Болезни Военный билет Призыв

Муравьиная кислота запах. Суточная потребность в муравьиной кислоте. Применение муравьиной кислоты

В 17-ом веке ее нашли в муравьях и решили назвать муравьиной. насекомые выделяют при укусах.

Джон Рейем, открывший соединение, изучал рыжих муравьев. С их помощью и получил реагент.

Позже, выяснилось, что муравьиная кислота вовсе не муравьиная, точнее, не только.

Вещество содержится во фруктах, растениях, человеческом поте, моче. Кроме муравьев выделяют пчелы, тоже при укусах.

Так что, ощущение от ее попадания в вспомнит каждый. Это жжение. Хоть реагент и не относится к сильным, но все же, является .

Название класса оправдано. Все его соединения кислые на вкус. Но, сейчас не об общих свойствах, а характеристиках именно муравьиного реагента.

Свойства муравьиной кислоты

HCOOH, – такова формула муравьиной кислоты . COOH химики называют карбоксильной группой.

В героини она одна, поэтому, соединение одноосновное. CH 4 – метан. Соответственно, метановая.

Собрав данные воедино, получаем одноосновное карбоновое соединение метана. Оно биогенно, поскольку вырабатывается живыми организмами, а не только синтезируется.

Цепь молекул открыта. Если пройдет взаимодействие со спиртом, получится этерифицированная форма соединения.

Такая характерна для масел, восков, в общем, растительных и жиров. Поэтому, метановую именуют жирной.

Однако, в своем ряду соединение стоит особняком, поскольку карбоксильной группы скреплен с .

Обычно же, он контачит с алкилом, то есть, углеводородным радикалом. В итоге, героиню статьи можно причислить не только к жирным , но и альдегидам, а попросту, спиртам.

Как и они, муравьиная способна окисляться. Итог реакции – кислота.

От альдегидов соединение взяло и способность восстанавливать и окиси ртути. Реакции муравьиной кислоты с ними идут при нагреве.

Получаются закись , а порой, и ее металлическая форма. Подобная реакция проходит с .

Взаимодействие дает соль муравьиной кислоты . Она просто разлагается, вновь давая чистый аргентум.

У муравьиной нет кристаллического состояния. Соединение изначально жидкое, легко смешивается с ацетоном, глицерином, бензолом.

Последние вещества ароматические. Запах есть и у муравьиной кислоты. Аромат специфический, резкий.

В водных растворах соединения он рассеивается, поскольку уменьшается концентрация кислоты. Резок запах лишь в ее безводной форме.

Хотя, вода может найтись и в ней. Нужно лишь примешать к муравьиной кислоте серную. Итог реакции — окись углерода и вода.

Последняя, используется для хозяйственных нужд. А вот окись углерода – продукт, нужный для создания синтетического жидкого топлива, органических кислот, спиртов.

Получить из муравьиной кислоты можно и двуокись углерода. На нее и водород героиня статьи распадается в присутствии двух металлов, — и .

Для реакции достаточно одного из них. Говоря простым языком, двуокись углерода – это угарный газ.

Однако, и он нужен промышленникам. Соединение добавляют в газировки, и .

Остается выяснить, зачем нужна сама муравьиная кислота. Отзывы промышленников, и не только, далее.

Применение муравьиной кислоты

Применение соединение нашло в пищевой промышленности. Увидите на упаковке Е236, знайте, это муравьиная кислота. Купить с ней предлагают напитки, как безалкогольные, так и алкогольные, к примеру, вина.

Е236 добавляется, так же, в корма для животных и консервированные овощи. Соответственно, добавка помогает продуктам дольше сохраняться. Вывод: — у реагента есть антибактериальные свойства.

В организме раствор муравьиной кислоты не задерживается, быстро выводится. Главное, не переборщить.

Если на кожу, или внутрь, нечаянно попадет концентрат соединения, не избежать ожогов, отравления, потери зрения.

Животным тоже предлагают продукты с муравьиной кислотой. Речь уже не о домашних питомцах и их кормах.

В сено и силос для скотины муравьиное соединение, так же, добавляют. Кислота замедляет процессы гниения. Распад сена замедляется, оно остается полезным и вкусным до самой весны.

Муравьиная кислота в аптеках продается не только в качестве обеззараживающего средства, но и лекарства от варикоза.

Попадая в в небольших количествах, реагент способствует расширению сосудов, а значит, улучшает кровоток.

Это служит профилактикой тромбов – смертельно опасного последствия варикоза.

Кровь застаивается в венах, образуются сгустки, крепящиеся к стенкам сосудов. Отрываясь, они устремляются к сердцу.

Если дойдут, последует мгновенная смерть. Проблема, как видно, острая и решить ее помогает не менее «острое» средство – муравьиная кислота .

Медики используют метановую кислоту и в качестве иммуностимулятора. Эту роль соединение играет в лечении туберкулеза.

Бороться реагент способен и с грибковыми заболеваниями. Хотя, часть аптечных средств, больше косметической направленности.

Так, на основе героини статьи делают средства от угревой сыпи. Купить можно и крем с муравьиной кислотой .

Его, как правило, берут для соляриев. Средство слегка раздражает, а значит, и разогревает кожу.

В итоге, обменные процессы протекают быстрее, покровы словно притягивают ультрафиолет.

Так что, муравьиная кислота для загара позволяет сократить время пребывания в солярии, получив, при этом, должный эффект.

В химической промышленности муравьиная кислота служит восстановителем. Помогают свойства, заимствованные от альдегидов.

Реагент, так же, нужен в текстильной отрасли для окрашивания тканей. Муравьиная кислота выступает в роли протравы.

Она нужна для подготовки поверхности материи, иначе, краситель ляжет неравномерно.

Интересно, что муравьиную кислоту используют и за пределами человеческого общества.

Так, медведи после спячки направляются к муравейникам и ложатся на них. Зла на насекомых гиганты не держат.

Добыча муравьиной кислоты

Получение муравьиной кислоты – дорога, которая разветвляется. Есть несколько путей добычи реагента.

Первый – производство муравьиной кислоты из соединений углерода, к примеру, хлороформа. На него воздействуют разбавленной щелочью.

Возможно, так же, омылить синильную кислоту, воздействовать двуокисью углерода на гидрит , нагреть щавеливую кислоту в присутствии глицерина.

Однако, промышленниками используется лишь один метод. Это пропускание окиси углерода через едкий натр.

Водный раствор реагента можно получить способом перегонки муравьиных и серной кислоты.

Если нужно убрать воду, воздействуют концентратом щавелевой кислоты. Привычная дробная перегонка водных растворов не поможет.

При 107-ми градусах смесь метановой кислоты и воды – постоянно кипящий состав. Причем, героини статьи в нем лишь 77%.

Цена муравьиной кислоты

На муравьиную кислоту цена зависит, в основном, от концентрации. Чаще всего, продают растворы, а не обезвоженный реагент.

Для медицинских целей, к примеру, нужна концентрация всего в 1,4%. Препарат именуется муравьиным спиртом и стоит порядка 20-ти рублей за 50-миллилитровый флакон.

Если к соединению примешены дополнительные компоненты, к примеру, по уходу за телом, цена будет иная. Так, 75-миллилитровый бутылек бальзама для кожи может стоит 110, а то и 200 рублей.

Для промышленников реагент отгружают цистернами, или канистрами по 25 и 35 килограммов. За последние, просят в районе 3000-4000 рублей.

Ценник за кило – 50-150 рублей. Это запросы продавцов за 85-процентную кислоту.

Разброс цен связан с чистотой соединения и личными амбициями бизнесменов, а так же, местом производства.

Наиболее выгодны продукция из и отечественные образцы. Частично на цену влияет тара. Она может быть металлической, или пластиковой.

Учитывается наличие удобного слива, как у канистр. В бочках такого, как правило, нет. Есть ряд тар, открыв которые, закрыть уже не получиться.

За такое неудобство стоимость немного снижают. Снижают ее и для оптовиков. При крупных заказах удается сэкономить от 5-ти до 20, а иногда, и все 25%.

Особенно лояльно отношение к постоянным партнерам. Некоторым из них кислоту отгружают даже без предоплаты.

В 1670 г. английский ботаник и зоолог Джон Рей (1627-1705) провёл необычный эксперимент. Он поместил в сосуд рыжих лесных муравьёв, налил воды, нагрел её до кипения и пропустил через сосуд струю горячего пара. Такой процесс химики называют перегонкой с паром и широко используют для выделения и очистки многих органических соединений. После конденсации пара Рей получил водный раствор нового химического соединения. Оно проявляло , поэтому и было названо муравьиной кислотой (современное наименование - метановая). Названия солей и эфиров метановой кислоты - формиатов - также связаны с муравьями (лат. formica - «муравей»).

Впоследствии энтомологи - специалисты по насекомым (от греч. «энтокон» - «насекомое» и «логос» - «учение», «слово») определили, что у самок и рабочих муравьёв в брюшках есть ядовитые железы, вырабатывающие кислоту. У лесного муравья её примерно 5 мг. Кислота служит насекомому оружием для зашиты и нападения. Вряд ли найдётся человек, который не испытал их укусов. Ощущение очень напоминает ожог крапивой, ведь муравьиная кислота содержится и в тончайших волосках этого растения. Вонзаясь в кожу, они обламываются, а их содержимое болезненно обжигает.

Муравьиная кислота есть также в пчелином яде, сосновой хвое, гусеницах шелкопряда, в небольших количествах она найдена в различных фруктах, в органах, тканях, выделениях животных и человека. В XIX в. муравьиную кислоту (в виде натриевой соли) получили искусственно действием оксида углерода(II) на влажную при повышенной температуре: NaOH + СО = HCOONa. И наоборот, под действием концентрированной муравьиная кислота распадается с выделением газа: НСООН = СО + Н 2 О. Эта реакция используется в лаборатории для получения чистого . При сильном нагревании натриевой соли муравьиной кислоты - формиата натрия - идёт совсем другая реакция: углеродные атомы двух молекул кислоты как бы сшиваются и образуется оксалат натрия - соль щавелевой кислоты: 2HCOONa = NaOOC-COONa + Н 2 .

Важное отличие муравьиной кислоты от других в том, что она, как двуликий Янус, обладает одновременно свойствами и кислоты, и : в её молекуле с одной «стороны» можно увидеть кислотную (карбоксильную) группу -СО-ОН, а с другой - тот же атом углерода, входящий в состав альдегидной группы Н-СО-. Поэтому муравьиная кислота восстанавливает серебро из его растворов - даёт реакцию «серебряного зеркала», которая характерна для альдегидов, но не свойственна кислотам. В случае муравьиной кислоты эта реакция, что тоже необычно, сопровождается выделением углекислого газа в результате окисления органической кислоты (муравьиной) до неорганической (угольной), которая неустойчива и распадается: НСООН + [O] = НО-СО-ОН = СО 2 + Н 2 O.

Муравьиная кислота - самая простая и при этом сильная карбоновая кислота, она в десять раз сильнее уксусной. Когда немецкий химик Юстус Либих впервые получил безводную муравьиную кислоту, оказалось, что это очень опасное соединение. При попадании на кожу оно не только жжёт, но и буквально растворяет её, оставляя трудно заживающие раны. Как вспоминал сотрудник Либиха Карл Фогт (1817-1895), у него на всю жизнь остался шрам на руке - результат «эксперимента», проведённого совместно с Либихом. И неудивительно - впоследствии обнаружилось, что безводная муравьиная кислота растворяет даже капрон, нейлон и прочие полимеры, которые не берут разбавленные растворы других кислот и щелочей.

Неожиданное применение муравьиная кислота нашла при изготовлении так называемых тяжёлых жидкостей - водных растворов, в которых не тонут даже камни. Такие жидкости нужны геологам для разделения минералов по плотности. Растворяя металлический в 90-процентном растворе муравьиной кислоты, получают формиат таллия НСООТl. Эта соль в твёрдом состоянии, может быть, и не рекордсмен по плотности, но её отличает исключительно высокая растворимость: в 100 г воды при комнатной температуре можно растворить 0,5 кг (!) формиата таллия. У насыщенного водного раствора плотность изменяется от 3,40 г/см 3 (при 20 о С) до 4,76 г/см 3 (при 90 о С). Еще большая плотность у раствора смеси формиата таллия и малоната таллия - соли малоновой кислоты CH 2 (COOTl) 2 .

При растворении этих (в пропорции 1:1 по массе) в минимальном количестве воды образуется жидкость с уникальной плотностью: 4,324 г/см 3 при 20 о С, а при 95 о С плотность раствора можно довести и до 5,0 г/см 3 . В таком растворе плавают барит (тяжёлый шпат), кварц, корунд, малахит и даже гранит!

Муравьиная кислота обладает сильными бактерицидными свойствами. Поэтому её водные растворы используют как пищевой консервант, а парами дезинфицируют тару для продовольственных товаров (в том числе винные бочки), уничтожают пчелиных клещей. Слабый водно-спиртовой раствор муравьиной кислоты (муравьиный спирт) применяют в медицине для растираний.

Получение карбоновых кислот

I . В промышленности

1. Выделяют из природных продуктов

(жиров, восков, эфирных и растительных масел)

2. Окисление алканов:

2CH 4 + + 3O 2 t,kat → 2HCOOH + 2H 2 O

метанмуравьиная кислота

2CH 3 -CH 2 -CH 2 -CH 3 + 5O 2 t,kat,p →4CH 3 COOH + 2H 2 O

н-бутануксусная кислота

3. Окисление алкенов:

CH 2 =CH 2 + O 2 t,kat → CH 3 COOH

этилен

СH 3 -CH=CH 2 + 4[O] t,kat → CH 3 COOH + HCOOH (уксусная кислота+муравьиная кислота )

4. Окисление гомологов бензола (получение бензойной кислоты):

C 6 H 5 -C n H 2n+1 + 3n[O] KMnO4,H+ → C 6 H 5 -COOH + (n-1)CO 2 + nH 2 O

5C 6 H 5 -CH 3 + 6KMnO 4 + 9H 2 SO 4 → 5C 6 H 5 -COOH + 3K 2 SO 4 + 6MnSO 4 + 14H 2 O

толуолбензойная кислота

5.Получение муравьиной кислоты:

1 стадия: CO + NaOH t , p →HCOONa ( формиат натрия – соль )

2 стадия : HCOONa + H 2 SO 4 → HCOOH + NaHSO 4

6. Получение уксусной кислоты:

CH 3 OH + CO t,p →CH 3 COOH

Метанол

II . В лаборатории

1. Гидролиз сложных эфиров:

2. Из солей карбоновых кислот :

R-COONa + HCl → R-COOH + NaCl

3. Растворением ангидридов карбоновых кислот в воде:

(R-CO) 2 O + H 2 O → 2 R-COOH

4. Щелочной гидролиз галоген производных карбоновых кислот:

III . Общие способы получения карбоновых кислот

1. Окисление альдегидов:

R-COH + [O] → R-COOH

Например, реакция «Серебряного зеркала» или окисление гидроксидом меди (II ) – качественные реакции альдегидов

2. Окисление спиртов:

R-CH 2 -OH + 2[O] t,kat → R-COOH + H 2 O

3. Гидролиз галогензамещённых углеводородов, содержащих три атома галогена у одного атома углерода.

4. Из цианидов (нитрилов) – способ позволяет наращивать углеродную цепь:

СH 3 -Br + Na-C≡N → CH 3 -CN + NaBr

CH 3 -CN - метилцианид (нитрил уксусной кислоты)

СH 3 -CN + 2H 2 O t → CH 3 COONH 4

ацетат аммония

CH 3 COONH 4 + HCl → CH 3 COOH + NH 4 Cl

5. Использование реактива Гриньяра

R-MgBr + CO 2 →R-COO-MgBr H2O → R-COOH + Mg(OH)Br

ПРИМЕНЕНИЕ КАРБОНОВЫХ КИСЛОТ

Муравьиная кислота – в медицине - муравьиный спирт (1,25% спиртовой раствор муравьиной кислоты), в пчеловодстве, в органическом синтезе, при получении растворителей и консервантов; в качестве сильного восстановителя.

Уксусная кислота – в пищевой и химической промышленности (производство ацетилцеллюлозы, из которой получают ацетатное волокно, органическое стекло, киноплёнку; для синтеза красителей, медикаментов и сложных эфиров). В домашнем хозяйстве как вкусовое и консервирующее вещество.

Масляная кислота – для получения ароматизирующих добавок, пластификаторов и флотореагентов.

Щавелевая кислота – в металлургической промышленности (удаление окалины).

Стеариновая C 17 H 35 COOH и пальмитиновая кислота C 15 H 31 COOH – в качестве поверхностно-активных веществ, смазочных материалов в металлообработке.

Олеиновая кислота C 17 H 33 COOH – флотореагент и собиратель при обогащении руд цветных металлов.

Отдельные представители

одноосновных предельных карбоновых кислот

Муравьиная кислота впервые была выделена в XVII веке из красных лесных муравьев. Содержится также в соке жгучей крапивы. Безводная муравьиная кислота – бесцветная жидкость с острым запахом и жгучим вкусом, вызывающая ожоги на коже. Применяется в текстильной промышленности в качестве протравы при крашении тканей, для дубления кож, а также для различных синтезов.
Уксусная кислота широко распространена в природе – содержится в выделениях животных (моче, желчи, испражнениях), в растениях (в зеленых листьях). Образуется при брожении, гниении, скисании вина, пива, содержится в кислом молоке и сыре. Температура плавления безводной уксусной кислоты + 16,5°C, кристаллы ее прозрачны как лед, поэтому ее называют ледяной уксусной кислотой. Впервые получена в конце XVIII века русским ученым Т. Е. Ловицем. Натуральный уксус содержит около 5% уксусной кислоты. Из него приготовляют уксусную эссенцию, используемую в пищевой промышленности для консервирования овощей, грибов, рыбы. Уксусная кислота широко используется в химической промышленности для различных синтезов.

Представители ароматических и непредельных карбоновых кислот

Бензойная кислота C 6 H 5 COOH - наиболее важный представитель ароматических кислот. Распространена в природе в растительном мире: в бальзамах, ладане, эфирных маслах. В животных организмах она содержится в продуктах распада белковых веществ. Это кристаллическое вещество, температура плавления 122°C, легко возгоняется. В холодной воде растворяется плохо. Хорошо растворяется в спирте и эфире.

Ненасыщенные непредельные кислоты с одной двойной связью в молекуле имеют общую формулу C n H 2 n -1 COOH .

Высокомолекулярные непредельные кислоты часто упоминаются диетологами (они называют их ненасыщенными). Самая распространенная из них – олеиновая СН 3 –(СН 2) 7 –СН=СН–(СН 2) 7 –СООН или C 17 H 33 COOH . Она представляет собой бесцветную жидкость, затвердевающую на холоде.
Особенно важны полиненасыщенные кислоты с несколькими двойными связями: линолевая СН 3 –(СН 2) 4 –(СН=СН–СН 2) 2 –(СН 2) 6 –СООН или C 17 H 31 COOH с двумя двойными связями, линоленовая СН 3 –СН 2 –(СН=СН–СН 2) 3 –(СН 2) 6 –СООН или C 17 H 29 COOH с тремя двойными связями и арахидоновая СН 3 –(СН 2) 4 –(СН=СН–СН 2) 4 –(СН 2) 2 –СООН с четырьмя двойными связями; их часто называют незаменимыми жирными кислотами. Именно эти кислоты обладают наибольшей биологической активностью: они участвуют в переносе и обмене холестерина, синтезе простагландинов и других жизненно важных веществ, поддерживают структуру клеточных мембран, необходимы для работы зрительного аппарата и нервной системы, влияют на иммунитет. Отсутствие в пище этих кислот тормозит рост животных, угнетает их репродуктивную функцию, вызывает различные заболевания. Линолевую и линоленовую кислоты организм человека сам синтезировать не может и должен получать их готовыми с пищей (как витамины). Для синтеза же арахидоновой кислоты в организме необходима линолевая кислота. Полиненасыщенные жирные кислоты с 18 атомами углерода в виде эфиров глицерина находятся в так называемых высыхающих маслах – льняном, конопляном, маковом и др. Линолевая кислота C 17 H 31 COOH и линоленовая кислота C 17 H 29 COOH входят в состав растительных масел. Например, льняное масло содержит около 25% линолевой кислоты и до 58% линоленовой.

Сорбиновая (2,4-гексадиеновая) кислота СН 3 –СН=СН–СН=СНСООН была получена из ягод рябины (на латыни – sorbus). Эта кислота – прекрасный консервант, поэтому ягоды рябины не плесневеют.

Простейшая непредельная кислота, акриловая СН 2 =СНСООН, имеет острый запах (на латыни acris – острый, едкий). Акрилаты (эфиры акриловой кислоты) используются для получения органического стекла, а ее нитрил (акрилонитрил) – для изготовления синтетических волокон.

Называя вновь выделенные кислоты, химики, нередко, дают волю фантазии. Так, название ближайшего гомолога акриловой кислоты, кротоновой

СН 3 –СН=СН–СООН, происходит вовсе не от крота, а от растения Croton tiglium , из масла которого она была выделена. Очень важен синтетический изомер кротоновой кислоты – метакриловая кислота СН 2 =С(СН 3)–СООН, из эфира которой (метилметакрилата), как и из метилакрилата, делают прозрачную пластмассу – оргстекло.

Непредельные карбоновые кислоты способны к реакциям при­соединения:

СН 2 =СН-СООН + Н 2 → СН 3 -СН 2 -СООН

СН 2 =СН-СООН + Сl 2 → СН 2 Сl -СНСl -СООН

ВИДЕО:

СН 2 =СН-СООН + HCl → СН 2 Сl -СН 2 -СООН

СН 2 =СН-СООН + Н 2 O → НО-СН 2 -СН 2 -СООН

Две последние реакции протекают против правила Марковникова.

Непредельные карбоновые кислоты и их производные способ­ны к реакциям полимеризации.

Соль против муравьев May 8th, 2018

Были вроде бы ситуации, когда муравьи конкретно доставали нас, но мы толком не знали как от них защититься. Тут вроде бы описывают способы, но не слышал о них по жизни.

А вы пробовали что то из этого?

1. Соль на пороге

Самый простой и ленивый способ отвадить муравьёв от дома – посыпать порог солью. А заодно подоконники, все проходы и места массового скопления многоногих вредителей.

Этот метод – отнюдь не очередной современный лайфхак. Впервые он был описан ещё в далёком 1937-ом на страницах журнала Times. Статья под названием «Соль против Насекомого» (Salt v. Insect) давала весьма туманные объяснения: не то муравьи должны повально умирать от жажды (ведь соль впитывает влагу), не то от обезвоживания своего экзоскелета. Но с тех пор уже не одно поколение страдающих от муравьиной проблемы активно посыпает пороги солью. И утверждает, что это работает.

2. Соль и вода

Намечаются посиделки на свежем воздухе? Если у вас во дворе есть стол и на него активно посягают муравьи, приготовьте четыре пластиковых контейнера. В каждый налейте воду, добавив немного соли, и используйте контейнеры в качестве «подставок» для ножек стола (как на фото). Муравьи не смогут пробраться через такой «ров», ну а самые упрямые из них не переживут ванную с солью. Так что вашу еду насекомые точно не продегустируют.

3. Сахар и борная кислота

Эффективное средство против муравьёв можно сделать на основе не только соли, но и сахара. В глубокой ёмкости смешайте стакан сахара и столовую ложку борной кислоты, осторожно и медленно влейте стакан тёплой воды и подождите. Смесь должна вспениться и слегка закристаллизоваться.

Теперь обмакните в полученный коктейль несколько ватных дисков и положите их в тех местах, где постоянно замечаете муравьёв. Насекомых привлечёт такое «лакомство», и они даже будут приносить его крохи в своё гнездо. Но муравьиный организм не выдержит такой гремучей смеси и уже за считанные часы она их прикончит.

источники

Муравьиная кислота эффективнее других средств позволяет удалять лед с взлетно-посадочных полос и проезжей части дорог без вреда для окружающей среды.

Природа как крупнейший производитель

Муравьи и медузы используют это вещество для собственной защиты и для добывания пищи. Многим неоднократно доводилось испытать его действие на собственном опыте, случайно прикоснувшись к листьям крапивы. Речь идет о муравьиной кислоте – едкой пахучей жидкости природного происхождения, которая привлекает внимание людей уже на протяжении нескольких столетий.

Впервые эта простейшая карбоновая кислота в чистом виде была выделена английским естествоиспытателем Джоном Рэем в 1671 году. Он поместил рыжих лесных муравьев в стеклянную колбу с водой, довел сосуд до кипения, и в полученном дистилляте обнаружил кислую жидкость, которую назвал муравьиной кислотой. Первый успешный лабораторный синтез этого вещества датируется 1855 годом. Его осуществил французский химик Марселен Бертло. Концерн BASF начал проявлять интерес к муравьиной кислоте в 20-х годах прошлого века и приступил к ее крупномасштабному производству в 1935 году – после того, как этот продукт стал пользоваться спросом во многих отраслях промышленности.

В настоящее время муравьиная кислота является широко востребованным химикатом. Д-р Татьяна Леви, менеджер по инновациям в подразделении BASF Intermediates, называет ее «поистине универсальным продуктом». Муравьиная кислота в течение нескольких десятилетий находит успешное применение в самых разных областях. Так, она используется при изготовлении кормов для животных (в качестве консерванта), в кожевенном и текстильном производстве, а также в качестве компонента буровых растворов при освоении нефтяных месторождений. «Кроме того, в тесном взаимодействии с заказчиками мы постоянно находим для муравьиной кислоты новые области применения», − добавляет д-р Леви.

Соли муравьиной кислоты

Формиаты, применяемые в качестве реагентов для удаления льда и снега зимой, стоят дороже, нежели соли и вещества, препятствующие скольжению (мелкий гравий или песок). Однако разница становится не столь значительной, если учесть все последующие затраты. Так, соль (хлорида натрия) нарушает водный режим и баланс питательных веществ в почве, а также приводит к коррозии конструктивных элементов зданий, дорожных покрытий и мостов. Эффективность агентов, предотвращающих скольжение, − весьма неоднозначна, поскольку они загрязняют городскую среду и требуют больших трудозатрат при уборке. Напротив, соли муравьиной кислоты экологичны и обладают малой коррозионной активностью; они надежно защищают дороги и тротуары от снега и льда (без нежелательных побочных эффектов). При этом отпадает необходимость в дополнительных расходах, связанных с пересадкой деревьев и кустарников, а также с ремонтом зданий.

Обработка территории аэропорта с использованием формиатов

Европейские аэропорты борются с обледенением с помощью химических средств. «Соли муравьиной кислоты уже в течение десяти с лишним лет используются для удаления льда с ВПП и рулежных дорожек аэропортов», − поясняет д-р Леви. Добавка этих солей, также известных как формиаты, приводит к тому, что при понижении температуры до 0 о С вода не замерзает. В зависимости от концентрации антиобледенителя точка замерзания может быть доведена до −50 о С, что значительно разнится с температурой окружающего воздуха. Соответственно, формиаты быстро удаляют тонкие наледи, эффективно препятствуют отложению снега и образованию нового льда на взлетно-посадочных полосах. При этом эти вещества не представляют опасности для окружающей среды. «Соли муравьиной кислоты вместе с талой водой могут попадать в стоки, но вред от них (по сравнению с другими антиобледенителями) может быть минимальным – из-за способности формиатов к биологическому разложению, в процессе которого расходуется очень небольшое количество кислорода», − подчеркивает Татьяна Леви.

Служба по уборке снега в аэропорту Цюриха использует формиаты с 2005 года. «Мы возлагаем очень большие надежды на надежные антиобледенители, не наносящие ущерба окружающей среде, − объясняет Ханс-Петер Молл, ответственный за техническое обслуживание летного поля в аэропорту Цюриха. – Необходимо, чтобы эти составы быстро вступали в реакцию с наледью на ВПП и рулевых дорожках, обладали длительным сроком службы, хорошо совмещались с другими материалами и оставались безвредными. Наш опыт показывает, что соли муравьиной кислоты превосходят любые другие антиобледенители по данным критериям».

Муниципальные службы проявляют растущий интерес к формиатам

Позитивный опыт аэропортов по использованию формиатов в качестве альтернативных антиобледенителей вызвал интерес у муниципальных органов. Снегоуборочные службы в странах Скандинавии, Швейцарии и Австрии применяют эти химикаты для удаления льда с проезжей части, велосипедных дорожек и тротуаров – там, где требуется повышенная осторожность (к примеру, на бульварах древесными посадками или в районах с исторической застройкой). В Базеле уже на протяжении многих лет аналогичным образом убирают остатки снега с искусственных покрытий спортивных арен. При этом вначале очистка производится механическим способом, а затем тонкий оставшийся слой снега растапливается с помощью формиатов. Благодаря их эффективному противообледенительному действию возможно быстро привести площадки в состояние, пригодное для спортивных состязаний. «Большое впечатление на нас произвела способность солей муравьиной кислоты к биологическому разложению при низких температурах. Таким образом, они не создают препятствий спортсменам в ходе соревнований. Кроме того, искусственные покрытия и спортивный инвентарь (мячи, ракетки, штанги, сетки) получают меньше повреждений и лучше сохраняются в течение зимнего периода в тех случаях, когда для удаления снега и льда используются формиаты», − резюмирует Эрик Хардман, ответственный за состояние спортивных объектов в Базеле.

Стоит отметить, что абсолютным лидером в области производства муравьиной кислоты являются именно животные и растения, которые совместно продуцируют большее количество данного вещества, нежели все вместе взятые предприятия химической отрасли.