Болезни Военный билет Призыв

Рассказ о взаимосвязях между компонентами пк. Взаимосвязь компонентов природы. Примеры природных комплексов

Географическая оболочка и ее особенности

Все оболочки Земли тесно взаимосвязаны между собой. В результате этого взаимодействия верхние слои литосферы, нижние слои атмосферы, биосфера и гидросфера образовали особую среду – географическую оболочку .

Свойства географической оболочки:

1. В пределах географической оболочки вещества находятся в трех состояниях

2. В ее пределах существует жизнь

3. В ней протекают различные круговороты

4. Главным источником энергии выступает Солнце

Рис. 1. Схема географической оболочки

Рис. 2. Этапы развития географической оболочки

Природный комплекс

В пределах географической оболочки ее компоненты постоянно взаимодействуют между собой, образуя природные комплексы.

Рис. 3. Схема взаимодействия природных компонентов

Природный комплекс – сочетание природных компонентов на определенной территории, тесно связанных между собой.


Рис. 4. Схема природного комплекса и его компонентов

Примеры природных комплексов

Природные комплексы Земли очень разнообразны, они отличаются между собой растительным, животным составом, географическим положением, размерами, почвами, климатом и пр. Главным компонентом, влияющим на размещение природного комплекса, является климат.

Рис. 5. Виды природных комплексов

Самым большим природным комплексом является географическая оболочка Земли.

Воздействие человека на природу

Человек и его деятельность с развитием науки и техники, с увеличением численности населения всё больше оказывают воздействие на природную среду и ее компоненты. При этом нужно не забывать, что при изменении одного компонента природного комплекса изменяются и другие.

Рис. 1. Фабричные трубы

Поэтому использование природных благ человеком должно осуществляться бережно и разумно.

Рис. 2. Человек и природа: положительное взаимодействие

В связи с возрастающим влиянием человека на природную среду перед наукой и обществом возникают новые вопросы. Уже сейчас ученые думают, как снизить количество углекислого газа в атмосфере, как повторно использовать многие виды ресурсов, пытаются разработать новые источники энергии и многое другое.

Охранять природу – это не значит не использовать ее богатства и не изменять ее. Главное – аккуратно относиться к природе, экономно и бережно использовать ее ресурсы, не брать лишнего, развивать новые технологии, высаживать деревья, оберегать редкие виды флоры и фауны.

Организации по охране природы

В настоящее время существует множество международных организаций по охране и защите природы :

1. Всемирный фонд дикой природы (главная цель – сохранение биосферы).

Рис. 3. Эмблема Фонда дикой природы

2. Гринпис (основная цель – добиться решения глобальных экологических проблем).

3. Программа ООН по окружающей среде (ЮНЕП).

Рис. 4. Эмблема ЮНЕП

4. Всемирный союз охраны природы

5. Зеленый крест и др.

Возведение плотины

Когда на реке возводят плотину, создают водохранилище, тем самым увеличивают количество и объем воды выше по течению. Благодаря этому увеличивается влажность местности, может произойти заболачивание территории, появление новых растений и животных взамен прежних обитателей здешних мест. Таким образом, благодаря деятельности человека происходит изменение природного комплекса.

Красная книга

Красная книга представляет собой список редких и находящихся под угрозой исчезновения растений, животных и грибов. В России эта книга издается в виде двух томов.

Рис. 5. Красная книга Республики Беларусь (растения)

День Земли

22 апреля – День Земли. В конце XX века отмечание этой даты стало международной акцией. В России День Земли празднуют с 1992 года.

Список литературы

Основная

1. Начальный курс географии: учеб. для 6 кл. общеобразоват. учреждений / Т.П. Герасимова, Н.П. Неклюкова. – 10-е изд., стереотип. – М.: Дрофа, 2010. – 176 с.

2. География. 6 кл.: атлас. – 3-е изд., стереотип. – М.: Дрофа; ДИК, 2011. – 32 с.

3. География. 6 кл.: атлас. – 4-е изд., стереотип. – М.: Дрофа, ДИК, 2013. – 32 с.

4. География. 6 кл.: конт. карты: М.: ДИК, Дрофа, 2012. – 16 с.

Энциклопедии, словари, справочники и статистические сборники

1. География. Современная иллюстрированная энциклопедия / А.П. Горкин. – М.: Росмэн-Пресс, 2006. – 624 с.

1.Федеральный институт педагогических измерений ().

2. Русское географическое общество ().

3.Geografia.ru ().

Поддержка верификации осуществляется путем использования методов трассировки требований, что позволяет связывать друг с другом части проекта, проводить проверку адекватности требований к прецедентам их реализации и функциям, и обратно. С помощью трассировки можно удостоверяться в том, что: все компоненты исходных требований проекта учтены; все реализуемые компоненты служат заданной цели и требованиям к комплексу программ.
Посредством трассировки следует устанавливать корректность связей между двумя или большим числом компонентов и/или про - цессов разработки требований, которые являются: предшествую - щими - последующими, или главными - подчиненными, а также соответствие между требованиями и их реализацией конкретными программными компонентами. Каждый компонент и модуль программного комплекса должен оправдывать свое существование и соответствовать каким-то заданным требованиям. Ключевыми элементами верификации и тестирования являются отношения трассировки. Эти отношения можно определять с помощью модели, использующей понятия «трассируется к» и /или «трассируется от». Если одно или несколько требований к программному компоненту создаются с целью поддержки некоторой функции, заданной в исходном документе, то требование трассируется от некоторой функции. Если некоторое требование к программному компоненту «трассируется к» определенному тестовому сценарию, то данное требова- ние тестируется этим скриптом. То, что описание компонента «трассируется от» конкретного программного требования, подразумевает, что это требование реализуется указанным компонентом.
Потребности заказчика должны отслеживаться путем анализа содержания требований, чтобы можно было определить, какие требования будут затронуты, если в течение или после разработки, потребности изменятся. Это также дает уверенность, что в специфика - ции требований указаны все потребности заказчика. Кроме того, можно проследить в направлении от требований к потребностям заказчика, чтобы определить происхождение каждого требования к комплексу программ. Если необходимо представить потребности за - казчика в форме сценариев использования функций, то анализ должен отражать трассирование между вариантами использования и функциональными требованиями.
По мере производства комплекса программ, процессы можно отслеживать в направлении от требований, и определять связи между отдельными требованиями и компонентами комплекса. Этот тип связей гарантирует, что каждое требование удовлетворено, поскольку установлено, какой компонент соответствует этому требованию. Еще один тип связей может контролировать отдельные элементы продукта в направлении к требованиям для того, чтобы знать причину и цель создания каждого компонента. В большинстве комплексов программ могут быть компоненты, не относящиеся, напрямую, к требованиям заказчика, но необходимо устанавливать, для чего нужен каждый компонент.
Если трассировщик обнаружит незапланированную функциональность при отсутствии соответствующего требования, то фрагмент программы может свидетельствовать, что разработчик реализовал требование, которое аналитик или заказчик может добавить к спецификации. Однако это может быть элемент программы, «украшающий» фрагмент, который не относится к комплексу. Связи трас- сируемости помогут сортировать подобные ситуации и получать более полное представление о том, как именно компоненты системы составляют целое, соответствующее требованиям. Сценарии верификации или тестирования, которые созданы на основе отдельных требований, которые можно проследить до этих требований, представляют собой механизм выявления нереализованных требований, поскольку нет ожидаемой функции или компонента. Пропуск реали - зации, верификации и тестирования требования - может быть существенным дефектом, если заказчик не удовлетворен или в готовом продукте отсутствует функция, особо важная для обеспечения надежности или безопасности.
Трассирование требований сложного комплекса программ - трудоемкая задача, обычно выполняемая вручную, для которой необходима соответствующая организация и квалификация специалистов. Если в ходе разработки тщательно фиксируются данные трассируе- мости требований, у руководителей будет точное представление о состоянии реализации запланированной функциональности и характеристик программного комплекса. Отсутствующие связи от требова - ний указывают на компоненты, которые еще не созданы. Если тести - рование дает неожиданный результат, то трассирование связей между тестами, требованиями и текстом модулей и компонентов могут указать на наиболее вероятные части программного кода, которые необходимо проверить на наличие дефектов. Информация о том, какие тесты проверяют какие требования, экономит время, позволяя удалять лишние, выявлять и создавать необходимые тесты (см. рис. 2.4).
Информация трассируемости облегчает внесение изменений в ходе сопровождения, что повышает производительность разработчиков при модификации комплекса программ. Информацией трассируемости целесообразно пользоваться при сертификации продукта с особыми требованиями к надежности и безопасности, чтобы продемонстрировать заказчику, что все требования были реализованы, хотя это не доказывает, что они реализованы корректно и полностью. Естественно, если требования некорректны или отсутствуют ключевые требования, то результаты трассируемости не помогут.
Документирование взаимосвязей компонентов уменьшает риск возникновения проблем, если вдруг ключевой член команды, обла- дающей важной информацией о системе, покидает проект. Отношения трассировки между компонентами проекта могут быть явными или неявными. Явная трассировка - связь или отношение, между функцией комплекса и компонентом, осуществляющим поддержку этой функции, которая определяется исключительно решением специалиста о том, что такое отношение имеет смысл.

Рис. 2.4.

Методология разработки и структура системы могут определять неявные отношения трассировки - «дочерних» требований между компонентами и «родительскими» требованиями, когда существуют формальные, иерархические отношения. Связи трассируемости помогают отслеживать «родительские» требования, взаимосвязи и зависимости между отдельными требованиями. Эта информация отражает влияние изменения, если отдельное требование удаляется или модифицируется.
Удобный способ представления связей между требованиями и другими компонентами системы - матрица трассируемости требований. Каждое функциональное требование в такой матрице, связано с определенном вариантом использования (в направлении «назад»), и с одним или более, элементами верификации и тестирования (в направлении «вперед»). Можно добавить дополнительные столбцы для расширения ссылок на другие рабочие продукты, например, на документацию системы. После того как с помощью инструментального средства заданы все известные отношения между компонентами, обязательным действием является проверка матрицы трассиров - ки взаимосвязей компонентов на наличие следующих двух возможных индикаторов дефектов или ошибок.
Если при просмотре некой строки матрицы связей не удается обнаружить никаких отношений трассировки, вероятно, что еще не определено требование к программному компоненту, отвечающее функции исходного документа требований. Тем не менее, пустые строки являются индикаторами возможных ошибок и нуждаются в тщательной проверке. Современные средства управления требованиями должны предоставлять возможность автоматизированного проведения такой проверки.
Если в некотором столбце не оказывается отмеченных отношений трассировки, вероятно, было создано требование к программному компоненту, для которого нет требующей его, функции продукта. Это может указывать на неправильное понимание роли программного требования, недостаток исходного документа проекта, а также на то, что компонент программы неправильный, не соответ - ствует системному требованию или является дефектом разработчика, и в таком случае его следует удалить.
Чтобы обнаружить пропущенные отношения, надо искать строки матрицы трассировки, которые показывают, что некая функция не связана ни с одним программным требованием (прецедентом). При обнаружении пропуска в отношениях нужно вернуться к исходному набору требований к комплексу программ и связанным с ними программным требованиям.


Окружающая нас природа состоит из частей, или, как их еще называют, компонентов. К природным компонентам относятся рельеф, климат, воды, растения, животные и почвы. Все эти компоненты прошли длительный путь развития, поэтому их сочетания не случайны, а закономерны. Благодаря своему взаимодействию они тесно связаны друг с другом, и это взаимодействие объединяет их в единую систему, где все части одна от другой зависят и одна на другую влияют. Такая единая система называется природно-территориальным комплексом, или ландшафтом.

Основоположником отечественного ландшафтоведение заслуженно считается Л. С. Берг. Он определял природно-территориальные комплексы как области, сходные по преобладающему характеру рельефа, климата, вод, растительности и почвенного покрова. Можно выделить природные комплексы пустынь, лесов, степей и т.д. Л. С. Берг писал, что ландшафт (или природно-территориальный комплекс) есть как бы организм, в котором части обуславливают целое, а целое влияет на части.

Размеры природно-территориальных комплексов различны. Самым крупным может считаться вся географическая оболочка, более мелкими - материки и океаны. К самым мелким природно-территориальным комплексам могут относиться овраги, поляны, пруды. Важно то, что независимо от размера все компоненты этих комплексов тесно взаимосвязаны друг с другом.

Сочетания компонентов природы не случайны, а закономерны. Между ними существует множество связей, взаимодействий. Например, в условиях умеренного климата на рыхлых песчаных почвах растут сосновые леса, а если почвы глинистые, то будет преобладать ель. Взаимодействие между компонентами объединяет их в единую систему, где все части одна от другой зависят и одна на другую влияют. В результате образуются природные комплексы. Слово «комплекс» в переводе с латинского означает «сплетение». Это сплетение компонентов природы суши показано на схеме. Что же такое природный комплекс?
Природно-территориальный комплекс (сокращенно - природный комплекс, или ПК) - это участок земной поверхности, который отличается особенностями природных компонентов, находящихся в сложном взаимодействии. Этот участок имеет более или менее четко выраженные границы, обладает природным единством, проявляющимся и в его внешнем облике.

Разнообразие ПК на суше зависит от состава горных пород, рельефа и климата, оказывающих большое влияние на другие компоненты.
Между компонентами природы существует взаимообмен веществом. Например, растения обмениваются с почвой и воздухом, и минеральными, и органическими веществами, водой, кислородом и углекислым газом. Этот обмен обусловливает единство и целостность ПК, поэтому достаточно повлиять на один компонент, чтобы изменился весь комплекс.

Причиной формирования природно-территориальных комплексов выступают природные компоненты. Их принято подразделять на две группы:

Зональные. Это внешние факторы, которые зависят от неравномерного нагрева Земли Солнцем. (Неравномерный нагрев объясняется шарообразностью нашей Земли.) Он изменяется в зависимости от географической широты: при движении от экватора к полюсам нагрев земной поверхности уменьшается. Благодаря зональным факторам образовались зональные природно-территориальные комплексы: географические пояса и природные (географические) зоны. Эти комплексы хорошо выражены на равнинах, где границы их простираются параллельно широтам. В горах и в глубинах океана зональные природно-территориальные комплексы изменяются с высотой или глубиной. Примером зональных природно-территориальных комплексов являются тундра, степи, тайга, зона смешанных лесов, альпийские луга в горах;

Незональные (или азональные). Это внутренние факторы, которые зависят от процессов, протекающих в недрах Земли. Результатом их является геологическое строение, рельеф. Благодаря незональным (азональным) факторам возникли азональные природно-территориальные комплексы, которые называются физико-географическими странами. Они выделяются по геологическому строению и рельефу, связанному с ним. Примерами азональных природно-территориальных комплексов (природных районов) являются Восточно-Европейская равнина, Уральские горы, Амазонская низменность, Кордильеры, Гималаи и др.
Таким образом, наша Земля представляет собой систему зональных и азональных комплексов, причем азональные комплексы вместе с рельефом представляют собой основание, а зональные, словно покрывалом, перекрывают их. Соприкасаясь и проникая друг в друга, они образуют ландшафт - часть единой географической оболочки.

Природно-территориальным комплексам (ландшафтам) свойственно изменение во времени. Больше всего на них влияет хозяйственная деятельность человека. В последнее время (в рамках развития Земли) на планете начинают возникать комплексы, созданные человеком, - антропогенные (греч. anthropos - человек, genes - рождение) ландшафты. По степени изменения они дифференцируются на:
- слабоизмененные - охотничьи угодья;
- измененные - пашни, мелкие поселения;
- сильноизмененные - городские поселения, крупные разработки полезных ископаемых, крупная распашка, вырубка лесов;
- улучшенные -- санитарная расчистка лесов, парковая зона, «зеленая зона» вокруг крупных городов.

Воздействие человека на ландшафты выступает сейчас как важный природообразующий фактор. Конечно, деятельность человека в наш век не может не изменять природу, но необходимо помнить, что преобразование ландшафтов должно происходить с учетом взаимосвязи всех компонентов природно-территориального комплекса. Только тогда можно избежать нарушения природного равновесия.



СТРУКТУРА И СВОЙСТВА ГЕОСИСТЕМ

3.1. Геосистемы – структура и свойства;

3.2. Природные компоненты как составные части ландшафта, понятие «природные факторы».

3.3. Компоненты ландшафта (свойства, характеристики, влияющие на особенности ландшафтной организации).

3.4. Понятие «природный территориальный комплекс» (ПТК) и «геосистема», типы связей между компонентами ландшафтов.

3.5. Вертикальная и горизонтальная структура ландшафтов.

3.1. Геосистемы – структура и свойства

Важнейшим свойством всякой геосистемы является ее целостность.

Геосистемы относятся к категории открытых систем. Это значит, что они пронизаны потоками энергии и вещества, связываю­щими их с внешней средой.

В геосистемах происходит непрерывный обмен и преобразование вещества и энергии.

Всю совокупность процессов перемещения, обмена и трансформации энергии, вещества, а также информации в геосистеме можно назвать ее функционированием.

Структура геосистемы – сложное, многоплановое понятие. Ее определяют как пространственно-временную организацию (упорядоченность), или как взаимное расположение частей и способы их соединения.

Различаются две системы внутренних связей в ПТК – вертикальная, т.е. межкомпонентная, и горизонтальная, т.е. межсистемная.

Составные части геосистемы упорядочены не только в пространстве, но и во времени. Таким образом, в понятие структуры геосистемы следует включить и определенный, закономерный набор ее состояний, ритмически сменяющихся в пределах некоторого характерного интервала времени, которое можно назвать характерным временем или временем выявления геосистемы.

Инвариант – это совокупность устойчивых отличительных черт системы, придающих ей качественную определенность и специ­фичность, позволяющих отличить данную систему от всех остальных.

Устойчивость и изменчивость – два важных качества геосистемы, находящиеся в диалектическом единстве.

Особого внимания заслуживает вопрос выделения в таксономическом ряду ПТК узловой единицы, служащей связующим звеном между геосистемами регионального и локального уровней. Такой единицей, по мнению многих географов, является ландшафт.

3.2. Природные компоненты как составные части ландшафта, понятие «природные факторы».

Природные компоненты - это основные со­ставные части природного территориального комплекса (природ­ной геосистемы), взаимосвязанные процессами обмена веществом, энергией, информацией. Каждый компонент материален, представ­ляет собой определенную вещественную субстанцию.

Природными компонентами являются: литогенная – геоло­го-геоморфологическая основа (верхняя часть земной коры в пределах зоны гипергенеза и рельеф ее поверхности), приземные воздушные массы, природные воды, почвы, растительность и животный мир. Иногда, помимо названных, в число природных компонентов вклю­чают снежный покров и льды, которые, по сути дела, представля­ют собой природные воды в особых фазовых состояниях.

Со времен В. В. Докучаева все природные компоненты при­нято было разделять на так называемую "мертвую" и "живую" при­роду. Теперь их группируют в три подсистемы. Совокупность не­органических природных компонентов – литогенная основа, воз­душные массы, природные воды ("мертвая" природа) – образует геоматическую (геому) подсистему; растительность и животный мир ("живая" природа) – биотическую (биоту) подсистему. Почвы рассматриваются как промежуточная или биокосная (органо-ми-неральная) подсистема.

Каждый природный компонент обладает своими неповтори­мыми свойствами, изменяющимися в ландшафтном пространстве-времени. Различают свойства вещественные (например, минералогический состав горных пород, газовый состав воздуха, гумусированность почв), энергетические (например, температура воздуха, энергия водного потока, запасы питательных элементов в почве), информационные.

Вещественные и энергетические свойства природных компонентов выступают в геосистеме в качестве фак­торов, обеспечивающих их взаимодействие. В общенаучном плане фактор понимается как движущая сила какого-либо процесса, яв­ления. Природными факторами в связи с этим называют те свой­ства природных компонентов, а также внешней природной среды, которые оказывают определенное влияние на другие природные компоненты и на геосистему в целом.

Наиболее сильными природными факторами, определяющи­ми обособление одной природной геосистемы от другой, их струк­турную и функциональную специфику, принято считать рельеф земной поверхности, ее геологическое строение, местный климат, обводненность (гидроморфизм) территории, характер раститель­ного покрова. Эти факторы действуют внутри ландшафтной обо­лочки и потому относятся к категории внутренних ландшафтообразующих факторов.

Но так как природные геосистемы являются открытыми, на них оказывают воздействие факторы внешней среды. К внешним факторам ландшафтогенеза относятся макроклимат, глубинные тек­тонические структуры и тектонические движения земной коры, вещественно-энергетические влияния смежных или отдаленных природных геосистем (например, селевые потоки, низвергающие­ся вниз по долинам вплоть до подножья гор; пыльные бури, заро­дившиеся в пустыне и достигающие оазисов предгорий; абразионно-аккумулятивная деятельность моря на побережье). Географичес­кое положение геосистемы, ландшафта – особый внешний фактор. Он называется позиционным. Его анализ необходим для понимания роли и места геосистемы среди других. Характеристи­ка любого ландшафта обязательно начинается с оценки его геогра­фического положения, его позиции в системе объемлющих ландтшафтно-географических единиц.

Антропогенные компоненты ландшафта – это разно­образные «следы» и объекты производствен­ной и непроизводственной деятельности че­ловека – различного рода сооружения, планта­ции.

По значимости в процессе формирования ландшафтов природные компоненты принято располагать в следующей последовательности: рельеф земной поверхности, ее геологическое строение, местный климат, обводненность (гидроморфизм) территории, характер раститель­ного покрова.

3.3. Понятие «природный территориальный комплекс» (ПТК) и «геосистема», типы связей между компонентами ландшафтов.

Природный территориальный комплекс – участки земной поверхности характеризующиеся общностью происхождения, развития и однотипностью взаимодействия природных компонентов: горных пород, рельефа, нижних слоев тропосферы с климатическими характеристиками, поверхностных и подземных вод, почв, растительности и животного мира.. Понятие «природный территориальный комплекс» (ПТК) употребляется в нескольких значениях:

1) как синоним терминов ландшафт при­родный, природная геосистема;

2) в последние годы в ряде стран для обозначения природной соста­вляющей (Naturraum), природной части ланд­шафта (антропогенного ландшафта), т.е. сложных геосистем, включающих природную составляющую в качестве подсистемы. Иногда это же понятие передается термином геокомплекс.

Геосистема – «это особый класс управляющих систем; земное пространство всех размерностей, где от­дельные компоненты природы находятся в си­стемной связи друг с другом и как определен­ная целостность взаимодействуют с космиче­ской сферой и человеческим обществом» (Сочава, 1978, с. 292). Данная трактовка близка по содержанию к понятию ландшафт при­родный. Некоторые авторы предложили огра­ничить сферу применения термина «геосистема» лишь теми природными системами, эле­менты которых связаны однонаправленным потоком вещества.

В ландшафте различают вертикальные и го­ризонтальные связи. Связи вертикальные это связи между компонентами ландшафта – между климатом, горными породами, подзем­ными и поверхностными водами, почвами, растительным и животным миром. Изучение вертикальных связей привело к фор­мированию представлений о моносистемной модели геосистемы . Анализ верти­кальных связей – начальный шаг к познанию ландшафта и его морфологической струк­туры. Анализ вертикальных связей необходим в практических целях, во-первых, для предска­зания последствия изменений в плохо наблю­даемых компонентах на основе анализа изме­нений и последствий в легко наблюдаемых компонентах (например, по изменению харак­тера растительности дать заключение об изме­нении режима увлажнения); во-вторых, для управления воздействием на один компонент (или их группу) с целью получения положи­тельного эффекта от других (например, регу­лирование водно-теплового режима почв для повышения биопродуктивности).

Связи горизонтальные (латеральные) – между соседними геосистемами (более низкого и рав­ного рангов). Они проявляются в формирова­нии пространственной структуры ланд­шафтных образований, таких, как геохора, катена, парагенетические ландшафты, геохи­мические ландшафты и т. д. Эти связи про­являются также во влиянии одного ландшафта на другой, в формировании океанических и континентальных типов ландшафтов. Изучение горизонтальных связей привело к формированию полисистемной или хорической модели ландшафтов.

Различают связи прямые, направленные от более «активного» объекта или явления к дру­гому, более «пассивному», объекту или явле­нию (таковы, например, связи, возникающие при воздействии какого-либо сооружения на грунтовые воды), и связи обратные, возникаю­щие как ответная реакция «пассивного» объек­та и влияющие на состояние «активного» объекта.

Межкомпонентные связи в ландшафте не являются абсолют­но жесткими. Они носят вероятностный характер. Природные ком­поненты обладают некоторой степенью свободы в своем поведе­нии. Благодаря этому, ландшафт может более или менее пластично реагировать на возмущающие импульсы внешней среды.

Ландшафт способен существовать только при условии "дви­жения через него потока вещества, энергии и информации" . Вещественные, энергетические и информационные свой­ства природных компонентов теснейшим образом взаимосвязаны и отдельно друг от друга в природе не существуют. Поэтому веще­ственно-энергетический и информационный обмен между компо­нентами и геосистемами в целом немыслим в их раздельности. Однако в ходе ландшафтного анализа удается различать его виды.

Можно привести немало примеров вещественно-энергетичес­ких связей в ландшафте. Начнем с самого простого: горный речной поток, порожденный атмосферными осадками и таянием высоко­горных нивально-гляциальных покровов, низвергается вниз по ущелью, благодаря потенциалу гравитационной энергии горного рельефа, который был создан тектоническим вздыманием страны. Размывая скальные породы и обломочный материал осыпей и об­валов, поток превращает их в валунно-галечный аллювий. Его вод­ная масса насыщается влекомым, взвешенным и растворенным материалом. Одновременно происходит жидкий, твердый и ион­ный сток. Ущелье со временем превращается в террасированную долину. В деятельности горного потока интегрируются многие фак­торы абиотической природы горного ландшафта: поверхностный сток, атмосферные осадки, снежно-ледовые покровы, горный ре­льеф, слагающие ландшафт горные породы.

Особенно ярко межкомпонентные вещественно-энергетичес­кие связи прослеживаются в биогеохимическом (малом биологи­ческом) круговороте, наиболее важном в превращении ландшафта в целостную геосистему. Растительность выступает в нем самым активным компонентом. Недаром В. Б. Сочава назвал ее критичес­ким компонентом ландшафта. Непременными и незаменимыми факторами жизни растений служат, как известно, свет, тепло, воздух, вода и элементы минерального питания. Даже из простого их перечня видно, что для существования растительного покрова не­обходимы все природные компоненты ландшафта. Под биологи­ческим круговоротом понимается сложный циклический, много­ступенчатый процесс. Он включает поступление химических эле­ментов (С, N, О, Са, К, Mg, Na, P, S, Si, Cl, Fe и др.) из почвы, воды и воздуха в живые организмы главным образом в зеленые растения и превращение их под воздействием лучистой энергии Солнца в ходе фотосинтеза в сложные органические соединения. Ежегодно на Земле образуется около 170 млрд т первичного органического вещества. При этом усваивается 300-320 млрд т СО, из воздуха и выделяется около 200 млрд т свободного кислорода.

Часть созданного растениями-продуцентами биогенного ве­щества-энергии используется в трофических цепях животными. В результате минерализации растительного опада и отмерших орга­низмов происходит возвращение химических элементов в среду: почвы, воздух и воду. Этот круговорот вещества и энергии почти замкнут. Малая доля отмершей органики захороняется или выно­сится за пределы геосистемы путем вещественно-энергетического обмена с ландшафтной средой. Примерно 0,004% годичной био­логической продукции резервируется. Живое вещество высту­пает как аккумулятор солнечной энергии. В итоге за многие мил­лионы лет в ландшафтной оболочке накопились большие запа­сы свободной биогенной энергии (каустобиолиты, почвенный гумус), исчисляемые в тг10 32 ккал. Однако в настоящее время человечество за одни только сутки расходует столько ископае­мого органического топлива, сколько его откладывалось когда-то в среднем за 300-350 лет.

Информационные связи в ландшафтах прослеживаются как в пространстве, так и во времени. Суть их состоит в передаче тер­риториального и временного упорядоченного разнообразия одним природным компонентом другому компоненту, и наоборот. Таким образом, компоненты как бы стремятся запечатлеть свою простран­ственно-временную организацию в других компонентах и геосис­теме в целом. В отношении пространственной организации очень сильное информационное давление на другие природные компо­ненты оказывает литогенная основа. Разнообразие горных пород, а главное, неровности рельефа дневной поверхности находят соответствующее отражение в пространственной смене почвенного и растительного покрова, водного режима и микроклимата. Как терри­ториально дифференцирована литогенная основа, так в главных чертах устроен в плане и ландшафт в целом.

Классическим примером информационного влияния релье­фа на ландшафт является известное правило предварения В. В. Але­хина (1882-1946), известного геоботаника, профессора МГУ. Со­гласно правилу предварения, на склонах северной экспозиции раз­вивается растительность более северных зон, подзон, а на скло­нах южной экспозиции – более южных. В лесостепной зоне, на­пример, склоны долин и балок, обращенные на север, как правило, заняты широколиственными лесами, а склоны южной экспозиции -степными ценозами.

В информационных ландшафтных связях можно видеть ана­логию с известным принципом симметрии П. Кюри (1859-1906), согласно которому симметрия причины сохраняется в симметрии следствия. Если в указанной формуле вместо слова "симметрия" поставить слово "организация", то она в полной мере будет харак­теризовать суть трансляционной информации в ландшафте.

Межкомпонентные связи в ландшафте не являются абсолют­но жесткими. Они носят вероятностный характер. Природные ком­поненты обладают некоторой степенью свободы в своем поведе­нии. Благодаря этому, ландшафт может более или менее пластично реагировать на возмущающие импульсы внешней среды. До опре­деленных пороговых нагрузок он способен оставаться относитель­но устойчивым. Н. Винер писал, что "...любое строение выдержи­вает нагрузку только потому, что оно не является стопроцентно жестким" . Сравнивая ландшафт с другими природны­ми системами, А. И. Перельман говорил: "По степени совершен­ства связей ландшафт сильно уступает таким системам, как крис­таллы, атомы, организмы. Ландшафт – это система не только с дру­гой природой связей, но и с более "расшатанными" связями, более слабой интеграцией" .

К тем определениям ландшафтоведения как науки, которые были уже даны, можно добавить еще одно: ландшафтоведение -наука о внутриландшафтных и межландшафтных системных свя­зях. Знание таких связей позволяет обоснованно решать многие проблемы природопользования.

3.4. Вертикальная и горизонтальная структура ландшафтов .

Структура ландшафта (от лат. stru – ctura – строение, расположение, порядок) – «от­носительно устойчивое единство элементов, их отношений и целостности объекта; инвариантный аспект системы».

Структура ландшафта – основное понятие теории ландшафта, тесно связанное с предста­влениями об устойчивости и изменениях ланд­шафтов, исходное при разработке мероприя­тий по охране природы.

Первоначально термин «структура ландшаф­та» употреблялся только в смысле «простран­ственное строение», «морфология ландшаф­та»: «порядок взаимного совершенно опреде­ленного расположения морфологических ча­стей ландшафта – фаций, урочищ, местностей». По мере развития научных представлений это понятие трансформировалось и приобрело такой вид: «строение ландшафта, выражаю­щееся в характере внутренних взаимосвязей между слагающими его компонентами, в про­странственном расположении и обособленно­сти более мелких ландшафтных комплексов» (Мильков, 1970, с. 131). Эти определения ха­рактеризовали лишь вертикальный и горизон­тальный пространственные аспекты структуры ландшафтов. Существенным дополнением ста­ло введение в определение «структуры ланд­шафтов» представления о временных ее аспек­тах. В. Б. Сочава (1963, с. 58) предложил рассматривать структуру ландшафтов как «...совокупность элементарных геосистем (с различными взаимосвязями между их компо­нентами), характеризующихся сезонным рит­мом и образующих серии и ряды трансформа­ции, а также различные мозаичные сочетания». В этом определении удачно сочетаются пред­ставления о компонентной, пространственной и временной сущности понятия «структура ландшафтов».

Вертикальное (ярусное) строение ландшафта может быть охарактеризовано как верти­кальный разрез ландшафта природного, как главный вертикальный ярус (Hauptstockwerk), представляющий собой сочетание взаимосвя­занных ярусов отдельных геосфер – атмосферы, литосферы, гидросферы, педосферы и т.д. В вертикальном строении ландшафта значе­ние имеют своеобразные производные со­вместного развития названных выше от­дельных геосфер – рельеф как производное ли­тосферы, с ее тектоническими движениями, гидросферы, атмосферы, а нередко и биоты, почва – продукт взаимодействия биоты и ли­тосферы в определенных климатических усло­виях, местный климат (микро- и мезоклимат) – режим состояний атмосферы, обусловленный взаимодействием общих атмосферных процес­сов, рельефа, биоты и т.д.

Изучение вертикального строения (верти­кальной морфологии) ландшафта является предпосылкой изучения связей между компо­нентами, а также обмена веществом и энер­гией между ними.

Горизонтальное (территориальное) строение ландшафта – сочетание входящих в его состав ландшафтов более низкого таксономического уровня и «ландшафтных элементов». Оно от­ражено на картах в виде мозаики или тек­стуры, являющейся важным свойством ланд­шафтов, особенно при ландшафтном деши­фрировании аэро- и космических снимков. Устойчиво повторяющееся, обусловленное ге­незисом или обменом веществом и энергией сочетание более мелких единиц называют (не очень точно) «морфологией ландшафта» или «морфологической структурой ландшафта» (см. также – ландшафт элементарный, катена). Го­ризонтальное строение служит основанием ие­рархических классификаций ландшафтов.

Каждая элементарная геосистема обладает своей вертикаль­ной структурой. Закономерно сменяясь в пространстве, они обра­зуют горизонтальную структуру ландшафта.

Статьи Рисунки Таблицы

Связь между компонентами комплекса

из "Молекулярные комплексы в органической химии"

Несколько лет назад Бриглеб предположил, что аддукты ароматических веществ с нитросоединеннями образуются за счет электростатического притяжения между молекулами.
Для описания электронного обмена этого типа, происходящего при соударениях, недавно предложено название контактный перенос заряда . В главе II будут обсуждены имеющиеся экспериментальные данные, доказывающие, что в некоторых случаях изменения в спектрах, сопровождающие донорно-акцепторное взаимодействие в растворе, отчасти имеют своим источником соударения, а отчасти характеризуются более продолжительным временем контакта компонентов комплекса. Бейлис и Брекенрид.ж предположили, что изменения в УФ-спектрах, которые сопровождают относительно слабое взаимодействие, происходящее при растворении иода в ароматическом углеводороде, например в мезитилене, могут полностью вызываться физическим возмущением раствора молекулами ароматического вещества, которые включаются в клетки растворителя. Хотя в литературе описаны экспери.менты, подтверждающие подобный взгляд на взаимодействие, из большинства данных следует, что многие рассматриваемые взаимодействия имеют в своей основе не только физические явления. В ИК-спектрах растворов галогенов в ароматических растворителях найдены полосы поглощения, характеризующие истинные комплексы , и, как упоминалось выше, твердый аддукт бензола с бромом состава 1 1 выделен из охлажденного раствора компонентов .
Далее Вейс предположил, что стабильность комплекса должна зависеть от потенциала ионизации D и сродства к электрону А. Однако теплоты таких взаимодействий, имеющие обычно величину порядка нескольких килокалорий, значительно меньше теп-лот, характеризующих процесс солеобразования . Обычно органические. молекулярные комплексы диамагнитны . Тем не менее, в течение нескольких последних лет найден ряд парамагнитных комплексов, которые, следовательно, должны иметь некоторый бирадикальный характер. Эти комплексы будут рассмотрены в главе У.
Для описания взаимодействия донора и акцептора Брекман предложил термин резонансный комплекс и приписал комплексу состава 1 1 структуру резонансного гибрида - структуры, в которой отсутствует связь между компонентами комплекса, и структуры, в которой между донором и акцептором имеется связь. Подобным образом Полинг описал комплексы иона серебра с олефинами .
В последующих главах рассмотрены спектры, структура и стабильность донорно-акцепторных комплексов. В связи с этим дается более подробная трактовка идей Малликена о связи компонентов в комплексе. Кроме того, обсуждены магнитные и электрические свойства комплексов, а также возможная роль различных комплексов в качестве промежуточных продуктов в органических реакциях.