Болезни Военный билет Призыв

Какую колебательную систему называют гармоническим осциллятором. Уравнение гармонического осциллятора

КОЛЕБАНИЯ. ВОЛНЫ. ОПТИКА

КОЛЕБАНИЯ

Лекция 1

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

Идеальный гармонический осциллятор. Уравнение идеального осциллятора и его решение. Амплитуда, частота и фаза колебаний

Колебание – один из самых распространённых процессов в природе и технике. Колебания – это процессы, повторяющиеся во времени. Колеблются высотные здания и высоковольтные провода под действием ветра, маятник заведённых часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни. Звук – это колебания давления воздуха, радиоволны – периодические изменения напряжённости электрического и магнитного поля, свет – это тоже электромагнитные колебания. Землетрясения – колебания почвы, приливы и отливы – изменение уровней морей и океанов, вызываемые притяжением луны и т.д.

Колебания бывают механические, электромагнитные, химические, термодинамические и др. Несмотря на такое многообразие, все колебания описываются одними и теми же дифференциальными уравнениями.

Первыми учёными, изучавшими колебания, были Галилео Галилей и Христиан Гюйгенс. Галилей установил независимость периода колебаний от амплитуды. Гюйгенс изобрёл часы с маятником.

Любая система, которая, будучи слегка выведена из положения равновесия, совершает устойчивые колебания, называется гармоническим осциллятором. В классической физике такими системами являются математический маятник в пределах малых углов отклонения, груз в пределах малых амплитуд колебаний, электрический контур, состоящий из линейных элементов ёмкости и индуктивности.

Гармонический осциллятор можно считать линейным, если смещение от положения равновесия прямо пропорционально возмущающей силе. Частота колебаний гармонического осциллятора не зависит от амплитуды. Для осциллятора выполняется принцип суперпозиции - если действуют несколько возмущающих сил, то эффект их суммарного действия может быть получен как результат сложения эффектов от действующих сил в отдельности.

Гармонические колебания описываются уравнением (рис.1.1.1)

(1.1.1)

где х -смещение колеблющейся величины от положения равновесия, А – амплитуда колебаний, равная величине максимального смещения, - фаза колебаний, определяющая смещение в момент времени , - начальная фаза, определяющая величину смещения в начальный момент времени, - циклическая частота колебаний.

Время одного полного колебания называется периодом, , где - число колебаний, совершенных за время .

Частота колебаний определяет число колебаний, совершаемых в единицу времени, она связана с циклической частотой соотношением , тогда период .

Скорость колеблющейся материальной точки

ускорение

Таким образом, скорость и ускорение гармонического осциллятора также изменяются по гармоническому закону с амплитудами и соответственно. При этом скорость опережает по фазе смещение на , а ускорение – на (рис.1.1.2).

Из сопоставления уравнений движения гармонического осциллятора (1.1.1) и (1.1.2) следует, что , или

Это дифференциальное уравнение второго порядка называется уравнением гармонического осциллятора. Его решение содержит два постоянные а и , которые определяются заданием начальных условий

.

Если периодически повторяющийся процесс описывается уравнениями, не совпадающими с (1.1.1), он н6азывается ангармоническим. Система, совершающая ангармонические колебания, называется ангармоническим осциллятором.

1.1.2 . Свободные колебания систем с одной степенью свободы. Комплексная форма представления гармонических колебаний

В природе очень распространены малые колебания, которые система совершает вблизи своего положения равновесия. Если система, выведенная из положения равновесия, предоставлена себе, то есть на неё не действуют внешние силы, то такая система будет совершать свободные незатухающие колебания. Рассмотрим систему с одной степенью свободы.

Устойчивому равновесию соответствует такое положение системы, в котором её потенциальная энергия имеет минимум (q – обобщённая координата системы). Отклонение системы от положения равновесия приводит к возникновению силы , которая стремится вернуть систему обратно. Значение обобщённой координаты, соответствующей положению равновесия, обозначим , тогда отклонение от положения равновесия

Будем отсчитывать потенциальную энергию от минимального значения . Примем Полученную функцию разложим в ряд Маклорена и оставим первый член разложения, имеем: о

,

где . Тогда с учётом введённых обозначений:

, (1.1.4)

С учётом выражения (1.1.4) для силы, действующей на систему, получаем:

Согласно второму закону Ньютона, уравнение движения системы имеет вид: ,

Выражений (1.1.5) совпадает с уравнением (1.1.3) свободных гармонических колебаний при условии, что

и имеет два независимых решения: и , так что общее решение:

,

Из формулы (1.1.6) следует, что частота определяется только собственными свойствами механической системы и не зависит от амплитуды и от начальных условий движения.

Зависимость координаты колеблющейся системы от времени можно определить в виде вещественной части комплексного выражения , где A=Xe-iα – комплексная амплитуда, её модуль совпадает с обычной амплитудой, а аргумент – с начальной фазой.

1.1.3 . Примеры колебательных движений различной физической природы

Колебания груза на пружине

Рассмотрим колебания груза на пружине, при условии, что пружина не деформирована за пределы упругости. Покажем, что такой груз будет совершать гармонические колебания относительно положения равновесия (рис.1.1.3). Действительно, согласно закону Гука, сжатая или растянутая пружина создаёт гармоническую силу:

где – коэффициент жёсткости пружины, – координата положения равновесия, х – координата груза (материальной точки) в момент времени , - смещение от положения равновесия.

Поместим начало отсчета координаты в положение равновесия системы. В этом случае .

Если пружину растянуть на величину х , после чего отпустить в момент времени t =0, то уравнение движения груза согласно второму закону Ньютона примет вид -kx =ma , или , и

(1.1.6)

Это уравнение совпадает по виду с уравнением движения (1.1.3) системы, совершающей гармонические колебания, его решение будем искать в виде:

. (1.1.7)

Подставим (1.17) в (1.1.6), имеем: то есть выражение (1.1.7) является решением уравнения (1.1.6) при условии, что

Если в начальный момент времени положение груза было произвольным, то уравнение движения примет вид:

.

Рассмотрим, как меняется энергия груза, совершающего гармонические колебания в отсутствие внешних сил (рис.1.14). Если в момент времени t =0 грузу сообщить смещение х=А , то его полная энергия станет равной потенциальной энергии деформированной пружины , кинетическая энергия равна нулю (точка 1).

На груз действует сила F= -kx , стремящаяся вернуть его в положение равновесия, поэтому груз движется с ускорением и увеличивает свою скорость, а, следовательно, и кинетическую энергию. Эта сила сокращает смещение груза х, потенциальная энергия груза убывает, переходя в кинетическую. Система «груз - пружина» замкнутая, поэтому её полная энергия сохраняется, то есть:

. (1.1.8)

В момент времени груз находится в положении равновесия (точка 2), его потенциальная энергия равна нулю, а кинетическая максимальна . Максимальную скорость груза найдём из закона сохранения энергии (1.1.8):

За счёт запаса кинетической энергии груз совершает работу против упругой силы и пролетает положение равновесия. Кинетическая энергия постепенно переходит в потенциальную. При груз имеет максимальное отрицательное смещение –А, кинетическая энергия Wk =0, груз останавливается и начинает движение к положению равновесия под действием упругой силы F= -kx . Далее движение происходит аналогично.

Маятники

Под маятником понимают твёрдое тело, которое совершает под действием силы тяжести колебания вокруг неподвижной точки или оси. Различают физический и математический маятники.

Математический маятник – это идеализированная система, состоящая из невесомой нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной материальной точке.

Математическим маятником, например, является шарик на длинной тонкой нити.

Отклонение маятника от положения равновесия характеризуется углом φ , который образует нить с вертикалью (рис.1.15). При отклонении маятника от положения равновесия возникает момент внешних сил (силы тяжести) : , где m – масса, – длина маятника

Этот момент стремится вернуть маятник в положение равновесия (аналогично квазиупругой силе) и направлен противоположно смещению φ , поэтому в формуле стоит знак «минус».

Уравнение динамики вращательного движения для маятника имеет вид: Iε= ,

.

Будем рассматривать случай малых колебаний, поэтому sin φ ≈φ , обозначим ,

имеем: , или , и окончательно

Это уравнение гармонических колебаний, его решение:

.

Частота колебаний математического маятника определяется только его длиной и ускорением силы тяжести, и не зависит от массы маятника. Период равен:

Если колеблющееся тело нельзя представить, как материальную точку, то маятник называют физическим (рис.1.1.6). Уравнение его движения запишем в виде:

.

В случае малых колебаний , или =0 , где . Это уравнение движения тела, совершающего гармонические колебания. Частота колебаний физического маятника зависит от его массы, длины и момента инерции относительно оси, проходящей через точку подвеса.

Обозначим . Величина называется приведённой длинной физического маятника. Это длина математического маятника, период колебаний которого совпадает с периодом данного физического маятника. Точка на прямой, соединяющей точку подвеса с центром масс, лежащая на расстоянии приведённой длины от оси вращения, называется центром качания физического маятника (О’ ). Если маятник подвесить в центре качания, то приведённая длина и период колебаний будут теми же, что и в точке О . Таким образом, точка подвеса и центр качания обладают свойствами взаимности: при переносе точки подвеса в центр качения прежняя точка подвеса становится новым центром качения.

Математический маятник, который качается с таким же периодом, как и рассматриваемый физический, называется изохронным данному физическому маятнику.

1.1.4. Сложение колебаний (биения, фигуры Лиссажу). Векторное описание сложения колебаний

Сложение одинаково направленных колебаний можно производить методом векторных диаграмм. Любое гармоническое колебание можно представить в виде вектора следующим образом. Выберем ось х с началом отсчета в точке О (рис.1.1.7)

Из точки О построим вектор , который составляет угол с осью х . Пусть этот вектор поворачивается с угловой скоростью . Проекция вектора на ось Х равна:

то есть она совершает гармонические колебания с амплитудой а.

Рассмотрим два гармонических колебания одинакового направления и одинаковой циклической малой , заданные векторами и . Смещения по оси Х равны:

результирующий вектор имеет проекцию и представляет собой результирующее колебание (рис.1.1.8), по теореме косинусов Таким образом, сложение гармонических колебаний производится сложением векторов.

Проведем сложение взаимно перпендикулярных колебаний. Пусть материальная точка совершает два взаимно перпендикулярных колебания частотой :

.

Сама материальная точка при этом будет двигаться по некоторой криволинейной траектории.

Из уравнения движения следует: ,

. (1.1.9)

Из уравнения (1.1.9) можно получить уравнение эллипса (рис.1.1.9):

Рассмотрим частные случаи этого уравнения:

1. Разность фаз колебаний α= 0. При этом т.е. или Это уравнение прямой, и результирующее колебание происходит вдоль этой прямой с амплитудой (рис.1.1.10).а.

ее ускорение равно второй производной от смещения по времени тогда сила, действующая на колеблющуюся точку, по второму закону Ньютона равна

То есть сила пропорциональна смещению х и направлена против смещения к положению равновесия. Эта сила называется возвращающей силой. В случае груза на пружине возвращающей силой является сила упругости, в случае математического маятника – составляющая силы тяжести.

Возвращающая сила по характеру подчиняется закону Гука F= -kx, где

– коэффициент возвращающей силы. Тогда потенциальная энергия колеблющейся точки равна:

(постоянную интегрирования выбирают равной нулю, чтобы при х).

АНГАРМОНИЧЕСКИЙ ОСЦИЛЛЯТОР

Гармони́ческий осцилля́тор (в классической механике) - система , которая при смещении из положения равновесия испытывает действие возвращающей силы F , пропорциональной смещению x (согласно закону Гука):

F = − k x {\displaystyle F=-kx}

где k - коэффициент жёсткости системы.

Если F - единственная сила, действующая на систему, то систему называют простым или консервативным гармоническим осциллятором . Свободные колебания такой системы представляют собой периодическое движение около положения равновесия (гармонические колебания). Частота и амплитуда при этом постоянны, причём частота не зависит от амплитуды.

Механическими примерами гармонического осциллятора являются математический маятник (с малыми углами отклонения), , торсионный маятник и акустические системы. Среди других аналогов гармонического осциллятора стоит выделить электрический гармонический осциллятор (см. LC-цепь).

Энциклопедичный YouTube

    1 / 5

    Элементарные частицы | квантовая теория поля | этюд номер 6 | квантовый осциллятор

    Вынужденные колебания линейного осциллятора | Общая физика. Механика | Евгений Бутиков

    Элементарные частицы | квантовая теория поля | этюд номер 5 | классический осциллятор

    Осцилляторы: что это и как их использовать? Обучение для трейдеров от I-TT.RU

    Sytrus 01 из 16 Работа с формой осциллятора

    Субтитры

Свободные колебания

Консервативный гармонический осциллятор

В качестве модели консервативного гармонического осциллятора возьмём груз массы m , закреплённый на пружине жёсткостью k .

Пусть x - смещение груза относительно положения равновесия. Тогда, согласно закону Гука, на него будет действовать возвращающая сила:

F = − k x . {\displaystyle F=-kx.}

Подставляем в дифференциальное уравнение.

x ¨ (t) = − A ω 2 sin ⁡ (ω t + φ) , {\displaystyle {\ddot {x}}(t)=-A\omega ^{2}\sin(\omega t+\varphi),} − A ω 2 sin ⁡ (ω t + φ) + ω 0 2 A sin ⁡ (ω t + φ) = 0. {\displaystyle -A\omega ^{2}\sin(\omega t+\varphi)+\omega _{0}^{2}A\sin(\omega t+\varphi)=0.}

Амплитуда сокращается. Значит, она может иметь любое значение (в том числе и нулевое - это означает, что груз покоится в положении равновесия). На синус также можно сократить, так как равенство должно выполняться в любой момент времени t . Таким образом, остаётся условие для частоты колебаний:

− ω 2 + ω 0 2 = 0 , {\displaystyle -\omega ^{2}+\omega _{0}^{2}=0,} ω = ± ω 0 . {\displaystyle \omega =\pm \omega _{0}.} U = 1 2 k x 2 = 1 2 k A 2 sin 2 ⁡ (ω 0 t + φ) , {\displaystyle U={\frac {1}{2}}kx^{2}={\frac {1}{2}}kA^{2}\sin ^{2}(\omega _{0}t+\varphi),}

тогда полная энергия имеет постоянное значение

E = 1 2 k A 2 . {\displaystyle E={\frac {1}{2}}kA^{2}.}

Простое гармоническое движение - это движение простого гармонического осциллятора , периодическое движение, которое не является ни вынужденным , ни затухающим . Тело в простом гармоническом движении подвергается воздействию единственной переменной силы , которая по модулю прямо пропорциональна смещению x от положения равновесия и направлена в обратную сторону.

Это движение является периодическим: тело колеблется около положения равновесия по синусоидальному закону. Каждое последующее колебание такое же, как и предыдущее, и период , частота и амплитуда колебаний остаются постоянными. Если принять, что положение равновесия находится в точке с координатой, равной нулю, то смещение x тела от положения равновесия в любой момент времени даётся формулой:

x (t) = A cos ⁡ (2 π f t + φ) , {\displaystyle x(t)=A\cos \left(2\pi \!ft+\varphi \right),}

где A - амплитуда колебаний, f - частота, φ - начальная фаза.

Частота движения определяется характерными свойствами системы (например, массой движущегося тела), в то время как амплитуда и начальная фаза определяются начальными условиями - перемещением и скоростью тела в момент начала колебаний. Кинетическая и потенциальная энергии системы также зависят от этих свойств и условий.

Простое гармоническое движение можно рассматривать как математическую модель различных видов движения, таких, например, как колебание пружины . Другими случаями, которые могут приближённо рассматриваться как простое гармоническое движение, являются движение маятника и вибрации молекул .

Простое гармоническое движение является основой некоторых способов анализа более сложных видов движения. Одним из таких способов является способ, основанный на преобразовании Фурье , суть которого сводится к разложению более сложного вида движения в ряд простых гармонических движений.

Типичным примером системы, в которой происходит простое гармоническое движение, является идеализированная система груз-пружина, в которой груз присоединён к пружине. Если пружина не сжата и не растянута, то на груз не действует никаких переменных сил, и груз находится в состоянии механического равновесия. Однако, если груз вывести из положения равновесия, пружина деформируется, и с её стороны на груз будет действовать сила, которая будет стремиться вернуть груз в положение равновесия. В случае системы груз-пружина такой силой является сила упругости пружины, которая подчиняется закону Гука :

F = − k x , {\displaystyle F=-kx,} F - возвращающая сила, x - перемещение груза (деформация пружины), k - коэффициент жёсткости пружины.

Любая система, в которой происходит простое гармоническое движение, обладает двумя ключевыми свойствами:

  1. Когда система выведена из состояния равновесия, должна существовать возвращающая сила, стремящаяся вернуть систему в равновесие.
  2. Возвращающая сила должна в точности или приближённо быть пропорциональна перемещению.

Система груз-пружина удовлетворяет обоим этим условиям.

Однажды смещённый груз подвергается действию возвращающей силы, ускоряющей его, и стремящейся вернуть в начальную точку, то есть, в положение равновесия. По мере того, как груз приближается к положению равновесия, возвращающая сила уменьшается и стремится к нулю. Однако в положении x = 0 груз обладает некоторым количеством движения (импульсом), приобретённым благодаря действию возвращающей силы. Поэтому груз проскакивает положение равновесия, начиная снова деформировать пружину (но уже в противоположном направлении). Возвращающая сила будет стремиться замедлить его, пока скорость не станет равной нулю; и сила вновь будет стремиться вернуть груз в положение равновесия.

Пока в системе нет потерь энергии, груз будет колебаться как описано выше; такое движение называется периодическим.

Дальнейший анализ покажет, что в случае системы груз-пружина движение является простым гармоническим.

Динамика простого гармонического движения

Для колебания в одномерном пространстве, учитывая Второй закон Ньютона (F = m  d²x /dt ² ) и закон Гука (F = −kx , как описано выше), имеем линейное дифференциальное уравнение второго порядка:

m d 2 x d t 2 = − k x , {\displaystyle m{\frac {\mathrm {d} ^{2}x}{\mathrm {d} t^{2}}}=-kx,} m - масса тела, x - его перемещение относительно положения равновесия, k - постоянная (коэффициент жёсткости пружины).

Решение этого дифференциального уравнения является синусоидальным ; одно из решений таково:

x (t) = A cos ⁡ (ω t + φ) , {\displaystyle x(t)=A\cos(\omega t+\varphi),}

где A , ω и φ - постоянные величины, и положение равновесия принимается за начальное. Каждая из этих постоянных представляет собой важное физическое свойство движения: A - это амплитуда, ω = 2πf - круговая частота , и φ - начальная фаза.

U (t) = 1 2 k x (t) 2 = 1 2 k A 2 cos 2 ⁡ (ω t + φ) . {\displaystyle U(t)={\frac {1}{2}}kx(t)^{2}={\frac {1}{2}}kA^{2}\cos ^{2}(\omega t+\varphi).}

Универсальное движение по окружности

Простое гармоническое движение в некоторых случаях можно рассматривать как одномерная проекция универсального движения по окружности.

Если объект движется с постоянной угловой скоростью ω по окружности радиуса r , центром которой является начало координат плоскости x − y , то такое движение вдоль каждой из координатных осей является простым гармоническим с амплитудой r и круговой частотой ω .

Груз как простой маятник

В приближении малых углов движение простого маятника является близким к простому гармоническому. Период колебаний такого маятника, прикреплённого к стержню длиной с ускорением свободного падения g даётся формулой

T = 2 π ℓ g . {\displaystyle T=2\pi {\sqrt {\frac {\ell }{g}}}.}

Это показывает, что период колебаний не зависит от амплитуды и массы маятника, но зависит от ускорения свободного падения g , поэтому при той же самой длине маятника, на Луне он будет качаться медленнее, так как там слабее гравитация и меньше значение ускорения свободного падения.

Указанное приближение является корректным только при небольших углах отклонения, поскольку выражение для углового ускорения пропорционально синусу координаты:

ℓ m g sin ⁡ θ = I α , {\displaystyle \ell mg\sin \theta =I\alpha ,}

где I - момент инерции ; в данном случае I = m ℓ 2 .

ℓ m g θ = I α {\displaystyle \ell mg\theta =I\alpha } ,

что делает угловое ускорение прямо пропорциональным углу θ , а это удовлетворяет определению простого гармонического движения.

Гармонический осциллятор с затуханием

Взяв за основу ту же модель, добавим в неё силу вязкого трения. Сила вязкого трения направлена против скорости движения груза относительно среды и прямо пропорциональна этой скорости. Тогда полная сила, действующая на груз, записывается так:

F = − k x − α v {\displaystyle F=-kx-\alpha v}

Проводя аналогичные действия, получаем дифференциальное уравнение, описывающее затухающий осциллятор:

x ¨ + 2 γ x ˙ + ω 0 2 x = 0 {\displaystyle {\ddot {x}}+2\gamma {\dot {x}}+\omega _{0}^{2}x=0}

Здесь введено обозначение: 2 γ = α m {\displaystyle 2\gamma ={\frac {\alpha }{m}}} . Коэффициент γ {\displaystyle \gamma } носит название постоянной затухания. Он тоже имеет размерность частоты.

Решение же распадается на три случая.

x (t) = A e − γ t s i n (ω f t + φ) {\displaystyle x(t)=Ae^{-\gamma t}sin(\omega _{f}t+\varphi)} ,

где ω f = ω 0 2 − γ 2 {\displaystyle \omega _{f}={\sqrt {\omega _{0}^{2}-\gamma ^{2}}}} - частота свободных колебаний.

x (t) = (A + B t) e − γ t {\displaystyle \ x(t)=(A+Bt)e^{-\gamma t}} x (t) = A e − β 1 t + B e − β 2 t {\displaystyle x(t)=Ae^{-\beta _{1}t}+Be^{-\beta _{2}t}} ,

где β 1 , 2 = γ ± γ 2 − ω 0 2 {\displaystyle \beta _{1,2}=\gamma \pm {\sqrt {\gamma ^{2}-\omega _{0}^{2}}}} .

Критическое затухание примечательно тем, что именно при критическом затухании осциллятор быстрее всего стремится в положение равновесия. Если трение меньше критического, он дойдёт до положения равновесия быстрее, однако «проскочит» его по инерции, и будет совершать колебания. Если трение больше критического, то осциллятор будет экспоненциально стремиться к положению равновесия, но тем медленнее, чем больше трение.

Поэтому в стрелочных индикаторах (например, в амперметрах) обычно стараются ввести именно критическое затухание, чтобы стрелка успокаивалась максимально быстро для считывания его показаний.

Затухание осциллятора также часто характеризуют безразмерным параметром, называемым добротностью . Добротность обычно обозначают буквой Q {\displaystyle Q} . По определению, добротность равна:

Q = ω 0 2 γ {\displaystyle Q={\frac {\omega _{0}}{2\gamma }}}

Чем больше добротность, тем медленнее затухают колебания осциллятора.

У осциллятора с критическим затуханием добротность равна 0,5. Соответственно, добротность указывает характер поведения осциллятора. Если добротность больше 0,5, то свободное движение осциллятора представляет собой колебания; теоретически со временем он пересечёт положение равновесия неограниченное количество раз. Добротность, меньшая или равная 0,5, соответствует неколебательному движению осциллятора; в свободном движении он пересечёт положение равновесия не более одного раза.

Добротность иногда называют коэффициентом усиления осциллятора, так как при некоторых способах возбуждения при совпадении частоты возбуждения с резонансной частотой колебаний их амплитуда устанавливается примерно в Q {\displaystyle Q} раз больше, чем при возбуждении с той же интенсивностью на низкой частоте.

Также добротность примерно равна количеству колебательных циклов, за которое амплитуда колебаний уменьшается в e {\displaystyle e} раз, умноженному на π {\displaystyle \pi } .

В случае колебательного движения затухание ещё характеризуют такими параметрами, как:

  • Время жизни колебаний (оно же время затухания , оно же время релаксации ) τ - время, за которое амплитуда колебаний уменьшится в e раз.
τ = 1 / γ . {\displaystyle \tau =1/\gamma .} Это время рассматривается как время, необходимое для затухания (прекращения) колебаний (хотя формально свободные колебания продолжаются бесконечно долго).

Вынужденные колебания

Колебания осциллятора называют вынужденными, когда на него производится некоторое дополнительное воздействие извне. Это воздействие может производиться различными средствами и по различным законам. Например, силовым возбуждением называется воздействие на груз силой, зависящей только от времени по определённому закону. Кинематическим возбуждением называют воздействие на осциллятор движением точки закрепления пружины по заданному закону. Возможно также воздействие трением, когда, например, среда, с которой груз испытывает трение, совершает движение по заданному закону.

Пожалуй, простейшей механической системой, движение которой описывается линейным дифференциальным уравнением с постоянными коэффициентами, является масса на пружинке. После того как к пружинке подвесят грузик, она немного растянется, чтобы уравновесить силу тяжести. Проследим теперь за вертикальными отклонениями массы от положения равновесия (фиг. 21.1). Отклонения вверх от положения равновесия мы обозначим через и предположим, что имеем дело с абсолютно упругой пружиной. В этом случае противодействующие растяжению силы прямо пропорциональны растяжению. Это означает, что сила равна (знак минус напоминает нам, что сила противодействует смещениям). Таким образом, умноженное на массу ускорение должно быть равно

Для простоты предположим, что вышло так (или мы нужным образом изменили систему единиц), что . Нам предстоит решить уравнение

Фиг. 21.1. Грузик, подвешенный на пружинке. Простой пример гармонического осциллятора.

После этого мы вернемся к уравнению (21.2), в котором и содержатся явно.

Мы уже сталкивались с уравнением (21.3), когда только начинали изучать механику. Мы решили его численно, чтобы найти движение. Численным интегрированием мы нашли кривую, которая показывает, что если частица в начальный момент выведена из равновесия, но покоится, то она возвращается к положению равновесия. Мы не следили за частицей после того, как она достигла положения равновесия, но ясно, что она на этом не остановится, а будет колебаться (осциллировать). При численном интегрировании мы нашли время возврата в точку равновесия: . Продолжительность полного цикла в четыре раза больше: «сек». Все это мы нашли численным интегрированием, потому что лучше решать не умели. Но математики дали в наше распоряжение некую функцию, которая, если ее продифференцировать дважды, переходит в себя, умножившись на . (Можно, конечно, заняться прямым вычислением таких функций, но это много труднее, чем просто узнать ответ.)

Эта функция есть: . Продифференцируем ее: , a . В начальный момент , , а начальная скорость равна нулю; это как раз те предположения, которые мы делали при численном интегрировании. Теперь, зная, что , найдем точное значение времени, при котором . Ответ: , или 1,57108. Мы ошиблись раньше в последнем знаке, потому что численное интегрирование было приближенным, но ошибка очень мала!

Чтобы продвинуться дальше, вернемся к системе единиц, где время измеряется в настоящих секундах. Что будет решением в этом случае? Может быть, мы учтем постоянные и , умножив на соответствующий множитель ? Попробуем. Пусть , тогда и . К нашему огорчению, мы не преуспели в решении уравнения (21.2), а снова вернулись к (21.3). Зато мы открыли важнейшее свойство линейных дифференциальных уравнений: если умножить решение уравнения на постоянную, то мы снова получим решение. Математически ясно - почему. Если есть решение уравнения, то после умножения обеих частей уравнения на производные тоже умножатся на и поэтому так же хорошо удовлетворит уравнению, как и . Послушаем, что скажет по этому поводу физик. Если грузик растянет пружинку вдвое больше прежнего, то вдвое возрастет сила, вдвое возрастет ускорение, в два раза больше прежней будет приобретенная скорость и за то же самое время грузик пройдет вдвое большее расстояние. Но это вдвое большее расстояние - как раз то самое расстояние, которое надо пройти грузику до положения равновесия. Таким образом, чтобы достичь равновесия, требуется столько же времени и оно не зависит от начального смещения. Иначе говоря, если движение описывается линейным уравнением, то независимо от «силы» оно будет развиваться во времени одинаковым образом.

Ошибка пошла нам на пользу - мы узнали, что, умножив решение на постоянную, мы получим решение прежнего уравнения. После нескольких проб и ошибок можно прийти к мысли, что вместо манипуляций с надо изменить шкалу времени. Иначе говоря, уравнение (21.2) должно иметь решение вида

(Здесь - вовсе не угловая скорость вращающегося тела, но нам не хватит всех алфавитов, если каждую величину обозначать особой буквой.) Мы снабдили здесь индексом 0, потому что нам предстоит встретить еще много всяких омег: запомним, что соответствует естественному движению осциллятора. Попытка использовать (21.4) в качестве решения более успешна, потому что и . Наконец-то мы решили то уравнение, которое и хотели решить. Это уравнение совпадает с (21.2), если .

Теперь нужно понять физический смысл . Мы знаем, что косинус «повторяется» после того, как угол изменится на . Поэтому будет периодическим движением; полный цикл этого движения соответствует изменению «угла» на . Величину часто называют фазой движения. Чтобы изменить на , нужно изменить на (период полного колебания); конечно, находится из уравнения . Это значит, что нужно вычислять для одного цикла, и все будет повторяться, если увеличить на ; в этом случае мы увеличим фазу на . Таким образом,

. (21.5)

Значит, чем тяжелее грузик, тем медленнее пружинка будет колебаться взад и вперед. Инерция в этом случае будет больше, и если сила не изменится, то ей понадобится большее время для разгона и торможения груза. Если же взять пружинку пожестче, то движение должно происходить быстрее; и в самом деле, период уменьшается с увеличением жесткости пружины.

Заметим теперь, что период колебаний массы на пружинке не зависит от того, как колебания начинаются. Для пружинки как будто безразлично, насколько мы ее растянем. Уравнение движения (21.2) определяет период колебаний, но ничего не говорит об амплитуде колебания. Амплитуду колебания, конечно, определить можно, и мы сейчас займемся этим, но для этого надо задать начальные условия.

Дело в том, что мы еще не нашли самого общего решения уравнения (21.2). Имеется несколько видов решений. Решение соответствует случаю, когда в начальный момент пружинка растянута, а скорость ее равна нулю. Можно иначе заставить пружинку двигаться, например, улучить момент, когда уравновешенная пружинка покоится , и резко ударить по грузику; это будет означать, что в момент пружинке сообщена какая-то скорость. Такому движению будет соответствовать другое решение (21.2) - косинус нужно заменить на синус. Бросим в косинус еще один камень: если - решение, то, войдя в комнату, где качается пружинка, в тот момент (назовем его «»), когда грузик проходит через положение равновесия , мы будем вынуждены заменить это решение другим. Следовательно, не может быть общим решением; общее решение должно допускать, так сказать, перемещение начала отсчета времени. Таким свойством обладает, например, решение , где - какая-то постоянная. Далее, можно разложить называют угловой частотой; это число радианов, на которое фаза изменяется за 1 сек. Она определяется дифференциальным уравнением. Другие величины уравнением не определяются, а зависят от начальных условий. Постоянная служит мерой максимального отклонения груза и называется амплитудой колебания. Постоянную иногда называют фазой колебания, но здесь возможны недоразумения, потому что другие называют фазой и говорят, что фаза зависит от времени. Можно сказать, что - это сдвиг фазы по сравнению с некоторой, принимаемой за нуль. Не будем спорить о словах. Разным соответствуют движения с разными фазами. Вот это верно, а называть ли фазой или нет - уже другой вопрос.

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

Лекция 1

КОЛЕБАНИЯ

КОЛЕБАНИЯ. ВОЛНЫ. ОПТИКА

Колебание – один из самых распространённых процессов в природе и технике. Колебания – это процессы, повторяющиеся во времени. Колеблются высотные здания и высоковольтные провода под действием ветра, маятник заведённых часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни. Звук – это колебания давления воздуха, радиоволны – периодические изменения напряжённости электрического и магнитного поля, свет – это тоже электромагнитные колебания. Землетрясения – колебания почвы, приливы и отливы – изменение уровней морей и океанов, вызываемые притяжением луны и т.д.

Колебания бывают механические, электромагнитные, химические, термодинамические и др. Несмотря на такое многообразие, все колебания описываются одними и теми же дифференциальными уравнениями.

Первыми учёными, изучавшими колебания, были Галилео Галилей и Христиан Гюйгенс. Галилей установил независимость периода колебаний от амплитуды. Гюйгенс изобрёл часы с маятником.

Любая система, которая, будучи слегка выведена из положения равновесия, совершает устойчивые колебания, называется гармоническим осциллятором. В классической физике такими системами являются математический маятник в пределах малых углов отклонения, груз в пределах малых амплитуд колебаний, электрический контур, состоящий из линейных элементов ёмкости и индуктивности.

Гармонический осциллятор можно считать линейным, если смещение от положения равновесия прямо пропорционально возмущающей силе. Частота колебаний гармонического осциллятора не зависит от амплитуды. Для осциллятора выполняется принцип суперпозиции - если действуют несколько возмущающих сил, то эффект их суммарного действия может быть получен как результат сложения эффектов от действующих сил в отдельности.

Гармонические колебания описываются уравнением (рис.1.1.1)

(1.1.1)

где х -смещение колеблющейся величины от положения равновесия, А – амплитуда колебаний, равная величине максимального смещения, - фаза колебаний, определяющая смещение в момент времени , - начальная фаза, определяющая величину смещения в начальный момент времени, - циклическая частота колебаний.

Время одного полного колебания называется периодом, , где - число колебаний, совершенных за время .

Частота колебаний определяет число колебаний, совершаемых в единицу времени, она связана с циклической частотой соотношением , тогда период .

Скорость колеблющейся материальной точки

ускорение

Таким образом, скорость и ускорение гармонического осциллятора также изменяются по гармоническому закону с амплитудами и соответственно. При этом скорость опережает по фазе смещение на , а ускорение – на (рис.1.1.2).



Из сопоставления уравнений движения гармонического осциллятора (1.1.1) и (1.1.2) следует, что , или

Это дифференциальное уравнение второго порядка называется уравнением гармонического осциллятора. Его решение содержит два постоянные а и , которые определяются заданием начальных условий

.

Если периодически повторяющийся процесс описывается уравнениями, не совпадающими с (1.1.1), он н6азывается ангармоническим. Система, совершающая ангармонические колебания, называется ангармоническим осциллятором.

1.1.2 . Свободные колебания систем с одной степенью свободы. Комплексная форма представления гармонических колебаний

В природе очень распространены малые колебания, которые система совершает вблизи своего положения равновесия. Если система, выведенная из положения равновесия, предоставлена себе, то есть на неё не действуют внешние силы, то такая система будет совершать свободные незатухающие колебания. Рассмотрим систему с одной степенью свободы.

Устойчивому равновесию соответствует такое положение системы, в котором её потенциальная энергия имеет минимум (q – обобщённая координата системы). Отклонение системы от положения равновесия приводит к возникновению силы , которая стремится вернуть систему обратно. Значение обобщённой координаты, соответствующей положению равновесия, обозначим , тогда отклонение от положения равновесия

Будем отсчитывать потенциальную энергию от минимального значения . Примем Полученную функцию разложим в ряд Маклорена и оставим первый член разложения, имеем: о