Болезни Военный билет Призыв

Бактерии используют в производстве. Где мы применяем бактерии и может ли человечество обойтись без них? Морфология и физиология микроорганизмов

Микроорганизмы широко используются в пищевой промышленности, домашнем хозяйстве, микробиологической промышленности для получения аминокислот, ферментов, органических кислот, витаминов и др. К классическим микробиологическим производствам относится виноделие, пивоварение, приготовление хлеба, молочнокислых продуктов и пищевого уксуса. Например, виноделие, пивоварение и производство дрожжевого теста, невозможны без использования дрожжей, широко распространенных в природе.

История индустриального производства дрожжей началась в Голландии, где в 1870 г. была основана первая фабрика, выпускавшая дрожжи. Основным видом продукции стали прессованные дрожжи влажностью около 70 %, которые могли храниться всего несколько недель. Длительное хранение было невозможно, так как клетки прессованных дрожжей оставались живыми, сохраняли свою активность, что и приводило к их автолизу и гибели. Одним из способов промышленного консервирования дрожжей стало высушивание. В сухих дрожжах при низкой влажности дрожжевая клетка находится в анабиотическом состоянии и может сохраняться длительное время. Первые сухие дрожжи появились в 1945 г. В 1972 г. появилось второе поколение сухих дрожжей, так называемые инстантные дрожжи. С середины 1990-х годов появилось третье поколение сухих дрожжей: пекарские дрожжи Saccharomyces cerevisiae, которые объединили достоинства инстантных дрожжей с высококонцентрированным комплексом специализированных хлебопекарных ферментов в одном продукте. Эти дрожжи позволяют не только улучшить качество хлеба, но и активно противостоять процессу черствения.

Пекарские дрожжи Saccharomyces cerevisiae используются и в производстве этилового спирта.

Виноделие использует множество разных рас дрожжей, чтобы получить уникальную марку вина с только ему присущими качествами.

Молочнокислые бактерии принимают участие в приготовлении таких пищевых продуктов, как квашеная капуста, соленые огурцы, маринованные маслины и множество других маринованных продуктов.

Молочнокислые бактерии преобразуют сахар в молочную кислоту, которая предохраняет пищевые продукты от гнилостных бактерий.

С помощью молочнокислых бактерий готовят большой ассортимент молочнокислых продуктов, творог, сыр.

Однако многие микроорганизмы играют отрицательную роль в жизни человека, являясь возбудителями болезней человека, животных и растений; они могут вызывать порчу пищевых продуктов, разрушение различных материалов и т.п.

Для противоборства с такими микроорганизмами были открыты антибиотики - пенициллин, стрептомицин, грамицидин и др., которые являются продуктами метаболизма грибов, бактерий и актиномицетов.



Микроорганизмы дают человеку необходимые ферменты. Так, амилазу используют на предприятиях пищевой, текстильной, бумажной промышленности. Протеаза вызывает разложение белков в различных материалах. На Востоке протеазу из грибов применяли уже несколько столетий назад для приготовления соевого соуса. В настоящее время ее используют при производстве моющих средств. При консервировании фруктовых соков применяют такой фермент, как пектиназа.

Микроорганизмы используют для очистки сточных вод, переработки отходов пищевой промышленности. При анаэробном разложении органического вещества отходов образуется биогаз.

В последние годы появились новые производства. Из грибов получают каротиноиды и стероиды.

Бактерии синтезируют многие аминокислоты, нуклеотиды и другие реактивы для биохимических исследований.

Микробиология является быстроразвивающейся наукой, достижения которой во многом связаны с развитием физики, химии, биохимии, молекулярной биологии и др.

Для успешного изучения микробиологии требуется знание перечисленных наук.

В настоящем курсе в основном рассматривается микробиология пищевых продуктов. Множество микроорганизмов живет на поверхности тела, в кишечнике человека и животных, на растениях, на пищевых продуктах и на всех предметах вокруг нас. Микроорганизмы потребляют самую разнообразную пищу, чрезвычайно легко приспосабливаются к изменяющимся условиям жизни: теплу, холоду, недостатку влаги и т. п. Они очень быстро размножаются. Без знания микробиологии нельзя грамотно и эффективно управлять биотехнологическими процессами, сохранить высокое качество пищевых продуктов на всех этапах его производства и предотвратить потребление продуктов, содержащих возбудителей пищевых заболеваний и отравлений.

Следует особо подчеркнуть, что микробиологические исследования пищевых продуктов, не только с точки зрения технологических особенностей, но и, что не менее важно, с точки зрения их санитарно-микробиологической безопасности, являются самым сложным объектом санитарной микробиологии. Это объясняется не только разнообразием и обилием микрофлоры в продуктах питания, но и использованием микроорганизмов в производстве многих из них.

В этой связи, при микробиологическом анализе качества и безопасности продуктов питания следует различать две группы микроорганизмов:

– специфическая микрофлора;

– неспецифическая микрофлора.

Специфическая – это культурные расы микроорганизмов, которые используются для приготовления того или иного продукта и являются обязательным звеном в технологии его производства.

Такая микрофлора используется в технологии получения вина, пива, хлеба, всех кисломолочных продуктов.

Неспецифическая – это микроорганизмы, которые попадают в пищевые продукты из окружающей среды, загрязняя их. Среди этой группы микроорганизмов различают сапрофитные, патогенные и условно-патогенные, а также микроорганизмы, вызывающие порчу продуктов.

Степень загрязнения зависит от множества факторов, к которым следует отнести правильность заготовки сырья, его хранения и переработки, соблюдение технологических и санитарных режимов производства продуктов, их хранения и транспортировки.

Какие бывают бактерии: виды бактерий, их классификация

Бактерии — это крошечные микроорганизмы, которые появились много тысячелетий назад. Увидеть микробы невооруженным глазом невозможно, но не следует забывать об их существовании. Существует огромное количество бацилл. Их классификацией, изучением, разновидностями, особенностями строения и физиологии занимается наука микробиология.

Микроорганизмы по-разному называются, в зависимости от своего рода действий и функций. Под микроскопом можно наблюдать, как эти маленькие существа взаимодействуют друг с другом. Первые микроорганизмы были довольно примитивными по форме, но и их значение ни в коем случае нельзя преуменьшать. С самого начала бациллы развивались, создавали колонии, пытались выжить в изменчивых климатических условиях. Разные вибрионы способны обмениваться аминокислотами, чтобы в результате нормально расти, развиваться.

Сегодня трудно сказать, сколько на земле есть видов этих микроорганизмов (это число превышает миллион), но самые известные и их названия знакомы практически каждому человеку. Неважно, какие бывают и как называются микробы, все они имеют одно преимущество — они живут колониями, так им намного легче адаптироваться и выживать.

Для начала давайте разберемся, какие существуют микроорганизмы. Самая простая классификация — это хорошие и плохие. Другими словами те, которые несут вред человеческому организму, становятся причиной многих болезней и те, которые приносят пользу. Далее мы поговорим детально, какие есть основные полезные бактериии дадим их описание.

Можно также классифицировать микроорганизмы соответственно их форме, характеристике. Наверное, многие помнят, что в школьных учебниках была специальная таблица с изображением разных микроорганизмов, а рядышком было значение и их роль в природе. Есть несколько типов бактерий:

  • кокки — небольшие шарики, которые напоминают цепочку, так как располагаются друг за дружкой;
  • палочковидные;
  • спириллы, спирохеты (имеют извитую форму);
  • вибрионы.

Бактерии разных форм

Мы уже упоминали, что одна из классификаций делит микробы на виды в зависимости от их форм.

Бактерии палочки тоже имеют некоторые особенности. Например, есть виды палочковидных с заостренными полюсами, с утолщенными, с закругленными или же с прямыми концами. Как правило, палочковидные микробы очень разные и всегда находятся в хаосе, они не выстраиваются цепочкой (за исключением стрептобацилл), не крепятся друг к дружке (кроме диплобацилл).

К микроорганизмам шаровидных форм микробиологи относят стрептококки, стафилококки, диплококки, гонококки. Это могут быть пары или же длинные цепочки из шариков.

Изогнутые бациллы — это спириллы, спирохеты. Они всегда активны, но не производят спор. Спириллы безопасны для людей, для животных. Отличить спириллы от спирохет можно, если обратить внимание на количество завитков, они менее извиты, имеют специальные жгутики на конечностях.

Виды болезнетворных бактерий

Например, группа микроорганизмов под названием кокки, а более детально стрептококки и стафилококки становятся причиной настоящих гнойных заболеваний (фурункулез, стрептококковая ангина).

Анаэробы прекрасно живут и развиваются без кислорода, для некоторых типов этих микроорганизмов кислород вообще становится смертельным. Аэробные микробы нуждаются в кислороде для полноценного существования.

Археи— это практически бесцветные одноклеточные организмы.

Патогенных бактерий нужно остерегаться, ведь они вызывают инфекции, грамотрицательные микроорганизмы считаются устойчивыми к антителам. Много информации есть о почвенных, гнилостных микроорганизмах, которые бывают вредными, полезными.

В общей сложности спириллы не представляют собой опасности, но некоторые виды могут вызывать содоку.

Разновидности полезных бактерий

О том, что бациллы бывают полезные и вредные, знают даже школьники. Некоторые названия люди знают на слух (стафилококк, стрептококк, чумная палочка). Это вредные существа, которые мешают не только внешней среде, но и человеку. Есть микроскопические бациллы, которые вызывают пищевые отравления.

Обязательно нужно знать полезную информацию о молочнокислых, пищевых, пробиотических микроорганизмах. Например, пробиотики, иными словами хорошие организмы, часто применяют в медицинских целях. Вы спросите: для чего? Они не позволяют вредным бактериям размножаться внутри человека, укрепляют защитные функции кишечника, хорошо влияют на иммунную систему человека.

Бифидобактерии также очень полезны для кишечника. Молочнокислые вибрионы включают в себя около 25 видов. В человеческом организме они имеются в огромных количествах, но не являются опасными. Наоборот, защищают желудочно-кишечный тракт от гнилостных и других микробов.

Говоря о хороших, нельзя не упомянуть и огромный вид стрептомицетов. Они известны тем, кто принимал левомицетин, эритромицин и подобные препараты.

Есть такие микроорганизмы, как азотобактеры. Они много лет живут в грунтах, благотворно влияют на почву, стимулируют рост растений, очищают землю от тяжелых металлов. Они незаменимы в медицине, сельском хозяйстве, медицине, пищевой промышленности.

Виды изменчивости бактерий

По своей природе микробы очень непостоянные, они быстро умирают, они могут быть спонтанными, индуцированными. Мы не будем вдаваться в подробности об изменчивости бактерий, так как эта информация больше интереснатем, кого интересует микробиология и все ее ответвления.

Виды бактерий для септиков

Жители частных домов понимают острую необходимость очищать сточные воды, а также выгребные ямы. Сегодня быстро и качественно очистить стоки можно с помощью специальных бактерий для септиков. Для человека это огромное облегчение, так как заниматься чисткой канализации—дело не из приятных.

Мы уже прояснили, где применяется биологический вид очистки стоков, а теперь поговорим о самой системе. Бактерии для септиков выращиваются в лабораториях, они убивают неприятный запах стоков, дезинфицируют дренажные колодцы, выгребные ямы, уменьшают объем сточных вод. Есть три вида бактерий, которые используются для септиков:

  • аэробные;
  • анаэробные;
  • живые (биоактиваторы).

Очень часто люди используют комбинированные методы очистки. Строго следуйте инструкциям на препарате, следите, чтобы уровень воды способствовал нормальному выживанию бактерий. Также не забывайте использовать канализацию как минимум раз в две недели, чтобы бактериям было чем питаться, иначе они умрут. Не забывайте, что хлор из порошков и жидкостей для чистки, убивает бактерии.

Самыми популярными являются бактерии Доктор Робик, Септифос, Вэйст Трит.

Виды бактерий в моче

По идее бактерий в моче быть не должно, но после различных действий и ситуаций, крошечные микроорганизмы поселяются, где им вздумается: во влагалище, в носу, в воде и так далее. Если бактерии были обнаружены во время анализов, это означает, что человек страдает от болезней почек, мочевого пузыря или мочеточников. Есть несколько путей, по которым микроорганизмы попадают в мочу. Перед лечением очень важно исследовать и точно определить тип бактерий и способ попадания. Определить это можно при биологическом посеве мочи, когда бактерии помещают в благоприятную среду обитания. Далее проверяется реакция бактерий на различные антибиотики.

Мы желаем вам оставаться всегда здоровыми. Следите за собой, регулярно мойте руки, берегите свой организм от вредоносных бактерий!

Бактерии представляют собой одноклеточные безъядерные микроорганизмы, относящиеся к классу прокариотов. На сегодняшний день существует более 10 тысяч изученных видов (предполагается что их около миллиона), многие из них являются патогенными и могут возбуждать различные заболевания у человека, животных и растений.

Для их размножения необходимо достаточное количество кислорода и оптимальная влажность. Размеры бактерий варьируются от десятых долей микрона до нескольких микронов, по форме они делятся на шаровидные (кокки), палочковидные, нитеобразные (спириллы), в виде изогнутых палочек (вибрионы).

Первые организмы, появившиеся миллиарды лет назад

(Бактерии и микробы под микроскопом )

Бактерии играют очень важную роль на нашей планете, являясь важным участником любого биологического круговорота веществ, основы существования всего живого на Земле. Большая часть как органических, так и неорганических соединений под влиянием бактерий существенно изменяются. Бактерии, появившиеся на нашей планете более 3,5 миллиарда лет назад, стояли у первоисточников основания живой оболочки планеты и до сих пор активно перерабатывают неживую и живую органику и вовлекают результаты обменного процесса в биологический круговорот.

(Строение бактерии )

Сапрофитные почвенные бактерии играют огромную роль в почвообразовательном процессе, именно они перерабатывают остатки растительных и животных организмов и помогают в образовании гумуса и перегноя, повышающих её плодородие. Наиболее важную роль в процессе повышения плодородия почвы играют азотофиксирующие клубеньковые бактерии-симбионты, «живущие» на корнях бобовые растений, благодаря им почва обогащается ценными азотными соединениями, необходимым для роста растений. Они улавливают азот из воздуха, связывают его и создают соединения в форме, доступной для растений.

Значение бактерий в круговороте веществ в природе

Бактерии обладают отличными санитарными качествами, они удаляют грязь в сточных водах, расщепляют органические вещества, превращая их в безвредную неорганику. Уникальные цианобактерии, зародившиеся в первозданных морях и океанах 2 миллиарда лет назад, были способны к процессу фотосинтеза, они поставляли в окружающую среду молекулярный кислород, и таким образом сформировали атмосферу Земли и создали озоновый слой, защищающий нашу планету от пагубного влияния ультрафиолетовых лучей. Многие полезные ископаемые создавались на протяжении многих тысяч лет под воздействием воздуха, температуры, воды и бактерий на биомассу.

Бактерии наиболее распространенные организмы на Земле, они определяют верхнюю и нижнюю границу биосферы, проникают повсюду и отличаются большой выносливостью. Если бы бактерий не было, умершие животные и растения не перерабатывались бы дальше, а просто накапливались в огромных количествах, без них биологический круговорот станет невозможным, и вещества не смогут вновь возвращаться в природу.

Бактерии - важное звено в трофических цепях питания, они выступают в роли редуцентов, раскладывая остатки умерших животных и растений, тем самым очищая Землю. Многие бактерии играют в организме млекопитающих роль симбионтов и помогают им разложить клетчатку, которую те не в состоянии переварить. Процесс жизнедеятельности бактерий — источник витамина К и витаминов группы В, играющих важную роль в процессе нормального функционирования их организмов.

Полезные и вредные бактерии

Большое количество болезнетворных бактерий могут приносить здоровью человека, домашних животных и культурных растений огромный вред, а именно вызывать такие инфекционные заболевания как дизентерию, туберкулез, холеру, бронхит, бруцеллез и сибирскую язву (животные), бактериоз (растения).

Существуют бактерии, приносящие человеку и его хозяйственной деятельности пользу. Люди научились использовать бактерии на промышленных производствах, изготовляя ацетон, этиловый и бутиловый спирт, уксусную кислоту, ферменты, гормоны, витамины, антибиотики, белково-витаминные препараты. Очищающая способность бактерий применяется на водочистных сооружениях, для очистки сточных вод и превращения органики в безвредные неорганические вещества. Современные достижения генных инженеров позволили получать такие лекарственные препараты как инсулин, интерферон из бактерии кишечной палочки, кормовой и пищевой белок из некоторых бактерий. В сельском хозяйстве используют специальные бактериальные удобрения, также с помощью бактерий фермеры борются с различными сорняками и вредными насекомыми.

(Бактерии любимое блюдо инфузории туфельки )

Бактерии участвуют в процессе дубления кожи, сушки табачных листьев, с их помощью изготовляют шелк, каучук, какао, кофе, замачивают коноплю, лен, выщелачивают металлы. Они участвуют в процессе изготовления лекарств, таких сильнейших антибиотиков как тетрациклин и стрептомицин. Без молочнокислых бактерий, вызывающих процесс брожения, невозможен процесс приготовления таких молочных продуктов как простокваша, ряженка, ацидофилин, сметана, масло, кефир, йогурт, творог. Также молочнокислые бактерии участвуют в процессе засолки огурцов, квашении капусты, силосовании кормов.

Введение

Современная биотехнология опирается на достижения естествознания, техники, технологии, биохимии, микробиологии, молекулярной биологии, генетики. Биологические методы используются в борьбе с загрязнением окружающей среды и вредителями растительных и животных организмов. К достижениям биотехнологии можно также отнести применение иммобилизованных ферментов, получение синтетических вакцин, использование клеточной технологии в племенном деле.

Бактерии, грибы, водоросли, лишайники, вирусы, простейшие в жизни людей играют значительную роль. С давних времен люди использовали их в процессах хлебопечения, приготовления вина и пива, в различных производствах.

Микроорганизмы помогают людям в производстве эффективных питательных белковых веществ и биологического газа. Их используют при применении биотехнических методов очистки воздуха и сточных вод, при использовании биологических методов уничтожения сельскохозяйственных вредителей, при получении лечебных препаратов, при уничтожении утильсырья.

Основная цель данной работы – изучить методы и условия культивирования микроорганизмов

· Ознакомиться с областями применения микроорганизмов

· Изучить морфологию и физиологию микроорганизмов

· Изучить основные виды и состав питательных сред

· Дать понятие и ознакомиться с биореактором

· Раскрыть основные методы культивирования микроорганизмов

Морфология и физиология микроорганизмов

Морфология

Классификация микроорганизмов

Бактерии

Бактерии - это одноклеточные прокариотные микроорганизмы. Ве­личина их измеряется в микрометрах (мкм). Различают три основные формы: шаровидные бактерии - кокки, палочковидные и извитые.

Кокки (греч. kokkos - зерно) имеют шаровидную или слегка вытя­нутую форму. Различаются между собой в зависимости от того, как они располагаются после деления. Одиночно расположенные кокки - мик­рококки, расположенные попарно - диплококки. Стрептококки де­лятся в одной плоскости и после деления не расходятся, образуя цепоч­ки (греч. streptos - цепочка). Тетракокки образуют сочетания из четырех кокков в результате деления в двух взаимно перпендикулярных плоскостях, сарцины (лат. sarcio - связывать) образуются при делении в трех взаимно перпендику­лярных плоскостях и имеют вид скоплений по 8-16 кокков. Стафило­кокки в результате беспорядочного деления образуют скопления, напо­минающие гроздь винограда (греч. staphyle - виноградная гроздь).

Палочковидные бактерии (греч. bacteria - палочка), способные образовывать споры, называют бациллами в том случае, если спора не шире самой палочки, и клостридиями, если диаметр споры превышает диаметр палочки. Палочковидные бактерии, в отличие от кокков, разнообразны по ве­личине, форме и расположению клеток: короткие (1 -5 мкм) толстые, с зак­ругленными концами бактерии кишечной группы; тонкие, слегка изогну­тые палочки туберкулеза; располагающиеся под углом тонкие палочки дифтерии; крупные (3-8 мкм) палочки сибирской язвы с "обрубленными" концами, образующие длинные цепочки - стрептобациллы.

К извитым формам бактерий относятся вибрионы, имеющие слегка изогнутую форму в виде запятой (холерный вибрион) и спириллы, состоящие из нескольких завитков. К извитым формам также относятся кампилобактеры, похожие под микроскопом на крылья летящей чайки.

Структура бактериальной клетки.

Структурные элементы бактери­альной клетки можно условно разделить на:

а) постоянные структурные элементы - имеются у каждого вида бактерий, в течение всей жизни бакте­рии; это клеточная стенка, цитоплазматическая мембрана, цитоплазма, нуклеоид;

Б) непостоянные структурные элементы, которые способны обра­зовывать не все виды бактерий, а те бактерии, которые образуют их, могут терять их и вновь приобретать в зависимости от условий существования. Это капсула, включения, пили, споры, жгутики.

Рис. 1.1. Структура бактериальной клетки

Клеточная стенка покрывает всю поверхность клетки. У грамположительных бактерий клеточная стенка более толстая: до 90% - это полимерное соединение пептидогликан, связанный с тейхоевыми кис­лотами, и слой белка. У грамотрицательных бактерий клеточная стенка тоньше, но сложнее по составу: состоит из тонкого слоя пептидогликана, липополисахаридов, белков; она покрыта наружной мембраной.

Функции клеточной стенки состоят в том, что она:

Является осмотическим барьером,

Определяет форму бактериальной клетки,

Защищает клетку от воздействий окружающей среды,

Несет разнообразные рецепторы, способствующие прикреплению фагов, колицинов, а также различных химических соединений,

Через клеточную стенку в клетку поступают питательные вещества и выделяются продукты обмена,

В клеточной стенке локализован О-антиген и с ней связан эндотоксин (липид А) бактерий.

Цитоплазматическая мембрана

К клеточной стенке бактерий примыкает цитоплазматическая мембрана , строение которой аналогично мембранам эукариотов (состоит из двойного слоя липидов , главным образом фосфолипидов со встроенными поверхностными и интегральными белками ). Она обеспечивает :

Селективную проницаемость и транспорт растворимых веществ в клетку,

Транспорт электронов и окислительное фосфорилирование,

Выделение гидролитических экзоферментов, биосинтез различных полимеров.

Цитоплазматическая мембрана ограничивает цитоплазму бактерий , которая представляет собой гранулярную структуру . В цитоплазме локализованы рибосомы и бактериальный нуклеоид , в ней также могут находиться включения и плазмиды (внехромосомная ДНК). Кроме обязательных структур бактериальные клетки могут иметь споры.

Цитоплазма - внутреннее гелеобразное содержимое бактериальной клетки, пронизано мембранными структурами, создающими жест­кую систему. В цитоплазме содержатся рибосомы (в которых осуще­ствляется биосинтез белков), ферменты, аминокислоты, белки, рибонуклеиновые кислоты.

Нуклеоид - это хромосома бактерий, двойная нить ДНК, коль­цевидно замкнутая, связанная с мезосомой. В отличие от ядра эукариотов, нить ДНК свободно располагается в цитоплазме, не имеет ядерной оболочки, ядрышка, белков-гистонов. Нить ДНК во много раз длиннее самой бактерии (например, у кишечной палочки длина хро­мосомы более 1 мм).

Помимо нуклеоида, в цитоплазме могут находиться внехромосомные факторы наследственности, называемые плазмидами. Это ко­роткие кольцевидные нити ДНК, прикрепленные к мезосомам.

Включения содержатся в цитоплазме некоторых бактерий в виде зерен, которые можно обнаружить при микроскопии. Большей частью это запас питательных веществ.

Пили (лат. pili - волоски) иначе реснички, фимбрии, бахромки, вор­синки - короткие нитевидные отростки на поверхности бактерий.

Жгутики. Многие виды бактерий способны передвигаться благо­даря наличию жгутиков. Из патогенных бактерий только среди пало­чек и извитых форм имеются подвижные виды. Жгутики представляют собой тонкие эластичные нити, длина которых у некоторых видов в несколько раз больше длины тела самой бактерии.

Число и располо­жение жгутиков является характерным видовым признаком бактерий. Различают бактерии: монотрихи - с одним жгутиком на конце тела, лофотрихи - с пучком жгутиков на конце, амфитрихи, имеющие жгути­ки на обоих концах, и перитрихи, у которых жгутики расположены по всей поверхности тела. К монотрихам относится холерный вибрион, к перитрихам - сальмонеллы брюшного тифа.

Капсула - наружный слизистый слой, который имеется у многих бактерий. У одних видов он настолько тонок, что обнаруживается толь­ко в электронном микроскопе - это микрокапсула. У других видов бак­терий капсула хорошо выражена и видна в обычном оптическом мик­роскопе - это макрокапсула.

Микоплазмы

Микоплазмы относятся к прокариотам, размеры их 125-200 нм. Это наиболее мелкие из клеточных микробов, величина их близка к преде­лу разрешающей способности оптического микроскопа. У них отсут­ствует клеточная стенка. С отсутствием клеточной стенки связаны характерные осо­бенности микоплазм. Они не имеют постоянной формы, поэтому встре­чаются сферические, овальные, нитевидные формы.

Риккетсии

Хламидии

Актиномицеты

Актиномицеты - одноклеточные микроорганизмы, относятся к прокариотам. Их клетки имеют такую же структуру, как бактерии: кле­точную стенку, содержащую пептидогликан, цитоплазматическую мем­брану; в цитоплазме расположены нуклеоид, рибосомы, мезосомы, внутриклеточные включения. Поэтому патогенные актиномицеты чувс­твительны к антибактериальным препаратам. В то же время они име­ют сходную с грибами форму ветвящихся переплетающихся нитей, а некоторые актиномицеты, относящиеся к семейству стрентомицет, раз­множаются спорами. Другие семейства актиномицет размножаются путем фрагментации, то есть распада нитей на отдельные фрагменты.

Актиномицеты широко распространены в окружающей среде, осо­бенно в почве, участвуют в круговороте веществ в природе. Среди актиномицетов есть продуценты антибиотиков, витаминов, гормонов. Большинство антибиотиков, применяемых в настоящее время, проду­цируется актиномицетами. Это стрептомицин, тетрациклин и другие.

Спирохеты.

Спирохеты относятся к прокариотам. Имеют признаки, общие как с бактериями, так и с простейшими микроорганизмами. Это од­ноклеточные микробы, имеющие форму длинных тонких спирально изогнутых клеток, способны к активному движению. В неблагоприят­ных условиях некоторые из них могут переходить в форму цисты.

Исследования в электронном микроскопе позволили установить структуру клеток спирохет. Это цитоплазматические цилиндры, окру­женные цитоплазматической мембраной и клеточной стенкой, содер­жащей пептидогликан. В цитоплазме находятся нуклеоид, рибосомы, мезосомы, включения.

Под цитоплазматической мембраной располо­жены фибриллы, обеспечивающие разнообразное движение спирохет - поступательное, вращательное, сгибательное.

Патогенные представители спирохет: Treponema pallidum - вызывает сифилис, Borrelia recurrentis - возвратный тиф, Borrelia burgdorferi - болезнь Лайма, Leptospira interrogans - лептоспироз.

Грибы

Грибы (Fungi, Mycetes) - эукариоты, низшие растения, лишенные хлорофилла, в связи с чем они не синтезируют органические соедине­ния углерода, то есть это гетеротрофы, имеют дифференцированное ядро, покрыты оболочкой, содержащей хитин. В отличие от бактерий, грибы не имеют в составе оболочки пептидогликана, поэтому нечув­ствительны к пенициллинам. Для цитоплазмы грибов характерно при­сутствие большого количества разнообразных включений и вакуолей.

Среди микроскопических грибов (микромицетов) имеются однок­леточные и многоклеточные микроорганизмы, различающиеся между собой по морфологии и способам размножения. Для грибов характер­но разнообразие способов размножения: деление, фрагментация, поч­кование, образование спор - бесполых и половых.

При микробиологических исследованиях наиболее часто прихо­диться сталкиваться с плесенями, дрожжами и представителями сбор­ной группы так называемых несовершенных грибов.

Плесени образуют типичный мицелий, стелющийся по питатель­ному субстрату. От мицелия вверх подымаются воздушные ветви, ко­торые оканчиваются плодоносящими телами различной формы, несущими споры.

Мукоровые или головчатые плесени (Mucor) - одноклеточные гри­бы с шаровидным плодоносящим телом, наполненным эндоспорами.

Плесени рода Aspergillus - многоклеточные грибы с плодоносящим телом, при микроскопии напоминающим наконечник лейки, разбрыз­гивающей струйки воды; отсюда название "леечная плесень". Некото­рые виды аспергилл используются в промышленности для производства лимонной кислоты и других веществ. Есть виды, вызывающие заболе­вания кожи и легких у человека - аспергиллезы.

Плесени рода Penicillum, или кистевики - многоклеточные грибы с плодоносящим телом в виде кисточки. Из некоторых видов зеленой плесени был получен первый антибиотик - пенициллин. Среди пенициллов есть патогенные для человека виды, вызывающие пенициллиоз.

Различные виды плесеней могут быть причиной порчи пищевых про­дуктов, медикаментов, биологических препаратов.

Дрожжи - дрожжевые грибы (Saccharomycetes, Blastomycetes) име­ют форму круглых или овальных клеток, во много раз крупнее бакте­рий. Средний размер дрожжевых клеток приблизительно равен попе­речнику эритроцита (7-10 мкм).

Вирусы

Вирусы - (лат. virus яд) - мельчайшие микроорганизмы, не имеющие клеточного строения, белоксинтезирующей системы и способные к воспроизведению лишь в клетках высокоорганизованных форм жизни. Они широко распространены в природе, поражают животных, растения и другие микроорганизмы.

Зрелая вирусная частица, известная как вирион, состоит из нуклеиновой кислоты - генетический материал (ДНК либо РНК), который несет информацию о нескольких типах белков, необходимых для образования нового вируса - покрытой защитной белковой оболочкой - капсидом. Капсид складывается из одинаковых белковых субъединиц, называемыхкапсомерами . Вирусы могут также иметь липидную оболочку поверх капсида (суперкапсид ), образованную из мембраны клетки-хозяина. Капсид состоит из белков, кодируемых вирусным геномом, а его форма лежит в основе классификации вирусов по морфологическому признаку . Сложноорганизованные вирусы, кроме того, кодируют специальные белки, помогающие в сборке капсида. Комплексы белков и нуклеиновых кислот известны как нуклеопротеины , а комплекс белков вирусного капсида с вирусной нуклеиновой кислотой называется нуклеокапсидом .

Рис. 1.4. Схематичное строение вируса: 1 - сердцевина (однонитчатая РНК); 2 - белковая оболочка (Капсид); 3 - дополнительная липопротеидная оболочка; 4 - Капсомеры (структурные части Капсида).

Физиология микроорганизмов

Физиология микроорганизмов изучает жизнедеятельность микробных клеток, процессы их питания, дыхания, роста, размножения, закономерности взаимодействия с окружающей средой.

Метаболизм

Метаболизм – совокупность биохимических процессов, направленных на получение энергии и воспроизведение клеточного материала.

Особенности метаболизма у бактерий:

1) многообразие используемых субстратов;

2) интенсивность процессов метаболизма;

4) преобладание процессов распада над процессами синтеза;

5) наличие экзо– и эндоферментов метаболизма.

Метаболизм складывается из двух взаимосвязанных процессов: катаболизма и анаболизма.

Катаболизм (энергетический метаболизм) – это процесс расщепления крупных молекул до более простых, в результате которого выделяется энергия, накапливающаяся в форме АТФ:

а) дыхание;

б) брожение.

Анаболизм (конструктивный метаболизм) – обеспечивает синтез макромолекул, из которых строится клетка:

а) анаболизм (с затратами энергии);

б) катаболизм (с выделением энергии);

При этом используется энергия, полученная в процессе катаболизма. Для метаболизма бактерий характерны высокая скорость процесса и быстрая адаптация к меняющимся условиям окружающей среды.

В микробной клетке ферменты являются биологическими катализаторами. По строению выделяют:

1) простые ферменты (белки);

2) сложные; состоят из белковой (активного центра) и небелковой частей; необходимы для активизации ферментов.

По месту действия выделяют:

1) экзоферменты (действуют вне клетки; принимают участие в процессе распада крупных молекул, которые не могут проникнуть внутрь бактериальной клетки; характерны для грамположительных бактерий);

2) эндоферменты (действуют в самой клетке, обеспечивают синтез и распад различных веществ).

В зависимости от катализируемых химических реакций все ферменты делят на шесть классов:

1) оксидоредуктазы (катализируют окислительно-восстановительные реакции между двумя субстратами);

2) трансферазы (осуществляют межмолекулярный перенос химических групп);

3) гидролазы (осуществляют гидролитическое расщепление внутримолекулярных связей);

4) лиазы (присоединяют химические группы по двум связям, а также осуществляют обратные реакции);

5) изомеразы (осуществляют процессы изомеризации, обеспечивают внутреннюю конверсию с образованием различных изомеров);

6) лигазы, или синтетазы (соединяют две молекулы, вследствие чего происходит расщепление пирофосфатных связей в молекуле АТФ).

Питание

Под питанием понимают процессы поступления и выведения питательных веществ в клетку и из клетки. Питание в первую очередь обеспечивает размножение и метаболизм клетки.

Различные органические и неорганические вещества поступают в бактериальную клетку в процессе питания. Специальных органов питания у бактерий нет. Вещества проникают через всю поверхность клетки, в виде мелких молекул. Такой способ питания называется голофитным . Необходимым условием для прохождения питательных веществ в клетку является их растворимость в воде и малая величина (т.е. белки должны быть гидролизованы до аминокислот, углеводы – до ди- или моносахаридов и т. д.).

Основным регулятором поступления веществ в бактериальную клетку является цитоплазматическая мембрана. Существует четыре основных механизма поступления веществ:

-пассивная диффузия - по градиенту концентрации, энергонезатратная, не имеющая субстратной специфичности;

- облегченная диффузия - по градиенту концентрации, субстратспецифичная, энергонезатратная, осуществляется при участии специализированных белков пермеаз ;

- активный транспорт- против градиента концентрации, субстратспецифичен (специальные связывающие белки в комплексе с пермеазами), энергозатратный (за счет АТФ), вещества поступают в клетку в химически неизмененном виде;

- транслокация (перенос групп) - против градиента концентрации, с помощью фосфотрансферазной системы, энергозатратна, вещества (преимущественно сахара) поступают в клетку в форфорилированном виде.

Основные химические элементы- органогены , необходимые для синтеза органичеких соединений- углерод, азот, водород, кислород.

Типы питания. Широкому распространению бактерий способствует разнообразные типы питания. Микробы нуждаются в углероде, кислороде, азоте, водороде, сере, фосфоре и других элементах (органогенах).

В зависимости от источника получения углерода бактерии делят на:

1) аутотрофы (используют неорганические вещества – СО2);

2) гетеротрофы;

3) метатрофы (используют органические вещества неживой природы);

4) паратрофы (используют органические вещества живой природы).

Процессы питания должны обеспечивать энергетические потребности бактериальной клетки.

По источникам энергии микроорганизмы делят на:

1) фототрофы (способны использовать солнечную энергию);

2) хемотрофы (получают энергию за счет окислительно-восстановительных реакций);

3) хемолитотрофы (используют неорганические соединения);

4) хемоорганотрофы (используют органические вещества).

Среди бактерий выделяют:

1) прототрофы (способны сами синтезировать необходимые вещества из низкоорганизованных);

2) ауксотрофы (являются мутантами прототрофов, потерявшими гены; ответственны за синтез некоторых веществ – витаминов, аминокислот, поэтому нуждаются в этих веществах в готовом виде).

Микроорганизмы ассимилируют питательные вещества в виде небольших молекул, поэтому белки, полисахариды и другие биополимеры могут служить источниками питания только после расщепления их экзоферментами до более простых соединений.

Дыхание микроорганизмов.

Путем дыхания микроорганизмы добывают энергию. Дыхание- биологический процесс переноса электронов через дыхательную цепь от доноров к акцепторам с образованием АТФ. В зависимости от того, что является конечным акцептором электронов, выделяют аэробное и анаэробное дыхание. При аэробном дыхании конечным акцептором электронов является молекулярный кислород (О 2), при анаэробном- связанный кислород (-NO 3 , =SO 4 , =SO 3).

Аэробное дыхание донор водорода H 2 O

Анаэробное дыхание

Нитратное окисление NO 3

(факультативные анаэробы) донор водорода N 2

Сульфатное окисление SO 4

(облигатные анаэробы) донор водорода H 2 S

По типу дыхания выделяют четыре группы микроорганизмов.

1.Облигатные (строгие) аэробы . Им необходим молекулярный (атмосферный) кислород для дыхания.

2.Микроаэрофилы нуждаются в уменьшенной концентрации (низком парциальном давлении) свободного кислорода. Для создания этих условий в газовую смесь для культивирования обычно добавляют CO 2 , например до 10- процентной концентрации.

3.Факультативные анаэробы могут потреблять глюкозу и размножаться в аэробных и анаэробных условиях. Среди них имеются микроорганизмы, толерантные к относительно высоким (близких к атмосферным) концентрациям молекулярного кислорода - т.е. аэротолерантные,

а также микроорганизмы которые способны в определенных условиях переключаться с анаэробного на аэробное дыхание.

4.Строгие анаэробы размножаются только в анаэробных условиях т.е. при очень низких концентрациях молекулярного кислорода, который в больших концентрациях для них губителен. Биохимически анаэробное дыхание протекает по типу бродильных процессов, молекулярный кислород при этом не используется.

Аэробное дыхание энергетически более эффективно (синтезируется большее количество АТФ).

В процессе аэробного дыхания образуются токсические продукты окисления (H 2 O 2 - перекись водорода, -О 2 - свободные кислородные радикалы), от которых защищают специфические ферменты, прежде всего каталаза, пероксидаза, пероксиддисмутаза . У анаэробов эти ферменты отсутствуют, также как и система регуляции окислительно- восстановительного потенциала (rH 2).

Рост и размножение бактерий

Рост бактерий – увеличение бактериальной клетки в размерах без увеличения числа особей в популяции.

Размножение бактерий – процесс, обеспечивающий увеличение числа особей в популяции. Бактерии характеризуются высокой скоростью размножения.

Рост всегда предшествует размножению. Бактерии размножаются поперечным бинарным делением, при котором из одной материнской клетки образуются две одинаковые дочерние.

Процесс деления бактериальной клетки начинается с репликации хромосомной ДНК. В точке прикрепления хромосомы к цитоплазматической мембране (точке-репликаторе) действует белок-инициатор, который вызывает разрыв кольца хромосомы, и далее идет деспирализация ее нитей. Нити раскручиваются, и вторая нить прикрепляется к цитоплазматической мембране в точке-прорепликаторе, которая диаметрально противоположна точке-репликатору. За счет ДНК-полимераз по матрице каждой нити достраивается точная ее копия. Удвоение генетического материала – сигнал для удвоения числа органелл. В септальных мезосомах идет построение перегородки, делящей клетку пополам. Двухнитевая ДНК спирализуется, скручивается в кольцо в точке прикрепления к цитоплазматической мембране. Это является сигналом для расхождения клеток по септе. Образуются две дочерние особи.

Размножение бактерий определяется временем генерации. Это период, в течение которого осуществляется деление клетки. Продолжительность генерации зависит от вида бактерий, возраста, состава питательной среды, температуры и др.

Питательные среды

Для культивирования бактерий используют питательные среды, к которым предъявляется ряд требований.

1. Питательность. Бактерии должны содержать все необходимые питательные вещества.

2. Изотоничность. Бактерии должны содержать набор солей для поддержания осмотического давления, определенную концентрацию хлорида натрия.

3. Оптимальный рН (кислотность) среды. Кислотность среды обеспечивает функционирование ферментов бактерий; для большинства бактерий составляет 7,2–7,6.

4. Оптимальный электронный потенциал, свидетельствующий о содержании в среде растворенного кислорода. Он должен быть высоким для аэробов и низким для анаэробов.

5. Прозрачность (наблюдался рост бактерий, особенно для жидких сред).

6. Стерильность (отсутствие других бактерий).

Классификация питательных сред

1. По происхождению:

1) естественные (молоко, желатин, картофель и др.);

2) искусственные – среды, приготовленные из специально подготовленных природных компонентов (пептона, аминопептида, дрожжевого экстракта и т. п.);

3) синтетические – среды известного состава, приготовленные из химически чистых неорганических и органических соединений (солей, аминокислот, углеводов и т. д.).

2. По составу:

1) простые – мясопептонный агар, мясопептонный бульон, агар Хоттингера и др.;

2) сложные – это простые с добавлением дополнительного питательного компонента (кровяного, шоколадного агара): сахарный бульон,

желчный бульон, сывороточный агар, желточно-солевой агар, среда Китта-Тароцци, среда Вильсона-Блера и др.

3. По консистенции:

1) твердые (содержат 3–5 % агар-агара);

2) полужидкие (0,15-0,7 % агар-агара);

3) жидкие (не содержат агар-агара).

Агар- полисахарид сложного состава из морских водорослей, основной отвердитель для плотных (твердых) сред.

4. В зависимости от назначения ПС различают:

Дифференциально-диагностические

Элективные

Селективные

Ингибиторные

Среды для поддержания культуры

Накопительные (насыщения, обогащения)

Консервирующие

Контрольные.

Дифференциально-диагностические - это сложные среды, на кото­рых микроорганизмы разных видов растут по-разному, в зависимости от биохимических свойств культуры. Они предназначены для иденти­фикации видовой принадлежности микроорганизмов, широко исполь­зуются в клинической бактериологии и проведении генетических ис­следований.

Селективные, ингибиторные и элективные ПС предназначены для выращивания строго определенного вида микроорганизма. Эти среды служат для выделения бактерий из смешанных популяций и диффе­ренцирования их от сходных видов. В их состав добавляют различные вещества, подавляющие рост одних видов и не влияющие на рост дру­гих.

Среду можно сделать селективной за счет величины рН. В последнее время в качестве веществ, придающих средам селективный характер, применяют антимикробные агенты, такие как антибиотики и другие химиотерапевтические вещества.

Элективные ПС нашли широкое применение при выделении возбу­дителей кишечных инфекций. При добавлении малахитовой или брил­лиантовой зелени, солей желчных кислот (в частности, таурохолево-кислого натрия), значительного количества хлорида натрия или ли­моннокислых солей подавляется рост кишечной палочки, но рост па­тогенных бактерий кишечной группы не ухудшается. Некоторые элек­тивные среды готовят с добавлением антибиотиков.

Среды для поддержания культуры составляют так, чтобы в них не было селективных веществ, способных вызывать изменчивость куль­тур.

Накопительные ПС (обогащения, насыщения) - это среды, на кото­рых определенные виды культур или группы культур растут быстрее и интенсивнее сопутствующих. При культивировании на этих средах обычно не применяются ингибиторные вещества, а, наоборот, создают благоприятные условия для определенного присутствующего в смеси вида. Основой сред накопления являются желчь и ее соли, тетратионат натрия, различные красители, селенитовые соли, антибиотики и др.

Консервирующие среды служат для первичного посева и транспор­тировки исследуемого материала.

Выделяют также контрольные ПС, которые применяют для контро­ля стерильности и общей бактериальной обсемененности антибиоти­ков.

5. По набору питательных веществ выделяют:

Минимальные среды, которые содержат лишь источники питания, достаточные для роста;

Богатые среды, в состав которых входят многие дополнительные вещества.

6. По масштабам использования ПС подразделяются на:

> производственные (технологические);

> среды для научных исследований с ограниченным по объему применением.

Производственные ПС должны быть доступными, экономичными, удобными в приготовлении и использовании для крупномасштабного культивирования. Среды для научных исследований, как правило, бы­вают синтетическими и богатыми по набору питательных веществ.

Выбор сырьевых источников для конструирования питательных сред

Качество ПС во многом определяется полноценностью состава пи­тательных субстратов и исходного сырья, используемого для их при­готовления. Большое разнообразие видов сырьевых источников ставит сложную задачу выбора наиболее перспективных, пригодных для кон­струирования ПС требуемого качества. Определяющую роль в данном вопросе играют, прежде всего, биохимические показатели состава сы­рья, от которых зависит выбор способа и режимов его переработки с целью наиболее полного и эффективного использования содержащих­ся в нем питательных веществ.

Для получения ПС с особо ценными свойствами применяют прежде всего традиционные источники белка животного происхождения, а именно мясо крупного рогатого скота (КРС), казеин, рыбу и продукты ее переработки. Наиболее полно разработаны и широко применяются ПС на основе мяса КРС.

Учитывая дефицит кильки каспийской, широко применяемой в не­далеком прошлом, для получения рыбных питательных основ стала использоваться более дешевая и доступная непищевая продукция рыб­ной промышленности - сухой криль, отходы переработки мяса криля, филетированный минтай и его перезрелую икру. Наибольшее же рас­пространение получила рыбная кормовая мука (РКМ), удовлетворяю­щая требованиям биологической ценности, доступности и относитель­ной стандартности.

Довольно широкое распространение получили ПС на основе казеи­на, который содержит все компоненты, имеющиеся в молоке: жир, лак­тозу, витамины, ферменты и соли. Однако необходимо отметить, что в связи с удорожанием продуктов переработки молока, а также повыше­нием спроса на казеин на мировом рынке, применение его носит не­сколько ограниченный характер.

Из непищевых источников белка животного происхождения в каче­стве сырья для конструирования полноценных ПС необходимо выде­лить кровь убойных животных, которая богата биологически активны­ми веществами и микроэлементами и содержит продукты клеточного и тканевого обмена.

Гидролизаты крови сельскохозяйст­венных животных используются в качестве заменителей пептона в дифференциально-диагностических питательных средах.

К другим видам белоксодержащего сырья животного происхожде­ния, которые могут быть использованы для конструирования ПС, от­носятся: плацента и селезенка КРС, сухой белковый концентрат - про­дукт переработки мясных отходов, спилковая обрезь, получаемая при обработке кожи, эмбрионы домашних птиц - отход вакцинного произ­водства, кровезаменители с истекшим сроком годности, творожная сыворотка, мягкие ткани моллюсков и ластоногих.

Перспективно использование тушек пушных зверей из зверохозяйств, крови КРС, получаемой на мясокомбинате, обезжиренного молока и молочной сыворотки (отходы маслозаводов).

В целом же ПС, приготовленные из сырья животного происхожде­ния, имеют высокое содержание основных питательных компонентов, являются полноценными и сбалансированными по аминокислотному составу и достаточно хорошо изучены.

Из продуктов растительного происхождения в качестве белкового субстрата для ПС возможно использование кукурузы, сои, гороха, кар­тофеля, люпина и др. Однако, растительное сельскохозяйственное сы­рье содержит белок, несбалансированный состав которого зависит от условий выращивания культур, а также липиды в больших количест­вах, чем продукты животного происхождения.

Обширную группу составляют ПС, изготавливаемые из белкового сырья микробного происхождения (дрожжи, бактерии и т.д.). Амино­кислотный состав микроорганизмов, служащих субстратом для приготовления ПС, хорошо изучен, а биомасса используемых микроорга­низмов является полноценной по составу питательных веществ и ха­рактеризуется повышенным содержанием лизина и треонина.

Разработан целый ряд ПС комбинированного состава из белковых субстратов различного происхождения. К ним относятся дрожжевая казеиновая питательная среда, дрожжевая мясная и т.д. Основой большинства известных ПС являются гидролизаты казеи­на, мяса КРС и рыбы (до 80%).

Удельный же вес непищевого сырья в технологии конструирования ПС составляет всего 15% и в дальней­шем требует увеличения.

Используемое для получения питательной основы (ПС) непищевое сырье должно удовлетворять определенным требованиям, а именно быть:

^ полноценным (количественный и качественный состав сырья должен, в основном, удовлетворять питательным потребностям микро­организмов и клеток, для которых разрабатываются ПС);

^ доступным (иметь достаточно обширную сырьевую базу);

^ технологичным (затраты на внедрение в производство должны осуществляться с использованием имеющегося оборудования или су­ществующей технологии);

^ экономичным (затраты на внедрение технологии при переходе на новое сырье и его переработку не должны превосходить нормы за­трат для получения целевого продукта);

^ стандартным (иметь длительные сроки хранения без изменения физико-химических свойств и питательной ценности)

Периодическая система

Периодической системой культивирования называют систему, в которой после внесения бактерий (засева) в питательную среду не производится ни добавления, ни удаления каких-либо компонентов, кроме газовой фазы. Отсюда следует, что периодическая система может поддерживать размножение клеток в течение ограниченного времени, на протяжении которого состав питательной среды изменяется от благоприятного (оптимального) для их роста до неблагоприятного, вплоть до полного прекращения п

Бактерии это самый древний организм на земле, а также самый простой в своем строении. Он состоит всего из одной клетки, которую можно увидеть и изучить только под микроскопом. Характерным признаком бактерий является отсутствие ядра, вот почему бактерии относят к прокариотам.

Некоторые виды образовывают небольшие группы клеток, такие скопления могут быть окружены капсулой (чехлом). Размер, форма и цвет бактерии сильно зависит от окружающей среды.

По форме бактерии различаются на: палочковидные (бациллы), сферические (кокки) и извитые (спириллы). Встречаются и видоизмененные – кубические, С-образные, звездчатые. Их размеры колеблются от 1 до 10мкм. Отдельные виды бактерий могут активно передвигаться при помощи жгутиков. Последние иногда превышают размер самой бактерии в два раза.

Виды форм бактерий

Для движения бактерии используют жгутики, количество которых бывает различное – один, пара, пучок жгутиков. Расположение жгутиков также бывает разным – с одной стороны клетки, по бокам или равномерно распределены по всей плоскости. Также одним из способов передвижения считается скольжение благодаря слизи, которой покрыт прокариот. У большинства внутри цитоплазмы есть вакуоли. Регулировка ёмкости газа в вакуолях помогает им двигаться в жидкости вверх или вниз, а также перемещаться по воздушных каналах почвы.

Ученые открыли более 10 тысяч разновидностей бактерий, но по предположениям научных исследователей в мире существует их более миллиона видов. Общая характеристика бактерий дает возможность определиться с их ролью в биосфере, а также изучить строение, виды и классификацию царства бактерий.

Места обитания

Простота строения и быстрота адаптации к окружающим условиям помогла бактериям распространиться в широком диапазоне нашей планеты. Они существуют везде: вода, почва, воздух, живые организмы – всё это максимально приемлемое место обитания для прокариотов.

Бактерии находили как на южном полюсе, так и в гейзерах. Они есть на океанском дне, а также в верхних слоях воздушной оболочки Земли. Бактерии живут везде, но их количество зависит от благоприятных условий. К примеру, большая численность видов бактерий проживает в открытых водоемах, а также почве.

Особенности строения

Клетка бактерии отличается не только тем, что в ней нет ядра, но и отсутствием митохондрий и пластид. ДНК данного прокариота находится в специальной ядерной зоне и имеет вид замкнутого в кольцо нуклеоида. У бактерии строение клетки состоит из клеточной стенки, капсулы, капсулоподобной оболочки, жгутиков, пили и цитоплазматичной мембраны. Внутреннее строение оформляют цитоплазма, гранулы, мезосомы, рибосомы, плазмиды, включения и нуклеоид.

Клеточная стенка бактерии выполняет функцию обороны и опоры. Вещества могут свободно протекать сквозь неё, благодаря проницаемости. Данная оболочка имеет в своем составе пектин и гемицеллюлозу. Некоторые бактерии выделяют особую слизь, которая может помочь защититься от пересыхания. Слизь формирует капсулу – полисахарид по химическому составу. В такой форме бактерия способна переносить даже очень большие температуры. Также она выполняет и другие функции, к примеру слипание с любыми поверхностями.

На поверхности клетки бактерии находятся тонкие белковые ворсинки – пили. Их может быть большая численность. Пили помогают клетке передавать генетический материал, а также обеспечивают слипание с другими клетками.

Под плоскостью стенки находится трехслойная цитоплазматичная мембрана. Она гарантирует транспорт веществ, а также имеет немалую роль в образовании спор.

Цитоплазма бактерий на 75 процентов произведена из воды. Состав цитоплазмы:

  • Рыбосомы;
  • мезосомы;
  • аминокислоты;
  • ферменты;
  • пигменты;
  • сахар;
  • гранулы и включения;
  • нуклеоид.

Обмен веществ у прокариотов возможен, как с участием кислорода, так и без его него. Большая их часть питаются уже готовыми питательными веществами органического происхождения. Очень мало видов способны сами синтезировать органические вещества из неорганических. Это сине-зеленые бактерии и цианобактерии, которые отыграли немалую роль в формировании атмосферы и насыщении её кислородом.

Размножение

В условиях, благоприятных для размножения, оно осуществляется почкованием или вегетативно. Бесполое размножение происходит в такой последовательности:

  1. Клетка бактерии достигает максимального объема и содержит необходимый запас питательных веществ.
  2. Клетка удлиняется, посередине появляется перегородка.
  3. Внутри клетки происходит дележ нуклеотида.
  4. ДНК основная и отделенная расходятся.
  5. Клетка делится пополам.
  6. Остаточное формирование дочерних клеток.

При таком способе размножения нету обмена генетической информацией, поэтому все дочерние клетки будут точной копией материнской.

Процесс размножения бактерий в неблагоприятных условиях более интересен. О способности полового размножения бактерий ученые узнали сравнительно недавно – в 1946 году. У бактерий нет разделения на женские и половые клетки. Но ДНК у них встречается разнополое. Две такие клетки при приближении друг к другу образовывают канал для передачи ДНК, происходит обмен участками – рекомбинация. Процесс довольно длительный, результатом которого являются две совершенно новые особи.

Большинство бактерий очень сложно увидеть под микроскопом, так как они не имеют своей окраски. Немногие разновидности имеют пурпурный или зеленый окрас, благодаря содержанию в них бактериохлорофилла и бактериопурпурина. Хотя если рассматривать некоторые колонии бактерий, становится ясно, что они выделяют окрашиваемые вещества в среду обитания и приобретают яркую окраску. Для того, чтобы подробней изучать прокариотов, их окрашивают.


Классификация

Классификация бактерий может быть основана на таких показателях, как:

  • Форма
  • способ передвижения;
  • способ получения энергии;
  • продукты жизнедеятельности;
  • степень опасности.

Бактерии симбионты живут в содружестве с иными организмами.

Бактерии сапрофиты проживают на уже отмерших организмах, продуктах и органических отходах. Они способствуют процессам гниения и брожения.

Гниение очищает природу от трупов и других отходов органического происхождения. Без процесса гниения не было бы круговорота веществ в природе. Так в чем же состоит роль бактерий в круговороте веществ?

Бактерии гниения - это помощник в процессе расщепления белковых соединений, а также жиров и других соединений, содержащих в себе азот. Проведя сложную химическую реакцию, они разрывают связи между молекулами органических организмов и захватывают молекулы белка, аминокислот. Расщепляясь, молекулы высвобождают аммиак, сероводород и другие вредные вещества. Они ядовиты и могут вызывать отравление у людей и животных.

Бактерии гниения быстро размножаются в благоприятных для них условиях. Так как это не только полезные бактерии, но и вредные, то чтобы не допустить преждевременного гниения у продуктов, люди научились их обрабатывать: сушить, мариновать, солить, коптить. Все эти способы обработки убивают бактерии и не дают им размножаться.

Бактерии брожения при помощи ферментов способны расщеплять углеводы. Эту способность люди заметили еще в древние времена и используют такие бактерии для изготовления молочнокислых продуктов, уксусов, а также других продуктов питания до сих пор.

Бактерии, трудясь в совокупности с другими организмами, делают очень важную химическую работу. Очень важно знать какие есть виды бактерий и какую пользу или вред приносят для природы.

Значение в природе и для человека

Выше уже отмечалось большое значение многих видов бактерий (при процессах гниения и различных типах брожения), т.е. выполнение санитарной роли на Земле.

Бактерии также играют огромную роль в круговороте углерода, кислорода, водорода, азота, фосфора, серы, кальция и других элементов. Многие виды бактерий способствуют активной фиксации атмосферного азота и переводят его в органическую форму, способствуя повышению плодородия почв. Особо важное значение имеют те бактерии, которые разлагают целлюлозу, являющиеся основным источником углерода для жизнедеятельности почвенных микроорганизмов.

Сульфатредуцирующие бактерии участвуют в образовании нефти и сероводорода в лечебных грязях, почвах и морях. Так, насыщенный сероводородом слой воды в Черном море является результатом жизнедеятельности сульфатредуцирующих бактерий. Деятельность этих бактерий в почвах приводит к образованию соды и содового засоления почвы. Сульфатредуцирующие бактерии переводят питательные вещества в почвах рисовых плантаций в такую форму, которая становится доступной для корней этой культуры. Эти бактерии могут вызывать коррозию металлических подземных и подводных сооружений.

Благодаря жизнедеятельности бактерий почва освобождается от многих продуктов и вредных организмов и насыщается ценными питательными веществами. Бактерицидные препараты успешно используются для борьбы с многими видами насекомых-вредителей (кукурузным мотыльком и др.).

Многие виды бактерий используются в различных отраслях промышленности для получения ацетона, этилового и бутилового спиртов, уксусной кислоты, ферментов, гормонов, витаминов, антибиотиков, белково-витаминных препаратов и т.д.

Без бактерий невозможны процессы при дублении кожи, сушке листьев табака, выработке шелка, каучука, обработке какао, кофе, мочении конопли, льна и других лубоволокнистых растений, квашении капусты, очистке сточных вод, выщелачивании металлов и т.д.