно делится на 3» и т.п.

Условное высказывание слагается из двух более простых высказываний. То из них, которому предпослано слово «если», называется основанием, или антецедентом (предыдущим), высказывание, идущее после слова «то», называется следствием, или консеквентом (последующим).

Утверждая условное высказывание, мы прежде всего имеем в виду, что не может быть так, чтобы то, о чем говорится в его основании, имело место, а то, о чем говорится в следствии, отсутствовало. Иными словами, не может случиться, чтобы антецедент был истинным, а консеквент - ложным.

В терминах условного высказывания обычно определяются понятия достаточного и необходимого условия: антецедент (основание) есть достаточное условие для консеквента (следствия), а консеквент - необходимое условие для антецедента. Например, истинность условного высказывания «Если выбор рационален, то выбирается лучшая из имеющихся альтернатив» означает, что рациональность - достаточное основание для избрания лучшей из имеющихся возможностей и что выбор такой возможности есть необходимое условие его рациональности.

Типичной функцией условного высказывания является обоснование одного высказывания ссылкой на другое высказывание. Например, то, что серебро электропроводно, можно обосновать ссылкой на то, что оно металл: «Если серебро - металл, оно электропроводно».

Выражаемую условным высказыванием связь обосновывающего и обосновываемого (основания и следствия) трудно охарактеризовать в общем виде, и только иногда природа се относительно ясна. Эта связь может быть, во-первых, связью логического следования, имеющей место между посылками и заключением правильного умозаключения («Если все живые многоклеточные существа смертны, а медуза является таким существом, то она смертна»); во-вторых, законом природы («Если тело подвергнуть трению, оно начнет нагреваться»); в-третьих, причинной связью («Если Луна в новолуние находится в узле своей орбиты, наступает солнечное затмение»); в-четвертых, социальной закономерностью, правилом, традицией и т.п. («Если меняется общество, меняется и человек», «Если совет разумен, он должен быть выполнен»).

Со связью, выражаемой условным высказыванием, обычно соединяется убеждение, что следствие с определенной необходимостью «вытекает» из основания и что имеется некоторый общий закон, сумев сформулировать который, мы могли бы логически вывести следствие из основания.

Например, условное высказывание «Если висмут - металлом пластичен» как бы предполагает общий закон "Нес металлы пластичны», делающий консеквент данного высказывания логическим следствием его антецедента.

И в обычном языке, и в языке науки условное высказывание кроме функции обоснования может выполнять также ряд других задач: формулировать условие, не связанное с каким-либо подразумеваемым общим законом или правилом («Если захочу, разрежу свой плащ»); фиксировать какую-либо последовательность («Если прошлое лето было сухим, то в этом году оно дождливое»); выражать в своеобразной форме неверие («Если вы решите эту задачу, я докажу великую теорему Ферма»); противопоставление («Если в огороде растет бузина, то в Киеве живет дядька») и т.п. Многочисленность и разнородность функций условного высказывания существенно затрудняет его анализ.

Употребление условного высказывания связано с определенными психологическими факторами. Так, обычно мы формулируем такое высказывание, только если не знаем с определенностью, истинны или нет его антецедент и консеквент. В противном случае его употребление кажется неестественным («Если вата - металл, она электропровод на»).

Условное высказывание находит очень широкое применение во всех сферах рассуждения. В логике оно представляется, как правило, посредством импликативного высказывания, или импликации. При этом логика проясняет, систематизирует и упрощает употребление «если..., то...», освобождает его от влияния психологических факторов.

Логика отвлекается, в частности, от того, что характерная для условного высказывания связь основания и следствия в зависимости от контекста может выражаться с помощью нс только «если..., то...», но и других языковых средств. Например, «Так как вода жидкость, она передает давление во все стороны равномерно», «Хотя пластилин и не металл, он пластичен», «Если бы дерево было металлом, оно было бы электропроводным» и т.п. Эти и подобные им высказывания представляются в языке логики посредством импликации, хотя употребление в них «если..., то...» было бы не совсем естественным.

Утверждая импликацию, мы утверждаем, что не может случиться, чтобы ее основание имело место, а следствие - отсутствовало. Иными словами, импликация является ложной только в том случае, когда се основание истинно, а следствие ложно.

Это определение предполагает, как и предыдущие определения связок, что всякое высказывание является либо истинным, либо ложным и что истинностное значение сложного высказывания зависит только от истинностных значений составляющих его высказываний и от способа их связи.

Импликация истинна, когда и ее основание, и ее следствие истинны или ложны; она истинна, если ее основание ложно, а следствие истинно. Только в четвертом случае, когда основание истинно, а следствие ложно, импликация ложна.

Импликацией не предполагается, что высказывания А и В как-то связаны между собой по содержанию. В случае истинности В высказывание «если А, то В» истинно независимо от того, является А истинным или ложным и связано оно по смыслу с В или нет.

Например, истинным считаются высказывания: «Если на Солнце есть жизнь, то дважды два равно четыре», «Если Волга - озеро, то Токио - большая деревня» и т.п. Условное высказывание истинно также тогда, когда А ложно, и при этом опять-таки безразлично, истинно В или нет и связано оно по содержанию с А или нет. К истинным относятся высказывания: «Если Солнце - куб, то Земля - треугольник», «Если дважды два равно пять, то Токио - маленький город» и т.п.

В обычном рассуждении все эти высказывания вряд ли будут рассматриваться как имеющие смысл и еще в меньшей степени как истинные.

Хотя импликация полезна для многих целей, она не совсем согласуется с обычным пониманием условной связи. Импликация охватывает многие важные черты логического поведения условного высказывания, но она не является вместе с тем достаточно адекватным его описанием.

В последние полвека были предприняты энергичные попытки реформировать теорию импликации. При этом речь шла не об отказе от описанного понятия импликации, а о введении наряду с ним другого понятия, учитывающего не только истинностные значения высказываний, но и связь их по содержанию.

С импликацией тесно связана эквивалентность, называемая иногда «двойной импликацией».

Эквивалентность - сложное высказывание «Л, если и только если В», образованное из высказываний Ли В и разлагающееся на две импликации: «если А, то В», и «если В, то А». Например: «Треугольник является равносторонним, если и только если он является равноугольным». Термином «эквивалентность» обозначается и связка «..., если и только если...», с помощью которой из двух высказываний образуется данное сложное высказывание. Вместо «если и только если» для этой цели могут использоваться «в том и только в том случае, когда», «тогда и только тогда, когда» и т.п.

Если логические связки определяются в терминах истины и лжи, эквивалентность истинна тогда и только тогда, когда оба составляющих ее высказывания имеют одно и то же истинностное значение, т.е. когда они оба истинны или оба ложны. Соответственно эквивалентность является ложной, когда одно из входящих в нее высказываний истинно, а другое ложно.

Под высказыванием понимается языковое выражение, о котором можно сказать только одно из двух: истинно оно или ложно. Выска­зывание, в отличие от суждений, не имеет личностного характера.

Вопросы, просьбы, приказы, восклицания, отдельные слова (кро­ме случаев, когда они выступают представителями высказываний ти­па «вечереет», «похолодало» и т. п.) не являются высказываниями. Истинность и ложность высказываний являются их логическими зна­чениями.

Высказывания делятся на атрибутивные, экзистенциальные и ре­ляционные.

Атрибутивными называются высказывания, в которых утвер­ждается или отрицается свойство или состояние предмета.

Экзистенциальными называются высказывания, которые ут­верждают или отрицают факт существования.

Реляционными называются высказывания, выражающие отно­шения между предметами.

Высказывания, как и их логические формы, бывают простыми и сложными. Сложное высказывание можно разбить на простые. Простые высказывания на более простые не расчленяются.

Простое атрибутивное высказывание имеет структуру, в которую входят субъект, предикат и связка.

Субъект высказывания (S) - это та часть высказывания, которая выражает предмет мысли.

Предикат высказывания (Р) - это часть высказывания, в которой отображается признак предмета мысли, его свойство, состояние, отношение.

Субъект (S) и предикат (Р) называются терминами. Связка указывает на то, в каком взаимоотношении находятся между собой термины (S и Р).

В атрибутивных высказываниях часто используются кванторы существования и общности.

Атрибутивные высказывания делятся по качеству и количеству.

По качеству они делятся на утвердительные и отрицательные. В утвердительных указывается на принадлежность (наличие) призна­ка, мыслимого в предикате, субъекту высказывания: «S есть Р». На­пример: «Платон - философ-идеалист». В отрицательных указыва­ется на непринадлежность предиката его субъекту: «S не есть Р».

По количеству высказывания делятся на единичные, частные и общие. Имеется в виду совокупность (число, количество) индиви­дуальных предметов, составляющих имя класса субъекта.

В единичных высказываниях субъект состоит из одного предмета.

Частные высказывания имеют форму: «Некоторые S есть (не есть) Р».

В общих высказываниях субъект охватывает все предметы. Та­кие высказывания имеют форму: «Все S есть (не есть) Р».

Высказывания классифицируются по качеству и количеству. Вы­деляются 4 класса высказываний:

1) общеутвердительное (А) - общее по количеству и утверди­тельное по качеству («Все S есть Р»);

2) частноутвердительное (J) - частное по количеству и утвер­дительное по качеству («Некоторые S есть Р»);


3) общеотрицательное (Е) - общее по количеству и отрица­тельное по качеству («Ни одно S не есть Р»);

4) частноотрицательное (О) - частное по количеству и отри­цательное по качеству («Некоторые S не есть Р»).

В каждом классе высказываний соотношение объемов S и Р (тер­минов) различно. В логике проблема соотношения объемов S и Р называется проблемой распределенности терминов. Термин распределен, если он полностью входит в объем другого термина или полностью из него исключается.

В классе А |Все S есть Р| субъект полно­стью распределен в предикате, а предикат не распределен.

Математическая логика (ЧАСТЬ 1)

Что такое логический вывод?

Пусть дано два утверждения:

1. Фрукты могут расти на деревьях.

2. Яблоко это фрукт.

Так как оба эти утверждения истинны, то можно сказать, что утверждение «Яблоки могут расти на деревьях» также истинно. Это третье утверждение никак не содержится в двух первых, оно из них следует. Или, иначе говоря, третье утверждение является логическим выводом из первых двух.

Это был простой пример. Сейчас рассмотрим пример посложнее. Попробуем решить задачу из книги профессора Р.М. Смаллиана, «Принцесса или тигр».

Условие. В этой задаче необходимо выяснить: в какой из двух комнат находится принцесса, а в какой тигр. На дверях каждой из комнат есть таблички с некоторыми утверждениями, кроме того, дополнительно известно, что на одной табличке написана правда, а на другой нет, но на какой правда, а на какой ложь не известно. И ещё известно, что в каждой комнате кто-то есть.

1. В этой комнате находится принцесса, а в другой комнате сидит тигр. 2. В одной из этих комнат находится принцесса; кроме того, в одной из этих комнат сидит тигр.

Решение. Утверждения на табличках не могут быть одновременно истинными или ложными. Следовательно, возможны только две ситуации. Первая: первое истинно, а второе ложно и вторая: первое ложно, а второе истинно. Рассмотрим их.

Ситуация 1. Из истинности первого утверждения следует, что принцесса находится в первой комнате, а тигр во второй. В это же время из ложности второго утверждения следует, что нет комнаты, в которой находится принцесса и нет комнаты в которой сидит тигр. Следовательно, истинность первого утверждения и ложность второго невозможны одновременно.

Ситуация 2. Из истинности второго утверждения следует только то, что и тигр и принцесса имеются в наличии. Из ложности же первого следует, что принцесса находится во второй комнате, а тигр в первой. Анализируя вторую ситуацию, мы не получили противоречия, следовательно ситуация 2 и есть решение задачи.

Решение данной задачи есть пример более сложного рассуждения. Однако нетрудно заметить общий принцип. В этом рассуждении, так же как и в первом примере есть элементарные утверждения из истинности, которых следует истинность или ложность других утверждений. А цель логического вывода как раз и заключается в установлении истинности или ложности различных утверждений.

Логический вывод опирается на вроде бы очевидное утверждение, что при истинных исходных утверждениях и правильном логическом выводе, утверждение которое получается в результате такого вывода также истинно.

Остается выяснить, что такое правильный логический вывод. А это уже очень сложный вопрос. Чтобы на него ответить и нужна целая наука, называемая математической логикой. А сейчас нам нужно несколько определений.

Понятие высказывания

У всех утверждений, которые мы использовали выше в качестве примеров, есть одно общее свойство. Независимо от их смысла они могут быть либо истинными, либо ложными. Утверждения, обладающие таким свойством, называются высказываниями. Не всякое утверждение может быть высказыванием. К примеру, следующее утверждение: «Малахит самый красивый камень из всех известных самоцветов» высказыванием быть не может, так как это вопрос вкуса.

Бывают утверждения истинность или ложность, которых в принципе проверить можно, но только в принципе, реально же это невозможно. Например, невозможно проверить истинность следующего утверждения: «На планете Земля в настоящее время есть одно и только одно дерево, на котором растет ровно 10000 листьев». Теоретически это проверить можно, но только теоретически, так как для такой проверки придётся использовать слишком большое количество проверяющих, значительно большее чем проживает на планете людей.

Таким образом, математическая логика изучает только высказывания, и только то, как определять их истинность или ложность. Математическая логика не исследует смысл высказываний, из чего следует, что формулировка высказывания роли не играет и для высказывания достаточно ввести простое обозначение.

Собственно так и происходит. Высказывания обозначают просто буквами: А, В, С и т.д. и говорят о них только то, что они истинны или ложны.

Сложные высказывания. Логические операции

Ранее, мы говорили только о простых высказываниях, высказывания же могут быть и сложными состоящими из нескольких простых. Приведем пример:

Помидор может быть красным и помидор может быть круглым.

Это высказывание состоит из двух простых: «Помидор может быть красным», «Помидор может быть круглым» соединённых логической связкой «И». Объединение двух и более простых высказываний логической связкой «И» называется логической операцией конъюнкции. Результатом конъюнкции является сложное высказывание, истинность которого зависит от истинности входящих в него простых высказываний и определяется следующим правилом: Конъюнкция является истинной тогда и только тогда, когда истинны все входящие в неё высказывания.

В математической логике есть общепринятое обозначение конъюнкции – Ù. Если в конъюнкции участвуют два простых высказывания A и B, то это записывается так A Ù B.

Правило истинности для конъюнкции можно представить в виде следующей таблицы:

A B A and B

Истинность в этой таблице записывается единицей, а ложность нулем. Если A имеет значение 0 и B имеет значение 1, то конъюнкция будет такая: 0 and 1 = 0, то есть ложь.

Конечно, конъюнкция не единственная логическая операция позволяющая строить из простых высказываний сложные. Дадим определение ещё нескольких:

Дизъюнкция. Сложное высказывание являющееся дизъюнкцией двух простых истинно, если истинно хотя бы одно простое высказывание, входящее в дизъюнкцию. Обозначается дизъюнкция следующим образом:

A Ú B. Её таблица истинности:

Эквиваленция. Сложное высказывание, построенное с помощью операции эквиваленции истинно в том случае, когда оба входящие в него высказывания одновременно истинны или одновременно ложны. Обозначается эквиваленция так: A ~ B. Таблица истинности приведена ниже.

С помощью логических операций можно строить логические выражения любой степени сложности, истинность которых также можно определять с помощью таблицы истинности. Возьмём в качестве примера следующее выражение: (A Ù B) ® (A Ú B) и построим для него таблицу истинности:

Из таблицы истинности данного выражения видно, что оно принимает истинное значение при любых значениях простых высказываний A и B. Такие выражения называются тождественно истинными. Выражения, принимающие всегда значение ложь, называются тождественно ложными.

Проверка истинности с помощью таблиц истинности не всегда проста. Логические выражения могут включать в себя много операций, количество элементарных высказываний, обозначаемых буквами, также может быть велико, а при достаточно большом количестве элементарных высказываний, таблица истинности может быть настолько велика, что построить её окажется просто невозможным.

Из таблиц приведённых выше видно, что, для их построения необходимо перебрать все возможные комбинации истинности и ложности элементарных высказываний. Для двух высказываний возможны четыре комбинации. Для трех, количество комбинаций равно 8. Для N высказываний количество комбинаций равно числу 2 N . То есть, например для N=10 2 N = 2 10 = 1024. Это уже слишком много.

В таких ситуациях уже нужны специальные приёмы для выяснения истинности и ложности выражения. Эти приёмы заключаются в упрощении исходного выражения, приведения его к стандартному, более простому виду. Под более простым видом, обычно понимается более короткое выражение, однако сократить логическое выражение может не получиться. Однако всегда можно уменьшить количество логических операций и всегда можно упростить форму логического выражения.

Существуют две стандартные формы, к которым можно привести любое логическое выражение.

Дизъюнктивная нормальная форма. Это логическое выражение представляющее собой дизъюнкцию элементарных конъюнкций, в которые входят элементарные высказывания или их отрицания.

Пример

(AÙBÙC)Ú(AÙùBÙùC)Ú(AÙBÙùC)

Конъюнктивная нормальная форма. Это логическое выражение представляющее собой конъюнкцию элементарных дизъюнкций, в которые входят элементарные высказывания или их отрицания.

(AÚùBÚC) Ù(AÚùBÚC)Ù (AÚBÚùC)

Истинность выражения представленного в нормальной форме проверяется значительно проще. Дизъюнктивная нормальная форма истинна если истинна хотя бы одна элементарная конъюнкция. Конъюнктивная нормальная форма ложна если ложна хотя бы одна элементарная дизъюнкция. Элементарная дизъюнкция истинна, если истинно хотя бы одно элементарное высказывание в неё входящее. Элементарная конъюнкция ложна, если ложно хотя бы одно элементарное высказывание в неё входящее (Отрицание высказывания элементарным не является).

Для того чтобы привести логическое выражение к одной из указанных выше форм применятся правила подстановки, переводящие логическое выражение в равнозначное (то есть имеющее точно такую же таблицу истинности). Ниже приведен список таких правил.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11

Высказывания отрицания

Среди высказываний отрицания различают высказывания с внешним и внутренним отрицанием. В зависимости от задач исследования высказывание отрицания можно рассматривать или как простое, или как сложное высказывание.

При рассмотрении высказывания отрицания как простого высказывания важной задачей является определение правильной логической формы высказывания:

Простое высказывание, содержащее внутреннее отрицание, принято относить к отрицательным высказываниям (см. «Виды атрибутивных высказывания по качеству»). Например: «Некоторые жители Республики Беларусь не пользуются банковскими кредитами», «Ни один заяц не является хищником»;

Правильной логической формой простого высказывания с внешним отрицанием является противоречащее данному высказывание (см. «Логические отношения между высказываниями. Логический квадрат»). Например: высказыванию «Не все люди жадные» соответствует высказывание «Некоторые люди не являются жадными ».

Рассматривая высказывание отрицания как сложное высказывание, необходимо определить его логическое значение.

Исходное высказывание: Солнце светит (р).

Высказывание отрицания: Солнце не светит (┐р).

Высказывание двойного отрицания: Неверно, что солнце не светит (┐┐р).

р ┐р ┐┐р
И Л И
Л И Л
Рис. 16

Высказывание отрицание истинно лишь тогда, когда исходное высказывание ложно, и наоборот. С высказыванием отрицания связан закон двойного отрицания: двойное отрицание произвольного высказывания равносильно самому этому высказыванию. Условия истинности высказывания отрицания изображены на рис. 16.

Сложным считается высказывание, состоящее из нескольких простых высказываний, соединенных при помощи логических союзов «и», «или», «если…, то…» и т. д. К сложным высказываниям относят соединительные, разделительные, условные, эквивалентные высказывания, а также высказывания отрицания.

Соединительное высказывание (конъюнкция) – это сложное высказывание, состоящее из простых, соединенных при помощи логической связки «и». Логический союз «и» (конъюнкция) может выражаться в естественном языке грамматическими союзами «и», «но», «однако», «а также» и т. д. Например: «Набежали тучи, и пошел дождь», «И большие и малые радуются хорошему дню» . На символическом языке логики данные высказывания записываются следующим образом: p∧q . Конъюнкция истинна лишь тогда, когда истинны все ее составляющие простые высказывания (рис. 17).



Разделительное высказывание (дизъюнкция). Различают слабую и сильную дизъюнкцию. Слабой дизъюнкции соответствует употребление союза «или» в соединительно-разделительном смысле (или то, или другое, или то и другое вместе). Например: «Этот студент спортсмен или отличник» (p⋁q ), «Наследственные факторы, плохая экология и вредные привычки являются причинами большинства заболеваний» (p⋁q⋁r ). Слабая дизъюнкция истинна тогда, когда истинно хотя бы одно из входящих в ее состав простых высказываний (см. рис. 17).

Сильной дизъюнкции соответствует употребление союза «либо» в исключающе-разделительном смысле (либо то, либо другое, но не то и другое вместе). Например: «Вечером я буду на занятиях или пойду на дискотеку», «Человек либо жив, либо мертв» . Символическая запись p⊻q . Сильная дизъюнкция истинна тогда, когда истинно только одно из входящих в ее состав простых высказываний (см. рис. 17).

Условное высказывание (импликация) – это сложное высказывание, состоящее из двух частей, соединенных с помощью логического союза «если…, то…». Высказывание, стоящее после частицы «если», называют основанием, а высказывание, стоящее после «то» – следствием. При логическом анализе условных высказываний основание импликации всегда ставится вначале. В естественном языке это правило часто не соблюдается. Пример условного высказывания: «Если ласточки низко летают, то будет дождь» (p→q ). Импликация ложна лишь в одном случае, когда ее основание истинно, а следствие – ложно (см. рис. 17).

Эквивалентное высказывание – это высказывание, состоящее из простых, соединенных с помощью логического союза «тогда и только тогда, когда» («если и только если…, то…). В эквивалентном высказывании подразумевается одновременное наличие или отсутствие двух ситуаций. В естественном языке эквиваленция может выражаться грамматическими союзами «если…, то…», «лишь в том случае, когда…» и т. д. Например: «Наша команда выиграет лишь в том случае, если хорошо подготовится » (p↔q ). Эквивалентное высказывание будет истинным тогда, когда составляющие его высказывания являются либо одновременно истинными, либо одновременно ложными (см. рис. 17).

Для формализации рассуждения необходимо:

1) найти и обозначить малыми согласными буквами латинского алфавита простые высказывания, входящие в состав сложного. Переменные присваиваются произвольно, но если одно и то же простое высказывание встречается несколько раз, то столько же раз используется соответствующая переменная;

2) найти и обозначить логическими константами логические союзы (∧, ⋁, ⊻, →. ↔, ┐);

3) в случае необходимости расставить технические знаки [...], (...).

На рис. 18 изображен пример формализации сложного высказывания.

Я уже освободился (p) и (∧) , если меня не задержат (┐q ) или (⋁)не сломается автомобиль (┐r), то(→) я скоро приеду (s) .

p ∧ ((┐q ⋁ ┐r) → s

Рис. 18

После того как высказывание записано в символическом виде, можно определить тип формулы. В логике различают тождественно-истинные, тождественно-ложные и нейтральные формулы. Тождественно-истинные формулы независимо от значений входящих в их состав переменных всегда принимают значение «истина», а тождественно-ложные – значение «ложно». Нейтральные формулы принимают как значение «истина», так и значение «ложно».


Для определения типа формулы используется табличный способ, сокращенный способ проверки формулы на истинность методом «сведения к абсурду» и приведение формулы к нормальной форме. Нормальной формой некоторой формулы является такое ее выражение, которое соответствует следующим условиям:

Не содержит знаков импликации, эквиваленции, строгой дизъюнкции и двойного отрицания;

Знаки отрицания находятся только при переменных.

Табличный способ определения типа формулы:

1. Строят столбцы входных значений для каждой из имеющихся переменных. Эти столбцы называют свободными (независимыми), в них учитывают все возможные комбинации значений переменных. Если в формуле две переменные, то строят два свободных столбца, если же три переменные, то три столбца и т. д.

2. Для каждой подформулы, то есть части формулы, содержащей хотя бы один союз, строят столбец ее значений. При этом учитываются значения свободных столбцов и особенности логического союза (см. рис. 17).

3. Строят столбец выходных значений для всей формулы в целом. По значениям, полученным в выходном столбце, определяют тип формулы. Так, если в выходном столбце имеется только значение «истина», то формула будет относиться к тождественно-истинным и т.д.

Таблица истинности для формулы (p ^ q) → r
p q r p ^ q (p ^ q) → r
И И И И И
Л И Л Л И
Л Л И Л И
И Л Л Л И
И И Л И Л
И Л И Л И
Л И И Л И
Л Л Л Л И
Рис. 19

Число столбцов в таблице равняется сумме переменных, входящих в формулу, и имеющихся в ней союзов. (Например: в формуле на рис. 18 четыре переменных и пять союзов, следовательно, в таблице будет девять столбцов).

Количество строк в таблице вычисляется по формуле С = 2 n , где n – количество переменных. (В таблице по формуле на рис. 18 должно быть шестнадцать строк.)

На рис. 19 изображен пример таблицы истинности.


Сокращенный способ проверки формулы на истинность методом сведения к абсурду:

((p⋁q)⋁r)→(p⋁(q⋁r))

1. Предположим, что данная формула не является тождественно-истинной. Следовательно, при некотором наборе значений она принимает значение «ложно».

2. Данная формула может принимать значение «ложно» только в том случае, если основание импликации (p⋁q)⋁r будет «истинно», а следствие p⋁(q⋁r) – «ложно».

3. Следствие импликации p⋁(q⋁r) будет ложным в том случае, когда р – «ложно» и q⋁r – «ложно» (см. значение слабой дизъюнкции на рис. 17).

4. Если q⋁r – «ложно», то и q и r – «ложно».

5. Мы установили что р – «ложно», q – «ложно» и r – «ложно». Основание импликации (p⋁q)⋁r представляет собой слабую дизъюнкцию этих переменных. Так как слабая дизъюнкция принимает значение «ложно» тогда, когда ложными являются все ее составляющие, то основание импликации (p⋁q)⋁r тоже будет «ложным».

6. В п. 2 установили, что основание импликации (p⋁q)⋁r – «истинно», а в п. 5 что оно является «ложным». Возникшее противоречие свидетельствует о том, что предположение, сделанное нами в п. 1, ошибочно.

7. Так как данная формула ни при каком наборе значений своих переменных не принимает значение «ложно», то она является тождественно-истинной.

3.8. Логические отношения между высказываниями
(логический квадрат)

Между высказываниями, имеющими сходный смысл, устанавливаются связи. Рассмотрим отношения между простыми и сложными высказываниями.

В логике всю совокупность высказываний разделяют на сравнимые и несравнимые. Несравнимыми среди простых высказываний являются высказывания, имеющие различные субъекты или предикаты. Например: «Все студенты – учащиеся» и «Некоторые студенты – отличники» .

Сравнимыми являются высказывания с одинаковыми субъектами и предикатами и различающиеся связкой и квантором. Например: «Все граждане Республики Беларусь имеют право на отдых» и «Ни один гражданин Республики Беларусь не имеет право на отдых».

Рис. 20
Отношения между сравнимыми высказываниями выражаются с помощью модели, которую называют логический квадрат (рис. 20).

Среди сравнимых высказываний различают совместимые и несовместимые.

Отношение совместимости

1. Эквивалентность (полная совместимость) – высказывания, которые имеют одинаковые логические характеристики: одинаковые субъекты и предикаты, однотипную утвердительную или отрицательную связку, одну и ту же логическую характеристику. Эквивалентные высказывания различаются словесным выражением одной и той же мысли. С помощью логического квадрата отношения между данными высказываниями не иллюстрируются.

2. Частичная совместимость (подпротивность, субконтрарность ). В этом отношении находятся частноутвердительное и частноотрицательное высказывания (I и О). Это означает, что два таких высказывания могут быть одновременно истинными, но не могут быть одновременно ложными. Если одно из них ложно, то второе обязательно истинно. Если же одно из них истинно, то второе неопределенно.

3. Подчинение (субординация ). В этом отношении находятся общеутвердительное и частноутвердительное высказывания (А и I), а также общеотрицательное и частноотрицательное высказывания (Е и О).

Из истинности общего высказывания всегда следует истинность частного. В то время как истинность частного высказывания свидетельствует о неопределенности общего высказывания.

Из ложности частного высказывания всегда следует ложность общего высказывания, но не наоборот.


Отношение несовместимости. Несовместимыми являются высказывания, которые не могут быть одновременно истинными:

1. Противоположность (противность, контрарность) – в этом отношении находятся общеутвердительное и общеотрицательное высказывания (А и Е). Это отношение означает, что два таких высказывания не могут быть одновременно истинными, но могут быть одновременно ложными. Если одно из них истинно, то второе обязательно – ложно. Если же одно из них ложно, то второе неопределенно.

2. Противоречие (контрадикторность) – в нем находятся обще-утвердительное и частноотрицательное высказывания (A и О), а также общеотрицательное и частноутвердительное высказывания (Е и I). Два противоречащих высказывания не могут быть ни одновременно ложными, ни одновременно истинными. Одно обязательно истинно, а другое ложно.

Сравнимыми среди сложных высказываний являются высказывания, имеющие хотя бы одну одинаковую составляющую. В противном случае сложные высказывания несравнимы.

Сравнимые сложные высказывания могут быть совместимыми или несовместимыми.

Отношение совместимости означает, что высказывания могут быть одновременно истинными:

2. Частичная совместимость означает, что высказывания могут быть одновременно истинными, но не могут быть одновременно ложными (рис. 22).
p q p→q q→p
И И И И
И Л Л И
Л И И Л
Л Л И И
Рис. 22

3. Отношение следования (подчинения ) означает, что из истинности одного высказывания следует истинность другого, но не наоборот (рис. 23).
p q r (p→q)∧(q→r) p↔r
И И И И И
И И Л Л Л
И Л И Л И
Л И И И И
И Л Л Л Л
Л И Л Л И
Л Л И И И
Л Л Л И И
Рис. 23
4. Отношение сцепления означает, что истинность (ложность) одного высказывания не исключает ложности (истинности) другого (рис. 24).
p q p→q ┐p→q
И И И И
И Л Л И
Л И И И
Л Л И Л
Рис. 24

Отношение несовместимости означает, что высказывания не могут быть одновременно истинными:

2. Противоречие – отношение между высказываниями, которые не могут быть ни одновременно истинными, ни одновременно ложными (рис. 26).
p q p→q p∧┐q
И И И Л
И Л Л И
Л И И Л
Л Л И Л
Рис. 26


























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

  • Образовательная: расширить представление обучающихся об алгебре высказываний, познакомить с логическими операциями и таблицами истинности.
  • Развивающая:
  • развивать умение учащихся оперировать понятиями и символикой математической логики; продолжить формирование логического мышления; развивать познавательную активность; расширение кругозора обучающихся.
  • Воспитательная:
  • воспитывать умения высказывать свое мнение; прививать навыки самостоятельной работы.

ТИП УРОКА: комбинированныйурок - объяснение нового материала с последующим закреплением полученных знаний.

ПРОДОЛЖИТЕЛЬНОСТЬ УРОКА: 40 минут.

МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА:

  • Интерактивная доска SmartBoard .
  • Приложение MS Windows - PowerPoint 2007.
  • Подготовленная учителем версия электронного урока (презентация в среде PowerPoint 2007).
  • Карточки-задания, подготовленные учителем.

ПЛАН УРОКА:

I. Организационный момент - 1 мин.

II. Постановка целей урока - 2 мин.

III. Актуализация знаний - 9 мин.

IV. Презентация нового материала - 15 мин.

V. Закрепление изученного материала - 8 мин.

VI. Рефлексия "Незаконченные предложения" - 3 мин.

VII. Заключение. Домашнее задание - 2 мин.

ХОД УРОКА

I. Организационный момент.

Приветствие, отметка отсутствующих на уроке.

Слайд 1

Продолжаем изучать раздел "Логический язык" . Сегодня наше занятие посвящено теме "Логические высказывания". Работу начнем с проверки домашнего задания (зачитываются стихотворения обучающихся, в которых содержится много логических связок (операций) и делается вывод, что произвольную информацию можно однозначно интерпретировать на основе алгебры логики).

Т.о., цель нашего урока - изучить логические операции, и выяснить, что произвольную информацию можно однозначно интерпретировать на основе алгебры логики. Но сначала необходимо повторить материал, изученный на прошлом уроке.

III. Актуализация знаний (фронтальный опрос).

Задание 1. Работа с карточками(дать краткие ответы на поставленные вопросы).Наука, изучающая законы и формы мышления. (Логика)

  • Константа, которая обозначается "1". (Истина)
  • Константа, которая обозначается "0". (Ложь)
  • Повествовательное предложение, относительно которого можно сказать истинно оно или ложно. (Высказывание)
  • Виды высказываний (Простые и сложные)
  • Какие из перечисленных предложений являются высказываниями?
      • Здравствуй!
      • Аксиома не требует доказательств.
      • Идет дождь.
      • Какая температура на улице?
      • Рубль - денежная единица России.
      • Без труда не вытянешь и рыбку из пруда.
      • Число 2 не является делителем числа 9.
      • Число х не больше 2.

    7. Определите истинность или ложность высказывания:

      • Информатика изучается в курсе средней школы.
      • "Е" - шестая буква в алфавите.
      • Квадрат является ромбом.
      • Квадрат гипотенузы равен сумме квадратов катетов.
      • Сумма углов треугольника равна 1900.
      • 12+14 > 30.
      • Пингвины обитают на Северном полюсе Земли.
      • 23+12=5*7.

    Итак, что же такое высказывание? (Повествовательное предложение, относительно которого можно сказать истинно оно или ложно.)

    Что такое простое высказывание? (Высказывание называется простым (элементарным), если никакая его часть не является высказыванием.)

    Что такое составное высказывание? (Составное высказывание состоит из простых высказываний, соединенных логическими связками (операциями).)

    Задание 2. Построить составные высказывания из простых высказываний: "А = Петя читает книгу", "В = Петя пьёт чай". (на экране - слайд 2)

    Продолжим работу.

    Задание 3. В следующих высказываниях выделите простые высказывания, обозначив каждое из них буквой:

    1. Зимой дети катаются на коньках или на лыжах.(слайд 3)
    2. Неверно, что Солнце движется вокруг Земли.(слайд 4)
    3. Число 15 делится на 3 тогда и только тогда, когда сумма цифр числа 15 делится на 3.(слайд 5)
    4. Если вчера было воскресенье, то Дима вчера не был в школе и весь день гулял.(слайд 6)

    IV. Презентация нового материала.

    В предыдущих заданиях использовались различные логические связки: "и", "или", "не", "если: то:", "тогда и только тогда, когда:". В алгебре логике логические связки и соответствующие им логические операции имеют специальные названия. Рассмотрим 3 базовые логические операции - инверсию, конъюнкцию и дизъюнкцию, с помощью которых можно получать составные высказывания. (слайд 7)

    Любая логическая операция определяется таблицей, которую называют таблицей истинности. Таблица истинности логического выражения - это таблица, где в левой части записываются все возможные комбинации значений исходных данных, а в правой - значение выражения для каждой комбинации.

    Отрицание - логическая операция, которая каждому простому (элементарному) высказыванию ставит в соответствие новое высказывание, значение которого противоположно исходному. (слайд 8)

    Рассмотрим правило построения отрицания к простому высказыванию.

    Правило: При построении отрицания к простому высказыванию либо используется речевой оборот "неверно, что", либо отрицание строится к сказуемому, тогда к сказуемому добавляется частица "не", при этом слово "все" заменяется на "некоторые" и наоборот.

    Задание 4. Построить инверсию (отрицание) к простому высказыванию:

    1. A = У меня дома есть компьютер. (слайд 9)
    2. A = Все юноши 11-х классов - отличники.
    3. Будет ли, является отрицанием высказывание: "Все юноши 11-х классов - не отличники". (слайд 10)

    Высказывание "Все юноши 11-х классов - не отличники" не является отрицанием высказывания "Все юноши 11-х классов - отличники". Высказывания "Все юноши 11-х классов - отличники" ложно, а отрицанием к ложному высказыванию должно быть истинное высказывание. Но высказывание "Все юноши 11-х классов - не отличники" не является истинным, так как среди 11-классников есть как отличники, так и не отличники.

    Графически отрицание можно изобразить в виде множества. (слайд 11 )

    Рассмотрим следующую логическую операцию - конъюнкцию. Высказывание, составленное из двух высказываний путем объединения их связкой "и", называется конъюнкцией или логическим умножением (дополнительно используются связки - а, но, хотя).

    Конъюнкция - логическая операция, ставящая в соответствие каждым двум элементарным высказываниям новое высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны. (слайд 12)

    Графически конъюнкцию можно изобразить в виде множества. (слайд 13)

    Рассмотрим следующую логическую операцию - дизъюнкцию. Высказывание, составленное из двух высказываний объединенных связкой "или", называется дизъюнкцией или логическим сложением.

    Дизъюнкция - логическая операция, ставящая в соответствие каждым двум элементарным высказываниям новое высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны. (слайд 14)

    Графически дизъюнкцию можно изобразить в виде множества. (слайд 15)

    Итак, назовите три базовые операции, которые мы изучили. (слайд 16)

    Давайте попробуем применить новые знания при выполнении проверочной работы.

    V. Закрепление изученного материала (работа у доски).

    Задание 5. Приведите в соответствие диаграмму и ее обозначение.(слайд 17)

    Задание 6. Есть два простых высказывания: А = "Число 10 - четное", В = "Волк - травоядное животное". Составьте из них все возможные составные высказывания и определите их истинность.

    Ответ: 1-2; 2-6; 3-5; 4-1; 5-4; 6-3; 7-7.

    Задание 8. Даны два простых высказывания: А = "Рубль - валюта России", В = "Гривна - валюта США". Какие высказывания истины?

    4) А v B

    Ответы: 1) 0; 2) 1; 3) 0; 4) 1.

    VI. Рефлексия "Незаконченные предложения".

    • Мне на уроке было интересно потому, что:
    • Больше всего на уроке мне понравилось:
    • Для меня новым было:

    VII. Заключение. Домашнее задание.

    Оценивается работа класса в целом и отдельных учащихся, отличившихся на уроке.

    Домашнее задание:

    1) Выучить основные определения, знать обозначения.

    2) Придумать простые высказывания. (Всего должно быть 5 наборов по два высказывания). Из них составить всевозможные составные высказывания, определить их истинность.

    Список использованных материалов:

    1. Информатика и ИКТ. 10-11 класс. Профильный уровень. Часть 1: 10 класс: учебник для общеобразовательных учреждений /М.Е. Фиошин, А.А. Рессин - М.: Дрофа, 2008
    2. Математические основы информатики. Учебное пособие /Е.В. Андреева, Л.Л. Босова, И.Н. Фалина - М.: БИНОМ. Лаборатория знаний, 2007
    3. Материалы учителя информатики Поспеловой Н.П., МОУ СОШ № 22, г. Сочи
    4. Фрагменты презентации учителя информатики Полякова К.Ю.