Болезни Военный билет Призыв

Генетическое равновесие. Генетическое равновесие популяции закон харди-вайнберга. Генетическое равновесие в популяциях и его нарушения

Вопросы после § 56

1. При каких условиях возможно равновесие между различными аллелями популяционного генофонда?

Ответ. Частота встречаемости различных аллелей в популяции определяется частотой мутаций, давлением отбора, а иногда и обменом наследственной информации с другими популяциями в результате миграций особей. При относительном постоянстве условий и высокой численности популяции все указанные процессы приводят к состоянию относительного равновесия. В результате генофонд таких популяций становится сбалансированным, в нём устанавливается генетическое равновесие, или постоянство частот встречаемости различных аллелей.

2. Какими силами вызваны направленные изменения генофонда?

Ответ. Генофонд популяции постоянно меняется под влиянием разных факторов. Во-первых, это связано с изменчивостью генотипов. Во-вторых, генофонд может изменяться под действием отбора; такие изменения генофонда имеют направленный характер.

Ключом дарвиновского объяснения движущих сил эволюции является идея, что некоторые особи вида располагают свойствами, которые увеличивают их шансы выжить и оставить потомство. Если это так, то генетические свойства таких организмов («полезные гены, или аллели») должны закрепляться в популяции (вместе с потомками организмов, которые ими располагают), меняя состав ее генофонда. В суровых климатических условиях, например, в популяциях должна возрастать доля генотипов, содержащих аллели, способствующие повышению теплоизоляции организмов. Такие изменения делают популяцию более приспособленной к конкретным условиям жизни. В иных случаях выживание организмов может определяться генами, кодирующими окраску животного (когда важное значение для выживания особей приобретает фактор маскировки), или синтез определенных видов ферментов, или характер поведения и т. д. Иными словами, генофонд популяции с течением времени должен меняться в результате естественного отбора. Следовательно, изучение состава генофонда позволяет сделать вывод о происходящих в популяциях эволюционных изменениях.

3. Какие факторы являются причиной нарушения генетического равновесия?

Ответ. Генетическое равновесие - состояние генофонда популяции, при котором наблюдается постоянство частот аллелей различных генов. Оно возможно только в условиях слабого давления естественного отбора, когда популяция живет изолированно. Помимо естественного отбора к нарушению генетического равновесия в популяции приводят следующие факторы:

1) неслучайный подбор партнеров при спаривании, свойственный некоторым животным;

2) потеря некоторых редких видов, например из-за гибели их носителей (чем меньше численность популяции, тем большее влияние оказывают случайные факторы на ее генофонд);

3) разделение популяции на две неравные части некими неожиданно возникшими естественными или искусственными барьерами;

4) перенесение популяцией какой-либо катастрофы, приведшей к гибели большей ее части.

4. В чём причины различия генофондов изолированных популяций одного вида?

Ответ. Изоляция - возникновение любых барьеров, нарушающих свободное скрещивание, что ведет к увеличению и закреплению различий между популяциями и отдельными частями всего населения. Различают географическую, экологическую, а также этологическую изоляцию.

Географическая (или пространственная) изоляция связана с разрывом единого ареала обитания вида на не сообщающиеся между собой части. В каждой изолированной популяции могут случайно возникать мутации. Вследствие дрейфа генов и действия естественного отбора генотипический состав изолированных популяций различается все больше и больше. Причины, ведущие к возникновению географической изоляции, многочисленны: это наличие гор и рек, перешейков или проливов, истребление популяций в определенных районах и т. д.

Экологическая изоляция связана с предпочтением конкретного место обитания. Севанская форель - пример такой изоляции. Разные популяции форели нерестятся в устьях различных ручьев и горных рек, впадающих в озеро, поэтому свободное скрещивание между ними крайне затруднено. Экологическая изоляция, таким образом, препятствует скрещиванию особей из разных популяций и служит так же, как и географическая изоляция, начальным этапом расхождения популяций.

Эволюционная суть различных вариантов пространственной и экологической изоляции одинакова - разрыв единого генофонда вида на два либо большее число изолированных друг от друга генофондов (прекращение обмена между ними генетическим материалом; независимое протекание в изолированных частях вида эволюционного процесса) . Его конечным результатом, хотя и с небольшой вероятностью, становится образование новых видов. Именно поэтому первичные формы изоляции рассматривают как пусковые механизмы видообразовательного процесса.

Обсудите, каким образом деятельность человека изменяет генофонд диких и домашних видов животных и растений.

Ответ. Человек меняет условия окружающей среды, загрязняя ее, занимая природные ареалы существования видов растений и животных, и они вынуждены приспосабливаться к новым условиям, меняя свой генофонд. Те, у которых это не получается - вымирают. Домашние же виды человек меняет целенаправленно, отбирая экземпляры с теми качествами (возникшими в результате естественных мутаций), которые необходимы.

Главная задача охраны природы - охрана генофонда - совокупности генов, которые имеются у всех особей популяций. Изменение генофонда происходит за счет мутаций, вызванных естественными факторами и факторами антропогенного происхождения. Уничтожение, истребление отдельных видов популяции обедняет генофонд планеты, который в настоящее время насчитывает около 1,3 млн видов только животных. Из 300 тыс. видов высших растений мировой флоры лишь около 2,5 тыс. постоянно применяют в сельском хозяйстве, а 20 тыс. - по мере необходимости.

Сокращение численности видов животных под влиянием хозяйственной деятельности людей началось очень давно, но особенно усилилось в эпоху научно-технической революции. При этом скорость вымирания видов животных неуклонно возрастала, причем с особой стремительностью в последние полтора - два века.

Легко представить себе основные причины сверхкритического снижения численности видов, которое приводило к их вымиранию при смене условий. Это, прежде всего, сокращение местообитаний, обеспечивающих весь комплекс факторов внешней среды, которые определяют возможность существования вида. Лимитирующим фактором, в зависимости от биологических свойств вида, могло быть прямое воздействие изменения климатических условий и физико-химических характеристик среды обитания. Им мог быть любой биотический фактор, например резкое сокращение численности основных кормовых растений или, для хищника, обычных объектов охоты. Важным фактором могло стать появление вида-конкурента, лучше приспособленного к выживанию в ухудшившихся условиях.

С тем же результатом - снижая численность до критического уровня и ниже - действуют ныне со все возрастающей эффективностью факторы, связанные с деятельностью человека. Их называют антропогенными, от греческого «антропос» - человек. Антропогенные факторы действуют как непосредственно, так и через изменение свойств природной среды. Так, сокращение местообитаний происходит главным образом за счет хозяйственного освоения новых территорий - вырубки лесов, распашки, расширения используемых под пастбища территорий и увеличения пастбищной нагрузки, строительства новых поселков и городов, расширения дорожной и других коммуникационных сетей. Дополнительно значительные территории и большие водные пространства, особенно внутренние моря, озера и реки, настолько изменяются за счет накопления вредных веществ, что становятся непригодными для жизни многих видов.

Следует помнить, что главный ущерб разнообразию состоит не в их гибели из-за прямого преследования и уничтожения, а в том, что в связи с освоением новых площадей для сельскохозяйственного производства, развитием промышленности и загрязнением среды площади многих природных экосистем оказываются нарушенными. Это так называемое «косвенное воздействие» приводит к вымиранию десятков и сотен видов животных и растений, многие из которых не были известны и никогда не будут описаны наукой. Значительно ускорился процесс вымирания, например, животных, в связи с уничтожением тропических лесов. За последние 200 лет их площадь сократилась почти вдвое и продолжает сокращаться со скоростью 15-20 гектаров в минуту. Практически полностью исчезли степи в Евразии и прерии в США. Сообщества тундры также интенсивно разрушаются. Во многих районах находятся под угрозой коралловые рифы и другие морские сообщества.

В нарушенных, обеденных из-за воздействия человека сообществах в наше время уже возникают новые виды с непредсказуемыми свойствами. Следует ожидать, что этот процесс будет лавинообразно нарастать. При внедрении этих видов в «старые» сообщества может произойти их разрушение и наступить экологический кризис.

Помимо сокращения видового разнообразия широко известно исчезновение их популяций в отдельных регионах… В результате фауны многих стран лишились ценных в прикладном и научном отношении видов.

Гибель видов в результате прямого и косвенного воздействия человека в особенно крупных масштабах известна в Австралии, Африке и Северной Америке. Сильно пострадала фауна океанических островов. Катастрофическое сокращение числа видов птиц на океанических островах связано с коренным изменением естественных природных ландшафтов и конкуренцией с завезенными туда домашними и дикими животными. Вымирание птиц на острове Лусон (Гавайский архипелаг) произошло через 40 лет после заселения его людьми и через 25 лет после завоза туда кошек. Существуя длительное время в условиях изоляции и без конкуренции со стороны других видов, островные птицы стали узко специализированными к определенным условиям. Изменение этих условий под влиянием хозяйственной деятельности, конкуренция со стороны завезенных человеком животных отрицательно сказались на их выживании.

Обитатели материков экологически более пластичны, легче переносят изменение среды обитания. На материках исчезновение видов происходит не так стремительно, как на островах, и связано с чрезмерной охотой, прямым преследованием и изменением условий обитания одновременно. Об этом свидетельствует история исчезновения многих видов.

Вымершие виды животных навсегда потеряны для биосферы и для человека. Анализ причин их вымирания важен для предупреждения этого печального явления в будущем.

Очевидно, что для прогноза судьбы любого вида, численность которого падает, нужно знать как природные, так и антропогенные факторы, влияющие на его состояние. Только в этом случае можно надеяться на уменьшение их воздействия на вид за счет организации специальных мер.

Здоровая окружающая среда составляет огромную ценность. Поддержание здоровья окружающей среды означает сохранение в хорошем состоянии всех ее составляющих: экосистем, сообществ, видов и генетического разнообразия. Первоначальные небольшие нарушения в каждом из этих компонентов могут в конечном итоге привести к его полному разрушению. Об этом должен знать каждый человек.

Генофонд

Для того, чтобы понимать, о чем идет речь, надо знать определения.

Генофонд - это совокупность генотипов всех особей популяции.

Популяция - это группа одновидовых организмов, занимающих определенный участок территории внутри ареала, свободно скрещивающихся между собой и частично или полностью изолированных от других популяций. популяция генофонд мутация

Мутационный процесс - источник наследственной изменчивости.

Генетическое равновесие в популяциях

Частота встречаемости различных аллелей в популяции определяется частотой мутаций, давлением отбора, а иногда и обменом наследственной информации с другими популяциями в результате миграций особей. При относительном постоянстве условий и высокой численности популяции все указанные процессы приводят к состоянию относительного равновесия. В результате генофонд таких популяций становится сбалансированным, в нем устанавливается генетическое равновесие, или постоянство частот встречаемости различных аллелей.

Причины нарушения генетического равновесия

Приведенные ранее пример с действием инсектицидов говорит о том, что действие естественного отбора приводит к направленным изменениям генофонда популяции - повышению частот "полезных" генов. Происходят микроэволюционные изменения. Однако изменения генофонда могут носить и ненаправленный, случайный характер. Чаще всего они связаны с колебаниями численности природных популяций или с пространственным обособлением части организмов данной популяции.

Изменения генофонда могут быть направленными и ненаправленными, случайные изменения могут происходить вследствие разных причин. Одной из существенных причин, ведущих к изменению частот аллелей и генотипов в популяциях, служит поток генов, или миграция особей (семян, спор, пыльцы). Чем выше интенсивность миграции и чем больше разница в частотах аллелей, тем больше ее воз- действие на популяционное равновесие и генотипические частоты. Нечасто популяции представляют собой совершенно закрытые системы. Обычно между ними происходит обмен генами, величина которого зависит от пространственной близости и других причин.

Прекращение потока генов из популяции в популяцию может быть результатом различных событий и иметь неодинаковые эволюционные последствия. В таких случаях имеют место полирующие механизмы, связанные с резким ограничением или полным прекращением скрещивания с представителями разных популяций и видов.

Примером изолирующего барьера может служить изоляция, низанная с изменениями в ландшафте: образование преград в виде рек, горных хребтов, лесных массивов и т. Д. В результате свободное скрещивание сухопутных особей затрудняется из-за водных барьеров, а особей, обитающих в воде, - из-за барьеров суши. Возвышенности изолируют равнинные участки, а равнины - горные популяции.

Резкие колебания численности популяций, чем бы они ни были вызваны, изменяют частоту аллелей в генофонде популяций. При создании неблагоприятных условий и сокращении численности популяции из-за гибели особей может происходить утрата некоторых генов, особенно редких. В целом, чем меньше численность популяции, тем выше вероятность потери редких генов, тем большее влияние оказывают на состав; генофонда случайные факторы. Периодические колебания численности свойственны почти всем организмам. Эти колебания изменяют частоту генов в популяциях, возникающих на смену друг другу.

Примером являются некоторые насекомые; только малое их количество выживает после зимы. Эта малая доля дает начало новой летней популяции, ее генофонд часто отличается от генофонда популяции, существовавшей год назад.

Случайное, ненаправленное изменение частот аллелей в малых популяциях Н.П. Дубинин и Д.Д. Ромашов назвали генетико-автоматическими процессами. Независимо от них американец С. Райт и англичанин Р. Фишер назвали это явление генетическим дрейфом.

Вид и его критерии


Биология – система наук, объектами изучения которой являются живые существа и их взаимодействие с окружающей средой.
Критерии вида – характерные признаки и свойства, по которым одни виды отличаются от других.

2. Заполните таблицу.

Критерии вида

3. Что такое виды-двойники? Приведите примеры.
Два разных вида могут не различаться по анатомическому строению, быть морфологически сходными, но в природе не скрещивающихся из-за наличия разных хромосомных наборов. Так, под названием «крыса черная» различают два вида-двойника: крыс, имеющих в кариотипе 38 и 49 хромосом; под названием «малярийный комар» существует 6 внешне не различимых видов-двойников; у рыбки щиповки – 3 вида двойника.

4. Как проявляется целостность вида?
Ни один из критериев в отдельности не может служить для определения вида. Охарактеризовать вид можно только по их совокупности.

Популяция – структурная единица вида и единица эволюции

1. Дайте определения понятий.
Популяция – группа одновидовых организмов, занимающих определенный участок территории внутри ареала вида, свободно скрещивающихся между собой и частично или полностью изолированных от других популяций.
Генофонд популяции – совокупность количества генетического материала, который слагается из генотипов отдельных особей.

2. Приведите примеры взаимоотношений организмов в популяциях.
Взаимоотношения в популяции могут быть следующие:
Конкуренция - борьба за одни и те же условия окружающей среды внутри одного вида.
Поедание одних особей другими внутри популяции.
Совместная защита от хищника.
Обмен генами при скрещивании в пределах одной популяции.
Гибель ослабленных особей и улучшение качественного состава популяции (генофонда).

3. Что изучает популяционная генетика?
Популяционная генетика изучает процессы изменения генетического состава популяций, возникновения новых свойств организмов и их закрепление посредством естественного отбора.

4. Как влияют мутационные процессы на генетический состав популяции?
Мутационный процесс ведет к увеличению разнообразия генофонда. Мутации распространяются и закрепляются благодаря комбинативной изменчивости.

5. Какое значение имеет мутационный процесс для эволюционных преобразований?
Мутационный процесс – это постоянный источник наследственной изменчивости. Вследствие мутаций изменяется генофонд популяции, что под воздействием различных факторов представляет собой элементарные эволюционные изменения. Мутационный процесс формирует резерв наследственной изменчивости в генофонде каждой популяции и виде в целом. Поддерживая высокую степень генетического разнообразия популяций, он создает основу для естественного отбора и микроэволюции.

6. В чем проявляется способность популяции приспосабливаться (адаптироваться) к новым условиям среды?
Крупные изменения снижают приспособленность популяции. В популяции имеются запасы таких аллелей, которые не приносят ей какой-либо пользы в данное время; они сохраняются в гетерозиготном состоянии. Но когда в результате изменения условий они вдруг оказываются полезными, их частота под действием отбора начинает возрастать, и в конечном счете они становятся основным
генетическим материалом.

Движущие силы эволюции и их влияние на генофонд популяции


Дрейф генов – явление ненаправленного изменения частот аллельных вариантов генов в популяции, обусловленное случайными статистическими причинами, в результате которого изменяется и обедняется генофонд малой популяции по сравнению с его исходным состоянием.
Волны жизни – резкие колебания численности особей популяции вследствие естественных причин.
Изоляция – исключение или затруднение свободного скрещивания между особями одного вида; является элементарным эволюционным фактором, действующим на микроэволюционном уровне, и приводит к видообразованию.

2. Что понимают под генетическим равновесием в популяциях?
Постоянство частот встречаемости различных аллелей. Это ситуация, при которой распределение аллелей в популяции остается постоянным из поколения в поколение (при отсутствии отбора или мутаций).

3. Заполните таблицу.

Нарушения генетического равновесия в популяциях

4. Какие из названных изменений генофонда популяций могут рассматриваться в качестве эволюционных факторов? Ответ поясните.
Под влиянием факторов эволюции - мутационного процесса, изоляции, естественного отбора и др.- в популяции постоянно происходит элементарное эволюционное явление - изменение генофонда популяции. Полезные мутации сохраняются естественным отбором, вредные - накапливаются в популяции в скрытом виде, создавая резерв изменчивости. Через несколько поколений изолированные популяции, обитающие в разных условиях, будут различаться по ряду признаков. Изоляция также является элементарным эволюционным фактором, действующим на микроэволюционном уровне, и приводит к видообразованию. Также и дрейф генов может в результате привести к возникновению нового вида. В результате всех этих факторов может возникнуть новый вид или лучше адаптироваться к условиям внешней среды исходный вид.

5. Составьте схему

Эволюционные факторы


Результаты эволюции

1. Дайте определения понятий.
Микроэволюция – эволюционные изменения, протекающие на популяционном, внутривидовом уровне.
Видообразование – процесс возникновения новых биологических видов и изменения их во времени.
Макроэволюция – процесс образования из видов новых родов, из родов – новых семейств и так далее.

2. Заполните таблицу.

3. Чем отличаются процессы аллопатрического и симпатрического видообразования?
Симпатрическое видообразование связано с расхождением групп особей одного вида и обитающих на одном ареале по экологическим признакам. При этом особи с промежуточными характеристиками оказываются менее приспособленными. Расходящиеся группы формируют новые виды. Особенностью симпатрического пути видообразования является то, что он приводит к возникновению новых видов, всегда морфологически близких к исходному виду. Лишь в случае гибридогенного возникновения видов появляется новая видовая форма, отличная от каждой из родительских.
Аллопатрическое видообразование вызывается разделением ареала вида на
несколько изолированных частей. Возникновение географических преград (горных хребтов, морских проливов и пр.) приводит к возникновению изолятов - географически изолированных популяций. Прерывание потока генов между изолятами, с одной стороны, и действие естественного отбора, с другой, приводят к их репродуктивной изоляции и образованию самостоятельных видов.

4. Составьте схему.

Эволюционный процесс

5. Заполните таблицу.

Доказательства макроэволюции


Биологический прогресс и биологический регресс

2. Заполните таблицу.

Типы эволюционных изменений.

4. Заполните таблицу.

Сравнительная характеристика биологического прогресса и биологического регресса


5. Какова, на ваш взгляд, роль человека в процессах биологического регресса?

Деятельность человека является мощным фактором биологического регресса видов, нужных и полезных ему. Например, появились микробы, устойчивые к действию лекарств, и насекомые, устойчивые к ядохимикатам и т.д.. При посеве человек вторгается в живую природу, уничтожает на больших площадях дикие популяции, заменяя их немногочисленными искусственными. Усиленное истребление человеком многих видов ведет к биологическому регрессу, который грозит им вымиранием.

Синтетическая теория эволюции

1. Дайте определения понятия.
Синтетическая теория эволюции (современный дарвинизм) – современная эволюционная теория, которая представляет собой учение об эволюции органического мира, разработанное на основе данных современной генетики, экологии и классического дарвинизма.

2. Заполните таблицу.

Развитие эволюционного учения в ХХ веке.

3. Сформулируйте основные положения (постулаты) синтетической теории эволюции.
1. элементарной единицей эволюции считается локальная популяция;
2. материалом для эволюции являются мутационная и рекомбинационная изменчивость;
3. естественный отбор рассматривается как главная причина развития адаптаций, видообразования и происхождения надвидовых таксонов;
4. дрейф генов и принцип основателя выступают причинами формирования нейтральных признаков;
5. вид есть система популяций, репродуктивно изолированных от популяций других видов, и каждый вид экологически обособлен;
6. видообразование заключается в возникновении генетических изолирующих механизмов и осуществляется преимущественно в условиях географической изоляции.

4. Почему можно считать, что синтетическая теория эволюции в основном развивается в русле идей, заложенных Ч. Дарвином?
Синтетическая теория эволюции вскрыла глубинные механизмы эволюционного процесса, накопила множество новых фактов и доказательств эволюции живых организмов, объединила данные многих биологических наук. Тем не менее, синтетическая теория эволюции (или неодарвинизм) находится в русле тех идей и направлений, которые были заложены Ч. Дарвином. Объединение дарвинизма с экологией и генетикой в 20-х годах подготовило почву для создания синтетической теории эволюции. Учение Дарвина – это основа, остов современной теории, оно дало толчок дальнейшему развитию эволюции как науки.

Многообразие видов

1. Дайте определение понятий.
Биоразнообразие – разнообразие жизни во всех её проявлениях; разнообразие на трёх уровнях организации: генетическое разнообразие, видовое разнообразие и разнообразие экосистем.
Естественная классификация – система классификации, отражающая естественную общность организмов, при которой каждая таксономическая категория соответствует группе организмов, которые имеют общего предка.
Дарвинизм – это: в узком смысле – направление эволюционной мысли, приверженцы которого согласны с основными идеями Дарвина в вопросе эволюции (современная их форма представлена в синтетической теории эволюции), согласно которым главным (хотя и не единственным) фактором эволюции является естественный отбор. В широком смысле нередко (и не совсем правильно) употребляется для обозначения эволюционного учения или эволюционной биологии в целом.

2. Назовите ученых, заложивших основы современной классификации организмов.
Основы научной классификации заложил К. Линней еще в 18 веке. Большой вклад в развитие систематики внес Ж. В. Ламарк, разработавший классификацию и систематику растений по естественным признакам и разделивший впервые всех животных на позвоночных и беспозвоночных. В конце XVIII века Антуан Жюссье ввел категорию семейства, а в начале XIX века Ж. Кювье сформулировал понятие о типе животных. Вслед за этим категория, аналогичная типу, – отдел – была введена для растений. К середине XIX века некоторые учёные (например, Эрнст Геккель) наравне с животными и растениями стали выделять новое царство протистов, в которое вошли бактерии, водоросли, грибы и одноклеточные животные. Чарлз Дарвин предложил понимать естественную систему как результат исторического развития живой природы.

3. Заполните таблицу.

Соотношение основных систематических групп, используемых в классификации животных и растений.


4. Можно ли использовать данные систематики для доказательства эволюции? Ответ обоснуйте.
Да, можно. В систематике главное доказательство эволюции заключается в том, что все живые существа можно расположить в иерархическую систему таксономических единиц – виды, роды, семейства, отряды, классы и типы. Это означает, что все организмы связаны между собой филогенетически. Принадлежность организмов к тем или иным систематическим группам свидетельствует о том, что большинство промежуточных форм, существовавших в прошлом, вымерло. Таким образом, все разнообразие живой природы можно объяснить происхождением от общих предков на основе борьбы за существование. Будучи генетически различными, виды представляют собой независимо эволюционирующие и репродуктивно изолированные единицы. Поскольку можно предполагать, что у генетически сходных видов общий предок существовал в менее отдаленном прошлом по сравнению с генетически различными видами, то степень генетических различий является мерой, на основе которой сейчас совершенствуют филогенетическое (родословное) древо.

5. Каково значение сохранения многообразия видов в природе?
Биоразнообразие – один из факторов оптимального функционирования биосферы в целом. Биоразнообразие обеспечивает устойчивость экосистем к внешним воздействиям и поддерживает в них равновесие. Живое от неживого отличается большим разнообразием и способностью не только его сохранять, но и существенно увеличивать по мере эволюции. Вообще эволюция жизни на Земле – это процесс увеличения разнообразия живых организмов, форм и уровней их организации, процесс возникновения механизмов, обеспечивающих устойчивость живых систем и экосистем в постоянно изменяющихся условиях нашей планеты. Именно способность экосистем поддерживать равновесие, используя для этого наследственную информацию живых организмов, и делает биосферу в целом и экосистемы вещественно-энергетическими системами в полном смысле.

6. Что понимают под устойчивым развитием биосферы?
Сохранение биосферы как естественной основы всей жизни на Земле, ее устойчивость и естественная эволюция, с тем чтобы дальнейшее развитие человечества происходило в гармонии с природой. Формирование хозяйственной деятельности человека, не разрушающей биосферу, а ее сохраняющей. Биосфера с этой точки зрения должна рассматриваться уже не только как кладовая и поставщик ресурсов, а как фундамент жизни, сохранение которого должно быть обязательным условием для существования и дальнейшей эволюции человека и природы.

7. Заполните таблицу.

Популяция включает огромное количество разнообразных генов, которые образуют ее генофонд. Каждый ген может существовать в нескольких формах, называемых аллелями. В пределах генофонда популяции число особей, несущих определенный аллель, определяет частоту данного аллеля. Т.о., можно сказать, что генетическую структуру популяции характеризуют частоты аллелей и частоты генотипов.

Ранее сложно было определить частоту встречаемости тех или иных генов (генотипов) в популяции. С переоткрытием законов Менделя, за год до того, как Иогансон в 1909 году предложил назвать менделевские наследственные факторы "генами", независимо друг от друга английский математик Г. Харди и немецкий врач В. Вайнберг изучая математическую модель популяции установили, что частоты членов пары аллельных генов в популяции распределяются в соответствии с коэффициентами разложения бинома Ньютона, соотношение одной пары альтернативных генов В и b постоянны из поколения в поколение и в последующих поколениях выражаются формулой

р 2 + 2pq + q 2 = 1,

Где р - пропорция (частота) доминантного гена, q - частота рецессивного гена а в популяции.

То есть, если мы помножим бином, члены которого представляют собой частоты генов B и b для совокупности сперматозоидов (частота гена B + частота гена b), на другой такой же бином для совокупности яйцеклеток, то получим разложение бинома Ньютона - выражение, члены которого будут соответствовать частотам различных генотипов в потомстве (частота BB + частота Bb + частота bb):

Это совершенно аналогично операции для предсказания генотипов потомства от того или иного скрещивания, с той лишь разницей, что теперь перед символом каждого гена ставится дробь, равная частоте этого гена в популяции; например: (1/2 B + 1/2 b) X (1/2 B + 1/2 b) = 1/4 BB + 1/2 Bb + 1/4 bb

При таких расчетах частоты генов обычно выражают десятичными дробями, так как их проще умножать.

Эта сформулированная зависимость позже была названа равновесием (правилом, законом) Харди-Вайнберга: относительные частоты доминантного и рецессивного аллелей и генотипов в данной популяции постоянны из поколения в поколение при свободном скрещивании особей и отсутствии в популяции мутационного процесса .

Ж B(р) b(q)
M
B(р) BB (p 2) Bb (pq)
b(q) Bb (pq) bb (q 2)
Поскольку гамет, несущих ген А и несущих ген а, поровну,то:
B (р=1/2) b (q=1/2)
B (р=1/2) 1/4BB 1/4Bb
b (q=1/2) 1/4Bb 1/4bb

Предположим, что в популяции происходит свободное скрещивание самца коричневой рецессивной гомозиготной морской свинки с черной доминантной гомозиготной самкой, отличающихся по одной паре аллелей ВВ и bb. В мейозе у самца два гена bb разойдутся так, что каждый сформированный сперматозоид будет содержать только один ген b, а в мейозе у самки разойдутся гены ВВ и в каждую яйцеклетку попадет лишь один ген В (рис.1). В результате оплодотворения такой яйцеклетки сперматозоидом с геном b получатся гетерозиготные животные с генетической формулой Вb - первое гибридное поколение F 1 , т.е. такая морская свинка будет содержать доминантный ген В и рецессивный ген b, и будет черной окраски.

При скрещивании двух гетерозиготных черных морских свинок происходит следующее. В мейозе хромосома, содержащая ген В, и хромосома, содержащая ген b, сначала конъюгируют, а затем расходятся, так что каждый сперматозоид и каждая яйцеклетка получают либо ген В, либо ген b, но никогда не получают одновременно оба эти гена. Сперматозоиды и яйцеклетки, содержащие ген В и соответственно ген b, образуются в равном числе. Между яйцеклетками и сперматозоидами, содержащими одинаковые гены, нет ни какого-либо особого притяжения, ни отталкивания; яйцеклетка с геном В с одинаковой вероятностью может быть оплодотворена как сперматозоидом, содержащим ген В, так и сперматозоидом, содержащим ген b.

Чтобы наглядно представить все возможные комбинации, чертят "решетку", вдоль верхней стороны которой выписывают все возможные типы яйцеклеток, а вдоль левой - все возможные типы сперматозоидов, клетки же заполняют всеми возможными их сочетаниями в зиготе (рис.1.). Три четверти всех потомков будут ВВ или Вb и потому будут иметь черную окраску; одна четверть будет bb, и эти особи будут коричневыми. Это фенотипическое отношение 3: 1 характерно для потомков второго гибридного поколения (F 2), полученного от скрещивания особей, различающихся по одному признаку, обусловленному одной парой генов. Генотипическое отношение при этом будет 1ВВ:2Вb:1bb. Потомки от их скрещивания между собой - гибридное поколение F 3 и т.д. будут иметь аналогичные генотипы в аналогичном соотношении согласно закону Харди-Вайнберга.

Доказательство закона Харди-Вайнберга

Обозначим частоту доминантного аллеля В через р, т.е. р - вероятность иметь доминантный аллель В в наугад выбранной хромосоме. Тогда, вероятность иметь рецессивную аллель b будет 1-р, которое обозначим через q (1-р=q). Соответственно вероятности для особи (одного родителя) иметь частоту аллелей будет BB = p 2 , bb = (1-р) 2 = (q 2), Bb = 2p(1-p) = 2pq.

Пусть количество гамет, несущих ген В и несущих ген b, будет поровну 1/2 В и 1/2 b. Тогда, соответственно, вероятность для одного родителя иметь частоту аллелей будет: BB = 1/4, bb = 1/4, Bb = 1/2

Таким образом, берем популяцию в которой генотипы представлены в отношении 1/4 ВВ: 1/2 Bb: 1/4 bb. Если все члены популяции выбирают себе партнеров независимо от того, имеют ли они генотип BB, Bb или bb, и если все пары производят приблизительно одинаковое число потомков, то и в последующих поколениях соотношение генотипов потомков будет аналогичным: 1/4 BB: 1/2 Bb: 1/4 bb (табл. 1).

Таб. 1. Потомство свободно скрещивающейся популяции
состава 1/4 BB: 1/2 Bb: 1/4 bb
Скрещивание Частота Потомство
самец самка
BB Х BB 1/4 Х 1/4 1/16 BB
BB X Bb 1/4 X 1/2 1/16 BB + 1/16 Bb
BB Х bb 1/4 Х 1/4 1/16 Bb
Bb Х BB 1/2 Х 1/4 1/16 BB + 1/16 Bb
Bb Х Bb 1/2 Х 1/2 1/16 BB + 1/8 Bb + 1/16 bb
Bb Х bb 1/2 X 1/4 1/16 Bb + 1/16 bb
bb Х BB 1/4 Х 1/4 1/16 Bb
bb Х Bb 1/4 X 1/2 1/16 Bb + 1/16 bb
bb Х bb 1/4 Х 1/4 1/16 bb
Всего: 4/16 BB + 8/16 Bb + 4/16 bb

В только что рассмотренном примере мы приняли, что исходная популяция имела состав 1/4 BB: 1/2 Bb: 1/4 bb. Мы может представить эти отношения в общей форме, обозначив частоту гена B в популяции через р и частоту гена b через q. Поскольку каждый ген должен быть либо B либо b, то р + q = 1, и, зная одну из этих величин, мы можем вычислить другую.

Учитывая все скрещивания, происходящие в данном поколении, мы видим, что р яйцеклеток, содержащих ген B, и яйцеклеток, содержащих ген b, оплодотворяются р сперматозоидами, содержащими ген B, и q сперматозоидами, содержащими ген b:

(рB + qb) X (рB + qb)

Соотношение типов потомков, возникающих в результате всех этих скрещиваний, дается алгебраическим выражением:

р 2 BB + 2рqBb + q 2 bb.

Если р - частота гена B - равна 1/2, то q - частота гена b - равна (1-р), т.е. 1 - 1/2 = 1/2.

По формуле частота генотипа BB, т. е. р 2 , равна (1/2) 2 =1/4, а частота генотипа Bb, т. е. 2рq, равна 2 X 1/2 X 1/2 = 1/2; частота генотипа bb, т. е. q 2 2, равна (1/2) 2 , или 1/4. Любая популяция, в которой распределение аллелей B и b соответствует отношению р 2 BB + 2рqBb + q 2 bb, находится в генетическом равновесии. Относительные частоты этих аллелей в последующих поколениях будут такими же (если они не изменятся под действием отбора или в результате мутаций).

Отсюда следует, что если р 2 - частота генотипа BB - или q 2 - частота генотипа bb - известна, то можно подсчитать частоту других генотипов. Чтобы определить число людей в популяции, являющихся носителями данного признака, нужно только знать, связано ли его наследование с одной парой генов, и установить частоту появления индивидуумов, гомозиготных по рецессивному признаку.

Доказанное положение о неизменности соотношения между определенными аллелями в последовательных поколениях остается справедливым при любом исходном соотношении, которое может быть различно в разных генофондах. Например, в рассмотренной выше популяции аллели B и b находятся в отношении 0,5: 0,5, в другой популяции они могут находиться в отношении 0,7: 0,3. Если в этой второй популяции все особи имеют равные шансы достигнуть половой зрелости и равные возможности для образования гамет, то 70% сперматозоидов, произведенных всеми самцами, будут содержать ген В и 30% - ген b. Точно так же 70% яйцеклеток, образовавшихся у всех самок, будут иметь ген B и 30% - ген b. При случайном соединении этих яйцеклеток со сперматозоидами соотношение различных генотипов в потомстве составит 0,49 BB + 0,42 Bb + 0,09 bb:

Закономерное распределение генотипов в ряду поколений в зависимости от частоты образования гамет разных типов
Ж B(р=0,7) b(q=0,3)
M
B(р=0,7) BB (p 2 =0,49) Bb (pq=0,21)
b(q=0,3) Bb (pq=0,21) bb (q 2 =0,09)

При этом генофонд потомства будет совершенно идентичен генофонду родительского поколения!

В более общей форме это можно представить формулой (рB + qb) 2 , где р - частота одного аллеля (в нашем примере 0,7 для гена B), а q - частота другого аллеля (0,3 для гена b). Умножение (рB + qb) X (рB + qb) дает р 2 BB + 2рqBb + q 2 bb. Поскольку в нашем случае р = 0,7, то р 2 = 0,7 х 0,7 = 0,49; это и будет частота генотипа BB.

Так же находим частоту генотипа bb: q = 0,3, q 2 = 0,3 X 0,3 = 0,09; наконец, частота гетерозигот Bb равна 2рq = 2 X 0,7 X 0,3 = 0,42.

Путем аналогичных расчетов можно показать, что и следующее поколение, и каждое из дальнейших поколений будут иметь такой же генофонд (0,7 B + 0,3 b) и между всеми тремя генотипами сохранится то же соотношение (0,49 BB: 0,42 Bb: 0,09 bb). Однако это равновесие верно лишь при следующих условиях:

  1. размеры популяции велики, так что случайные отклонения не оказывают влияния на частоты генов;
  2. особи с тремя различными генотипами имеют равные шансы выжить, найти партнера для размножения и оставить потомство;
  3. скрещивание происходит случайным образом; выбор партнеров не зависит от их генотипа;
  4. гены B и b не мутируют;
  5. популяция изолирована, т.е. отсутствует обмен генами с другими популяциями.

При соблюдении этих условий популяция будет находиться в состоянии генетического равновесия и никаких эволюционных изменений происходить не будет.

В природе таких популяций практически не существует. Размеры популяций разных видов обычно сильно различаются. Например, у малоподвижных животных, таких как слизни, небольшие по размеру популяции формируются недалеко друг от друга, если имеется изолирующий их барьер (например ручьи, реки или высокая изгородь), который они не могут преодолеть.

Не происходит в природе и случайных скрещиваний. В большинстве случаев они избирательны. Так, быстрее других будут опылены насекомыми цветки с наиболее яркими лепестками и большим количеством нектара. Самки птиц, млекопитающих спариваются с более сильным и здоровым самцом. Отстранение от размножения слабых особей уменьшает их шанс в передаче аллелей последующим поколениям.

Генетическая структура популяции может изменяться под влиянием различных факторов, например мутаций генов, в результате чего равновесие Харди-Вайнберга нарушается.

Т.о., с помощью формулы Харди-Вайнберга можно определить ожидаемые частоты генов, генотипов и фенотипов в поколениях свободно скрещивающейся популяции. Численные значения р и q, вычисленные по формуле Харди-Вайнберга, как правило, бывают близкими к фактическим.

Если известна частота встречаемости рецессивных гомозигот (q) в популяции, можно вычислить

  • частоту доминантных гомозигот (р = 1 - q)
  • частоту гетерозигот (2рq)
  • частоту рецессивного аллеля: b = √ q
  • частоту доминантного аллеля: B = 1 - √ q
  • частоту доминантной гомозиготы (вариант 2): BB = B 2
  • частоту гетерозиготы (вариант 2): Bb = 2 х √ q х (1-√ q )

Расчеты показывают, что в последующих поколениях в популяции сохраняется равновесное распределение частот генов. Но это равновесное соотношение наблюдается в достаточно многочисленной популяции с одинаковой жизнеспособностью гомо- и гетерозиготных особей. В такой модельной популяции не возникают мутации (или ими можно пренебречь) и не проявляется действие отбора, уничтожающего особей определенного генотипа. При этих условиях будет воспроизводиться один и тот же генотип, т. е. сохраняться определенное генетическое равновесие в последующих поколениях.

Правило Харди-Вайнберга, позволяя дать количественную оценку генетической изменчивости популяций, указывает на постоянно существующие в популяции потенциальные возможности для ее стабильности, которая нарушается факторами природной среды. Наличие в популяции значительной доли рецессивных аллелей в гетерозиготном состоянии позволяет им сохраниться, так как они фенотипически не проявляются, а, следовательно, надежно укрыты и поэтому не устраняются из популяции. Таким образом, природная популяция является генетически гетерогенной. Гетерогенность популяции возникает и поддерживается за счет появления время от времени новых мутаций и генетической рекомбинации у видов с половым размножением.

Дополнительно : определение частоты носителей гена -

ГЕНЕТИЧЕСКОЕ РАВНОВЕСИе
В ПОПУЛЯЦИЯХ И ЕГО НАРУШЕНИя

Задачи : познакомить учащихся с понятием генетического равновесия в популяциях, выявить причины его нарушения.

Элементы содержания: популяционная генетика, генетическое равновесие.

Тип урока: комбинированный.

Оборудование: таблица «Генетическое равновесие в популяциях».

Ход урока

I. Организационный момент.

II. Проверка знаний учащихся.

Биологический диктант.

1. Кто первым попытался разработать теорию эволюции?

2. Отбор, при котором отбираются признаки, полезные человеку.

3. Свойства организма приобретать новые признаки.

4. Что эволюционирует по теории Ч. Дарвина.

5. Вид изменчивости, являющийся основой эволюционного процесса.

6. Сумма всех генотипов, представленная в популяции.

7. Английский ученый, заложивший основы современной теории эволюции.

8. Движущая сила эволюции.

9. В основу объяснения причин эволюции Ч. Дарвин положил три фактора: естественный отбор, изменчивость организмов и …

10. Факторы, отвечающие за изменчивость генотипа.

1) Ж.-Б. Ламарк;

2) искусственный;

3) изменчивость;

4) виды и популяции;

5) наследственная;

6) генофонд;

7) Ч. Дарвин;

8) естественный отбор;

9) борьбу за существование;

10) мутации, рекомбинации генов.

III. Изучение нового материала.

Появление популяционной генетики помогло выявить закономерности, которым подчиняются изменения генофонда популяции. Было установлено, что во многих популяциях наблюдается постоянство частот аллелей различных генов, то есть генетическое равновесие.

Популяция является элементарной единицей эволюции . Популяцией считается группа особей одного вида, свободно скрещивающихся между собой и населяющих определенную территорию, относительно обособленную от других групп особей того же вида.

В некоторых случаях генетическое равновесие в популяции может нарушаться, что приводит к изменению популяции в целом.

Причины нарушения генетического равновесия.

1. Нестандартный выбор партнера при скрещивании.

2. Гибель особей (потеря генов, отвечающих за определенный
признак).

3. Искусственная и естественная изоляция части популяции (создание водохранилищ, пожар и пр.).

4. Катастрофы: при гибели большинства особей остаются единицы, которые определяют генофонд новой популяции.

5. В результате естественного отбора отметаются одни и закрепляются другие признаки.

6. При освоении новых территорий появляются новые признаки, которые определяют новый генофонд.

Причины: 1–4 – ненаправленный характер изменений;

Запомните!

Эволюционные изменения популяций всегда сопровождаются направленными изменениями генофонда, происходящими под действием естественного отбора. Таким образом обеспечивается различие между популяциями одного вида, что в дальнейшем обусловливает их преобразование в новые виды.

IV. Закрепление изученного материала.

Беседа по вопросам:

1. Что такое генетическое равновесие? В каких условиях оно возможно?

2. Какие факторы являются причиной нарушения генетического равновесия?

3. Какова роль естественного отбора в изменении генофонда популяции?

Домашнее задание: § 7.3.