Болезни Военный билет Призыв

Смысл волновой функции в квантовой механике. Спектры и фотография. Понятия квантовой физики

  • 5. Принцип Гюйгенса-Френеля. Зоны Френеля. Прямолинейное распространение света. Принцип гюйгенса-френеля
  • Метод зон френеля
  • 7.Дифракция в паралллных лучах.Дифракция от одной щели.Условия максимумов и минимумов
  • §5 Дифракционная решетка.
  • 8.Дифракционная решетка.Дифракционные спектры.Условия главных максимумов
  • 9.Пространственная решетка. Формула Вульфа Брегга.Исследования структуры кристаллов. Оптически однородная среда.
  • 15.Дисперсия света.Спектры.Электронная теория дисперсии света.
  • 2. Электронная теория дисперсии света
  • 13.Двойное лучепреломление.Построения Гюйгенса для одноосных кристаллов.
  • 14.Давление света.Опыты Лебедева.Классическое и квантовое объяснение давления..
  • 16.Тепловое излучение.Испускательная и поглощательная способности.Абсолютно черное тело.Законкиргофа.
  • 22 Формулы де Бройля. Опытное обоснование корпускулярно-волнового дуализма свойств вещества. Дифракция электронов.
  • 23 Излучение Вавилова-Черенкова.
  • 24 Волновая функция и уравнение Шредингера. Статический смысл волновой функции.
  • 25 Уравнение Шредингера для стационарных состояний. Условия, налагаемые на волновую функцию. Нормировка волновой функции.
  • 26 Частица в одномерной прямоугольной потенциальной яме бесконечной глубины. Квантование энергии. Принцип соответствия Бора.
  • 27 Туннельный эффект. Линейный гармонический осциллятор.
  • 28 Основное состояние атома водорода по Шредингеру. Энергия основного cостояния. Размеры атома водорода.
  • 29.Постулаты Бора. Теория атома водорода по Бору. Недостатки теории Бора.
  • 30.Спектр атома водорода и его объяснение. Спектральные закономерности Ридберга
  • 31.Атом водорода в квантовой механике. Главное, орбитальное и магнитное поле.
  • 32.Спин электрона. Спиновое квантовое число. Опыт Штерна и Герлаха.
  • 33.Поглощение свет. Спонтанное и вынужденное испускание излучения. Инверсная населенность. Усиливающая среда
  • 34.Оптические квантовые генераторы(лазеры). Метастабильный уровень. Особенности лазерного излучения.
  • §2 Трехуровневая схема
  • 35.Лазеры. Усиливающая среда. Порог генерации лазерного излучения.
  • 36 Цепная реакция деления.Критическиеразмеры.Коэффициент размножения нейтронов.Мгновенные и запаздывающие нейтроны.
  • 37 Принцип Паули.Распределение электронов в атоме по состояниям.Периодическая система Менделеева.
  • 40 Радиоактивность. Закон радиоактивного распада.Закономерностипроисхождения α- β-и γ-излучения атомных ядер.Правила смещения
  • 41 Ядерные реакции и законы сохранения.Эффективное поперечное сечение.
  • 46. Понятие о ядерной энергетике. Ядерные реакторы. Понятие трансурановых элементов
  • 24 Волновая функция и уравнение Шредингера. Статический смысл волновой функции.

    Уравнение учитывающее волновые и корпускулярные свойства частицы было получено Шредингером в 1926г.

    Шредингер сопоставил движение частицы на комплексную функцию координат и времени, которая называетсяфункцией, эта функция является решением уравнения Шредингера:

    Где Лапласа, который можно

    расписать: ;; U-потенциальная энергия частицы; Где- функция координат и времени.

    В квантовой физикенельзя точно предсказатькакие либо события, а можно говорить только о вероятностиданного события, вероятность событий и определяет .

    1) Вероятность нахождения микрочастицы в объеме dV в момент времени Т:

    Сопряженные функции.

    2) Плотность вероятностей нахождения частицы в единице объема:

    3) Волновая функция должна удовлетворять условию:

    где 3 интеграла расчитываются по всему объему, где может находится частица.

    Данное условие означает, что пробывание частицы – достоверное событие с вероятностью 1

    25 Уравнение Шредингера для стационарных состояний. Условия, налагаемые на волновую функцию. Нормировка волновой функции.

    Для некоторых практических задач потенциальная энергия частицы не зависит от времени. В этом случае волновую функцию можно представить как произведение

    т.к. зависит только от времени, то разделим наполучим:

    Левая часть равенства зависит только от времени, правая только от координат, это равенство справедливо только если обе части = const, такой константоя является полная энергия частицы Е.

    Рассмотрим правую часть данного равенства: , преобразуем:- уравнение для стационарного состояния.

    Рассмотрим левую часть уравнения Шредингера: ;;

    разделим переменные , проинтегрируем полученное уравнение:

    воспользуясь математическими преобразованиями:

    В этом случае вероятность нахождения частицы можно определить:

    Либо после преобразований:

    –данная вероятность не зависит от времени, данное уравнение, характеризующее микрочастицы, получило название – стационарное состояние частицы.

    Обычно требуют, чтобы волновая функция была определена и непрерывна (бесконечное число раз дифференцируема) во всем пространстве, а также чтобы она была однозначной. Допустимым является один вид неоднозначности волновых функций -неоднозначность знака «+/».

    Волновая функция по своему смыслу должна удовлетворять так называемому условию нормировки, например, в координатном представлении имеющему вид:

    Это условие выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией где-либо во всём пространстве равна единице. В общем случае интегрирование должно производиться по всем переменным, от которых зависит волновая функция в данном представлении.

    26 Частица в одномерной прямоугольной потенциальной яме бесконечной глубины. Квантование энергии. Принцип соответствия Бора.

    Рассмотрим движение микрочастицы вдоль оси х в потенциальном поле.

    Такое потенциальное поле соответствует бесконечно глубокой потенциальной яме с плоским дном. Примером движения в потенциальной яме является движение электрона в металле. Но для выхода электрона из металла необходимо совершить работу, что и соответствует потенциальной энергии в уравнении Шредингера.

    При таком условии частица не проникает за пределы "ямы", т.е.

    y(0)= y(l)=0 В пределах ямы (0сведется к уравнению

    илиданное уравнение является диференциальным уравнением и согласно математике его решение является, гдеможно определить из граничных условий.

    n-главное квантовое число n=1,2,3…

    Анализ этого уравнения показывает, что в потенциальной яме энергия не может быть дискретной величиной.

    состояние с min энергией называется основным, все остальные возбужденные.

    Рассмотрим т.к. потенциальная яма одномерна, то можно записать, что, в местоподставим в выражение и получим. По скольку одномерная потенциальная яма с плоским дном, то

    Графически изобразим

    Из рисунка видно, что вероятность пребывания микрочастицы в разных местах отрезка неодинакова, с увеличением n вероятность нахождения частицы увеличивается

    Квантование энергии является одним из ключевых принципов, необходимых для понимания структурной организации материи, т.е. существования стабильных, повторяющихся в своих свойствах, молекул, атомов и более мелких структурных единиц, из которых состоит как вещество, так и излучение.

    Принцип квантования энергии гласит, что любая система взаимодействующих частиц, способная образовывать стабильное состояние - будь то кусок твердого тела, молекула, атом или атомное ядро, - может сделать это только при определенных значениях энергии.

    В квантовой механике принципом соответствия называется утверждение о том, что поведение квантовомеханической системы стремится к классической физике в пределе больших квантовых чисел. Этот принцип ввёл Нильс Бор в 1923 году.

    Правила квантовой механики очень успешно применяются в описании микроскопических объектов, типа атомов и элементарных частиц. С другой стороны, эксперименты показывают, что разнообразные макроскопические системы (пружина, конденсатор и т.д) можно достаточно точно описать в соответствии с классическими теориями, используя классическую механику и классическую электродинамику (хотя существуют макроскопические системы, демонстрирующие квантовое поведение, например, сверхтекучий жидкий гелий или сверхпроводники). Однако, весьма разумно полагать, что окончательные законы физики должны быть независимыми от размера описываемых физических объектов. Это предпосылка для принципа соответствия Бора, который утверждает, что классическая физика должна появиться как приближение к квантовой физике, поскольку системы становятся большими.

    Условия, при которых квантовая и классическая механики совпадают, называются классическим пределом. Бор предложил грубый критерий для классического предела: переход происходит, когда квантовые числа, описывающие систему являются большими, означая или возбуждение системы до больших квантовых чисел, или то, что система описана большим набором квантовых чисел, или оба случая. Более современная формулировка говорит, что классическое приближение справедливо при больших значениях действия

    В этой статье описывается волновая функция и ее физический смысл. Также рассматривается применение этого понятия в рамках уравнения Шредингера.

    Наука на пороге открытия квантовой физики

    В конце девятнадцатого века молодых людей, которые хотели связать свою жизнь с наукой, отговаривали становиться физиками. Бытовало мнение, что все явления уже открыты и великих прорывов в этой области уже не может быть. Сейчас, несмотря на кажущуюся полноту знаний человечества, подобным образом говорить никто не решится. Потому что так бывает часто: явление или эффект предсказаны теоретически, но людям не хватает технической и технологической мощи, чтобы доказать или опровергнуть их. К примеру, Эйнштейн предсказал более ста лет назад, но доказать их существование стало возможным лишь год назад. Это касается и мира (а именно к ним применимо такое понятие, как волновая функция): пока ученые не поняли, что строение атома сложное, у них не было необходимости изучать поведение таких маленьких объектов.

    Спектры и фотография

    Толчком к развитию квантовой физики стало развитие техники фотографии. До начала двадцатого века запечатление изображений было делом громоздким, долгим и дорогостоящим: фотоаппарат весил десятки килограммов, а моделям приходилось стоять по полчаса в одной позе. К тому же малейшая ошибка при обращении с хрупкими стеклянными пластинами, покрытыми светочувствительной эмульсией, приводила к необратимой потере информации. Но постепенно аппараты становились все легче, выдержка - все меньше, а получение отпечатков - все совершеннее. И наконец, стало возможно получить спектр разных веществ. Вопросы и несоответствия, которые возникали в первых теориях о природе спектров, и породили целую новую науку. Основой для математического описания поведения микромира стали волновая функция частицы и её уравнение Шредингера.

    Корпускулярно-волновой дуализм

    После определения строения атома, возник вопрос: почему электрон не падает на ядро? Ведь, согласно уравнениям Максвелла, любая движущаяся заряженная частица излучает, следовательно, теряет энергию. Если бы это было так для электронов в ядре, известная нам вселенная просуществовала бы недолго. Напомним, нашей целью является волновая функция и ее статистический смысл.

    На выручку пришла гениальная догадка ученых: элементарные частицы одновременно и волны, и частицы (корпускулы). Их свойствами являются и масса с импульсом, и длина волны с частотой. Кроме того, благодаря наличию двух ранее несовместимых свойств элементарные частицы приобрели новые характеристики.

    Одной из них является трудно представимый спин. В мире более мелких частиц, кварков, этих свойств настолько много, что им дают совершенно невероятные названия: аромат, цвет. Если читатель встретит их в книге по квантовой механике, пусть помнит: они совсем не то, чем кажутся на первый взгляд. Однако как же описать поведение такой системы, где все элементы обладают странным набором свойств? Ответ - в следующем разделе.

    Уравнение Шредингера

    Найти состояние, в котором находится элементарная частица (а в обобщенном виде и квантовая система), позволяет уравнение :

    i ħ[(d/dt) Ψ]= Ĥ ψ.

    Обозначения в этом соотношении следующие:

    • ħ=h/2 π, где h - постоянная Планка.
    • Ĥ - Гамильтониан, оператор полной энергии системы.

    Изменяя координаты, в которых решается эта функция, и условия в соответствии с типом частицы и поля, в котором она находится, можно получить закон поведения рассматриваемой системы.

    Понятия квантовой физики

    Пусть читатель не обольщается кажущейся простотой использованных терминов. Такие слова и выражения, как «оператор», «полная энергия», «элементарная ячейка», - это физические термины. Их значения стоит уточнять отдельно, причем лучше использовать учебники. Далее мы дадим описание и вид волновой функции, но эта статья носит обзорный характер. Для более глубокого понимания этого понятия необходимо изучить математический аппарат на определенном уровне.

    Волновая функция

    Ее математическое выражение имеет вид

    |ψ(t)> = ʃ Ψ(x, t)|x> dx.

    Волновая функция электрона или любой другой элементарной частицы всегда описывается греческой буквой Ψ, поэтому иногда ее еще называют пси-функцией.

    Для начала надо понять, что функция зависит от всех координат и времени. То есть Ψ(x, t) - это фактически Ψ(x 1 , x 2 … x n , t). Важное замечание, так как от координат зависит решение уравнения Шредингера.

    Далее необходимо пояснить, что под |x> подразумевается базисный вектор выбранной системы координат. То есть в зависимости от того, что именно надо получить, импульс или вероятность |x> будет иметь вид | x 1 , x 2 , …, x n >. Очевидно, что n будет также зависеть от минимального векторного базиса выбранной системы. То есть в обычном трехмерном пространстве n=3. Для неискушенного читателя поясним, что все эти значки около показателя x - это не просто прихоть, а конкретное математическое действие. Понять его без сложнейших математических выкладок не удастся, поэтому мы искренне надеемся, что интересующиеся сами выяснят его смысл.

    И наконец, необходимо объяснить, что Ψ(x, t)=.

    Физическая сущность волновой функции

    Несмотря на базовое значение этой величины, она сама не имеет в основании явления или понятия. Физический смысл волновой функции заключается в квадрате ее полного модуля. Формула выглядит так:

    |Ψ (x 1 , x 2 , …, x n , t)| 2 = ω,

    где ω имеет значение плотности вероятности. В случае дискретных спектров (а не непрерывных) эта величина приобретает значение просто вероятности.

    Следствие физического смысла волновой функции

    Такой физический смысл имеет далеко идущие последствия для всего квантового мира. Как становится понятно из значения величины ω, все состояния элементарных частиц приобретают вероятностный оттенок. Самый наглядный пример - это пространственное распределение электронных облаков на орбиталях вокруг атомного ядра.

    Возьмем два вида гибридизации электронов в атомах с наиболее простыми формами облаков: s и p. Облака первого типа имеют форму шара. Но если читатель помнит из учебников по физике, эти электронные облака всегда изображаются как некое расплывчатое скопление точек, а не как гладкая сфера. Это означает, что на определенном расстоянии от ядра находится зона с наибольшей вероятностью встретить s-электрон. Однако чуть ближе и чуть дальше эта вероятность не нулевая, просто она меньше. При этом для p-электронов форма электронного облака изображается в виде несколько расплывчатой гантели. То есть существует достаточно сложная поверхность, на которой вероятность найти электрон самая высокая. Но и вблизи от этой «гантели» как дальше, так и ближе к ядру такая вероятность не равна нулю.

    Нормировка волновой функции

    Из последнего следует необходимость нормировать волновую функцию. Под нормировкой подразумевается такая «подгонка» некоторых параметров, при которой верно некоторое соотношение. Если рассматривать пространственные координаты, то вероятность найти данную частицу (электрон, например) в существующей Вселенной должна быть равна 1. Формула выгладит так:

    ʃ V Ψ* Ψ dV=1.

    Таким образом, выполняется закон сохранения энергии: если мы ищем конкретный электрон, он должен быть целиком в заданном пространстве. Иначе решать уравнение Шредингера просто не имеет смысла. И неважно, находится эта частица внутри звезды или в гигантском космическом войде, она должна где-то быть.

    Чуть выше мы упоминали, что переменными, от которых зависит функция, могут быть и непространственные координаты. В таком случае нормировка проводится по всем параметрам, от которых функция зависит.

    Мгновенное передвижение: прием или реальность?

    В квантовой механике отделить математику от физического смысла невероятно сложно. Например, квант был введен Планком для удобства математического выражения одного из уравнений. Теперь принцип дискретности многих величин и понятий (энергии, момента импульса, поля) лежит в основе современного подхода к изучению микромира. У Ψ тоже есть такой парадокс. Согласно одному из решений уравнения Шредингера, возможно, что при измерении квантовое состояние системы изменяется мгновенно. Это явление обычно обозначается как редукция или коллапс волновой функции. Если такое возможно в реальности, квантовые системы способны перемещаться с бесконечной скоростью. Но ограничение скоростей для вещественных объектов нашей Вселенной непреложно: ничто не может двигаться быстрее света. Явление это зафиксировано ни разу не было, но и опровергнуть его теоретически пока не удалось. Со временем, возможно, этот парадокс разрешится: либо у человечества появится инструмент, который зафиксирует такое явление, либо найдется математическое ухищрение, которое докажет несостоятельность этого предположения. Есть и третий вариант: люди создадут такой феномен, но при этом Солнечная система свалится в искусственную черную дыру.

    Волновая функция многочастичной системы (атома водорода)

    Как мы утверждали на протяжении всей статьи, пси-функция описывает одну элементарную частицу. Но при ближайшем рассмотрении атом водорода похож на систему из всего лишь двух частиц (одного отрицательного электрона и одного положительного протона). Волновые функции атома водорода могут быть описаны как двухчастичные или оператором типа матрицы плотности. Эти матрицы не совсем точно являются продолжением пси-функции. Они скорее показывают соответствие вероятностей найти частицу в одном и другом состоянии. При этом важно помнить, что задача решена только для двух тел одновременно. Матрицы плотности применимы к парам частиц, но невозможны для более сложных систем, например при взаимодействии трех и более тел. В этом факте прослеживается невероятное подобие между наиболее «грубой» механикой и очень «тонкой» квантовой физикой. Поэтому не стоит думать, что раз существует квантовая механика, в обычной физике новых идей не может возникнуть. Интересное скрывается за любым поворотом математических манипуляций.

    Вывод формулы для ядра в случае свободной частицы, приведенный в задаче 4.11, неудовлетворителен по двум причинам, которые связаны между собой. Во-первых, понятие суммы по различным состояниям и, использованной в выражении (4.62), не удовлетворительно, если состояния принадлежат непрерывному спектру, что имеет место в случае свободной частицы. Во-вторых, волновые функции для свободных частиц (плоские волны], хотя и являются ортогональными, однако не могут быть нормированы, так как

    и не выполнено условие равенства (4.47), которое применялось при выводе выражения (4.62). Оба эти пункта можно одновременно исправить чисто математическим путем. Возвратимся к разложению произвольной функции по собственным функциям :

    (4.65)

    и учтем, что все или часть состояний могут принадлежать к непрерывному спектру, так что часть суммы по следует заменить интегралом. Можно математически строго получить корректное выражение для ядра , аналогичное выражению (4.62), но применимое также и в том случае, когда состояния находятся в непрерывной части спектра.

    Нормировка на конечный объем . Многие физики предпочитают другой, менее строгий подход. То, что они делают, заключается в некоторой модификации исходной задачи, причем результаты (в их физическом смысле) изменятся несущественно, однако все состояния оказываются дискретными по энергии и поэтому все разложения принимают вид простых сумм. В нашем примере этого можно достичь следующим образом. Мы рассматриваем амплитуду вероятности перехода из точки в точку за конечное время. Если эти две точки находятся на некотором конечном расстоянии друг от друга и разделяющий их промежуток времени не слишком велик, то в амплитуде заведомо не будет сколько-нибудь заметных различий от того, является ли электрон действительно свободным или предполагается помещенным в какой-то очень большой ящик объемом со стенками, расположенными очень далеко от точек и . Если бы частица могла достичь стенок и вернуться назад за время , это могло бы сказаться на амплитуде; но если стенки достаточно удалены, то они никак не повлияют на амплитуду.

    Конечно, это предположение может стать неверным при некотором специальном выборе стенок; например, если точка будет находиться в фокусе волн, вышедших из точки и отраженных от стенок. Иногда по инерции допускают ошибку, заменяя систему, находящуюся в свободном пространстве, системой, расположенной в центре большой сферы. Тот факт, что система остается точно в центре идеальной сферы, может давать некий эффект (подобно появлению светлого пятна в центре тени от совершенно круглого предмета), который не исчезает, даже если радиус сферы стремится к бесконечности. Влияние поверхности было бы пренебрежимо малым в случае стенок другой формы или для системы, смещенной относительно центра этой сферы.

    Рассмотрим сначала одномерный случай. Волновые функции, зависящие от координаты, имеют вид , где принимает оба знака. Какой вид будут иметь функции , если область изменения ограничить произвольным интервалом от до ? Ответ зависит от граничных условий, определяющих значения в точках и . Простейшими с физической точки зрения являются граничные условия в случае стенок, создающих для частицы сильный отталкивающий потенциал, ограничивая тем самым область ее движения (т. е. при идеальном отражении). В этом случае в точках и . Решениями волнового уравнения

    , (4.66)

    соответствующими энергии в области , будут экспоненты и или любая их линейная комбинация. Как , так и не удовлетворяют выбранным граничным условиям, однако при (где - целое число) требуемыми свойствами обладает в случае нечетного их полусумма (т. е. ), а в случае четного - деленная на их полуразность (т. е. ), как это схематически изображено на фиг. 4.1. Таким образом, волновые функции состояний имеют вид синусов и косинусов, а соответствующие им энергетические уровни дискретны и не составляют континуума.

    Фиг. 4.1. Вид одномерных волновых функций, нормированных в ящике.

    Показаны первые четыре из них. Энергии соответствующих уровней равны , , и . Абсолютное значение энергии, которое зависит от размеров нашего фиктивного ящика, несущественно для большинства реальных задач. То, что действительно имеет значение, - это соотношение между энергиями различных состояний.

    Если решения записать в виде и , то они будут нормированы, поскольку

    . (4.67)

    Сумма по всем состояниям является суммой по . Если мы рассмотрим, например, синусоидальные волновые функции (т. е. четные значения ), то при небольших значениях и очень большой величине (стенки далеки от интересующей нас точки) соседние по номерам функции различаются весьма незначительно. Их разность

    (4.68)

    приблизительно пропорциональна малой величине . Поэтому сумму по можно заменить интегралом по . Так как допустимые значения расположены последовательно с интервалом , в промежутке расположено состояний. Все это применимо также и к состояниям с косинусоидальной волновой функцией, поэтому во всех наших формулах мы можем заменить суммы интегралами

    , (4.69)

    не забывая, что в конце нужно сложить результаты для обоих типов волновых функций, а именно и .

    Часто бывает неудобным использовать в качестве волновых функций и , и более предпочтительными являются их линейные комбинации

    и .

    Однако, вводя ограниченный объем , мы вынуждены использовать синусы и косинусы, а не их линейные комбинации, потому что при заданном значении решением будет лишь одна из этих функций, а не обе сразу. Но если пренебречь малыми погрешностями, являющимися следствием таких небольших различий в значениях , то мы можем рассчитывать на получение правильных результатов и с этими новыми линейными комбинациями. После нормировки они принимают вид и . Поскольку волну можно рассматривать как волну , но с отрицательным значением , наша новая процедура, включая объединение двух типов волновых функций, сводится к следующему практическому правилу: взять волновые функции свободной частицы , нормировать их на отрезке длины изменения переменной (т. е. положить ) и заменить суммы по состояниям интегралами по переменной таким образом, чтобы число состояний со значениями , заключенных в интервале , было равно , а само изменялось от до .

    Периодические граничные условия . Иногда подобный экскурс к косинусам и синусам, а затем обратно к экспонентам удается обойти с помощью следующего довода. Так как введение стенки является искусственным приемом, то ее конкретное положение и соответствующее граничное условие не должны иметь какого-нибудь физического значения, если только стенка достаточно удалена. Поэтому вместо физически простых условий мы можем использовать другие, решениями для которых сразу окажутся экспоненты . Таковыми условиями являются

    (4.70)

    . (4.71)

    Их называют периодическими граничными условиями, потому что требование периодичности с периодом во всем пространстве привело бы к тем же самым условиям. Легко проверить, что функции являются нормированными на отрезке решениями при условии, что , где - любое целое (положительное или отрицательное) число или нуль. Отсюда непосредственно следует правило, сформулированное выше.

    Что происходит в случае трех измерений, мы можем понять, если рассмотрим прямоугольный ящик со сторонами, равными , , . Используем периодические граничные условия, т. е. потребуем, чтобы значения волновой функции и ее первой производной на одной грани ящика были симметрично равны их значениям на противоположной грани. Нормированная волновая функция свободной частицы будет представлять собой произведение

    , (4.72)

    где - объем ящика, и допустимыми значениями будут , и (, , - целые числа). Кроме того, число решений со значениями , , , лежащими соответственно в интервалах , , , равно произведению, нужно ввести добавочный множитель . [Выражение (4.64) содержит произведение двух волновых функций.] Во-вторых, символ суммы надо заменить на интеграл . Все это оправдывает то, что было проделано в § 2 гл. 4, а также результаты вывода в задаче 4.11.

    Следует отметить, что множители сокращаются, как это и должно быть, так как при ядро не должно зависеть от размера ящика.

    Некоторые замечания о математической строгости . У читателя при виде того, как в конце вычислений объем сокращается, может возникнуть одна из двух реакций: либо удовлетворение от того, что он сокращается, как это и должно быть, поскольку стенки ни на что не влияют, либо недоумение, почему все делается так нестрого, «грязно» и запутанно, с помощью стенок, которые не имеют никакого реального смысла, и т. д., когда все это можно было бы выполнить намного изящнее и математически строже без всяких стенок и тому подобных вещей. Тип такой реакции зависит от того, мыслите ли вы физически или же математически. По поводу математической строгости в физике между математиками и физиками возникает много недоразумений, поэтому, быть может, уместно дать оценку каждому методу: рассуждениям с ящиком и математически строгому рассмотрению.

    Здесь, конечно, содержится более тривиальный вопрос: какой метод для нас более привычен, т. е. требует минимума новых знаний? Прежде чем подсчитывать число различных состояний в ящике, большинство физиков думали прежде всего именно об этом.

    Наряду с этим математически строгое решение может быть нестрогим с физической точки зрения; иначе говоря, возможно, что ящик существует на самом деле. Им может быть не обязательно прямоугольный ящик, ведь не часто оказывается, что эксперименты ставят под звездами; чаще их проводят в комнате. Хотя физически представляется вполне разумным, что стенки не должны влиять на опыт, тем не менее такую постановку задачи надо рассматривать как идеализацию. Удаление стенок на бесконечность ничем не лучше, чем замена их достаточно далекими идеальными зеркалами. В первом случае математическая строгость также нарушается, поскольку реальные стенки находятся не на бесконечности.

    Подход с привлечением удаленных стенок справедлив и строг настолько же, насколько оправдан. Он обладает несколькими преимуществами. Например, когда объем в заключительных формулах сокращается, мы видим, что несуществен по крайней мере один из аспектов идеализации - насколько стенки удалены. Этот результат интуитивно еще более убеждает нас в том, что истинное расположение реальной окружающей обстановки может быть несущественным. Наконец, полученная формула очень полезна, когда мы действительно имеем случай конечных размеров. Например, в гл. 8 мы воспользуемся ею, чтобы подсчитать число различных звуковых волн в большом блоке вещества прямоугольной формы.

    С другой стороны, преимуществом математически строгого подхода является упразднение в сущности ненужной детали, которая не входит в результат. Хотя введение стенок позволяет кое-что узнать о том, почему же они все-таки ни на что но влияют, тем не менее можно убедиться в справедливости этого, не вникая при этом в детали.

    Задача о нормировке волновых функций представляет собой довольно частный пример, но он иллюстрирует главное. Физик не может понять осторожности, проявляемой математиком при решении идеализированной физической задачи. Он знает, что реальная задача намного сложнее. Она уже упрощена с помощью интуиции, которая отбрасывает несущественное и аппроксимирует то, что остается.

    ВОЛНОВАЯ ФУНКЦИЯ, в КВАНТОВОЙ МЕХАНИКЕ функция, позволяющая найти вероятность того, что квантовая система находится в некотором состоянии s в момент времени t. Обычно пишется: (s) или (s, t). Волновая функция используется в уравнении ШРЕДИНГЕРА … Научно-технический энциклопедический словарь

    ВОЛНОВАЯ ФУНКЦИЯ Современная энциклопедия

    Волновая функция - ВОЛНОВАЯ ФУНКЦИЯ, в квантовой механике основная величина (в общем случае комплексная), описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих эту систему физических величин. Квадрат модуля волновой… … Иллюстрированный энциклопедический словарь

    ВОЛНОВАЯ ФУНКЦИЯ - (вектор состояния) в квантовой механике основная величина, описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих ее физических величин. Квадрат модуля волновой функции равен вероятности данного… … Большой Энциклопедический словарь

    ВОЛНОВАЯ ФУНКЦИЯ - в квантовой механике (амплитуда вероятности, вектор состояния), величина, полностью описывающая состояние микрообъекта (эл на, протона, атома, молекулы) и вообще любой квант. системы. Описание состояния микрообъекта с помощью В. ф. имеет… … Физическая энциклопедия

    волновая функция - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN wave functionСправочник технического переводчика

    волновая функция - (амплитуда вероятности, вектор состояния), в квантовой механике основная величина, описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих её физических величин. Квадрат модуля волновой функции равен… … Энциклопедический словарь

    волновая функция - banginė funkcija statusas T sritis fizika atitikmenys: angl. wave function vok. Wellenfunktion, f rus. волновая функция, f; волнообразная функция, f pranc. fonction d’onde, f … Fizikos terminų žodynas

    волновая функция - banginė funkcija statusas T sritis chemija apibrėžtis Dydis, apibūdinantis mikrodalelių ar jų sistemų fizikinę būseną. atitikmenys: angl. wave function rus. волновая функция … Chemijos terminų aiškinamasis žodynas

    ВОЛНОВАЯ ФУНКЦИЯ - комплексная функция, описывающая состояние квантовомех. системы и позволяющая находить вероятности и ср. значения характеризуемых ею физ. величин. Квадрат модуля В. ф. равен вероятности данного состояния, поэтому В.ф. наз. также амплитудой… … Естествознание. Энциклопедический словарь

    Книги

    • , Б. К. Новосадов. Монография посвящена последовательному изложению квантовой теории молекулярных систем, а также решению волновых уравнений в нерелятивистской и релятивистской квантовой механике молекул.… Купить за 882 грн (только Украина)
    • Методы математической физики молекулярных систем , Новосадов Б.К.. Монография посвящена последовательному изложению квантовой теории молекулярных систем, а также решению волновых уравнений в нерелятивистской и релятивистской квантовой механике молекул.…

    > Волновая функция

    Читайте о волновой функции и теории вероятностей квантовой механики: суть уравнения Шредингера, состояние квантовой частицы, гармонический осциллятор, схема.

    Речь идет об амплитуде вероятности в квантовой механике, описывающей квантовое состояние частицы и ее поведение.

    Задача обучения

    • Объединить волновую функцию и плотность вероятности определения частички.

    Основные пункты

    • |ψ| 2 (x) соответствует плотности вероятности определения частички в конкретном месте и моменте.
    • Законы квантовой механики характеризуют эволюцию волновой функции. Уравнение Шредингера объясняет ее наименование.
    • Волновая функция должна удовлетворять множество математических ограничений для вычислений и физической интерпретации.

    Термины

    • Уравнение Шредингера – частичный дифференциал, характеризующий изменение состояния физической системы. Его сформулировал в 1925 году Эрвин Шредингер.
    • Гармонический осциллятор – система, которая при смещении от изначальной позиции, испытывает влияние силы F, пропорциональной смещению х.

    В пределах квантовой механики волновая функция отображает амплитуду вероятности, характеризующую квантовое состояние частички и ее поведение. Обычно значение – комплексное число. Наиболее распространенными символами волновой функции выступают ψ (x) или Ψ(x). Хотя ψ – комплексное число, |ψ| 2 – вещественное и соответствует плотности вероятности нахождения частицы в конкретном месте и времени.

    Здесь отображены траектории гармонического осциллятора в классической (А-В) и квантовой (C- H) механиках. В квантовой шар обладает волновой функцией, отображенной с реальной частью в синем и мнимой в красном. Траектории C- F – примеры стоячих волн. Каждая такая частота будет пропорциональной возможному уровню энергии осциллятора

    Законы квантовой механики эволюционируют со временем. Волновая функция напоминает другие, вроде волн в воде или струне. Дело в том, что формула Шредингера выступает типом волнового уравнения в математике. Это приводит к двойственности волновых частиц.

    Волновая функция обязана соответствовать ограничениям:

    • всегда конечная.
    • всегда непрерывная и непрерывно дифференцируемая.
    • удовлетворяет соответствующее условие нормировки, чтобы частичка существовала со 100% определенностью.

    Если требования не удовлетворены, то волновую функцию нельзя интерпретировать в качестве амплитуды вероятности. Если мы проигнорируем эти позиции и воспользуемся волновой функцией, чтобы определить наблюдения квантовой системы, то не получим конечных и определенных значений.