Болезни Военный билет Призыв

"земля - колыбель человечества, - и свет во тьме светит, и тьма не объяла его. (1)«3емля - колыбель человечества», - говорил К.Э.Циолковский. (2) Земля - родина человечества. (3) А что для человека может быть дороже Родины! (4) Ведь

Считается, что Земля имеет железное ядро, а мантия - силикатная.

Сейчас установлено, что современную структуру геосферы (поверхностная кора, мантия, пластическое ядро и центральное ядро) Земля приобрела в результате длительной эволюции.

Главную роль в тепловом режиме Земли играют радиоактивные семейства урана, тория и калия, которые в прошлом давали »10 21 калорий в год радиоактивного тепла, что было достаточно для частичного плавления вещества Земли.

Установлено, что некоторые гидриды металлов значительно плотнее, чем исходные металлы, за счет того, что в решетке гидрида металлические атомы располагаются более плотно.

Так как глубинные недра планеты содержат гидриды, то, разлагаясь, они выделяют водород, а Земля при этом увеличивается в объеме.

В космогонии особое внимание уделяется характеру распределения момента импульса в Солнечной системе. Оказалось, что 98 % этой величины сосредоточено в планетах, суммарная масса которых намного меньше массы Солнца. Это означает, что при формировании Солнечной системы момент импульса каким-то образом был передан от центра на периферию.

В результате гравитационной неустойчивости система начала сжиматься к центру тяжести, имея начальный момент вращения. При сжатии она раскручивалась все быстрей и приобрела форму эллипсоида.

В плоскости его экватора произошло истечение протопланетного вещества, из которого в последствии возникли планеты, а центральное сгущение ПротоСолнце (небула) превратилось в звезду - наше Солнце.

Астрофизик Хойл высказал идею, что у ПротоСолнца на стадии формирования протопланетного диска имелось мощное дипольное магнитное поле.

Магнитные силовые линии, жестко связанные с частично ионизированным веществом ПротоСолнца, должны были поддерживать постоянной угловую скорость вращения в сжимающейся туманности.



За счет этого во внутренних частях туманности линейные скорости вращения уменьшались, тогда как внешняя ее часть увеличивала линейную скорость вращения. В результате вещество туманности центробежными силами разбрасывалось в плоскости экватора, образуя протопланетный диск.

Рис. 10.16

Если при формировании протопланетного диска ионизированное вещество перемещалосьперпендикулярно силовым линиям магнитного поля, то заряженные (ионизированные) частицы захватывались магнитным полем, тогда как нейтральные частицы (на рис. 10.16 отмечены светлым кружком) пересекали магнитное поле беспрепятственно. В результате такой магнитной сепарации произошло разделение и дифференциация вещества протопланетного диска.

Следовательно, распространенность химических элементов в Солнечной системе должна зависеть от их потенциалов ионизации.

По гипотезе Энеева и Козлова протопланетный диск при образовании Солнечной системы на всем этапе аккумуляции планет состоял из разреженных глобул-капель, плотность которых намного порядков меньше плотности твердых тел.

При этом необходимо, чтобы глобулы-капли были плотно упакованы и взаимодействовали между собой по закону абсолютно неупругого удара.

Таким образом, Земля унаследовала тот состав протопланетного вещества, который был определен магнитной сепарацией.

Оценки, проведенные на этой основе, показали, что исходное содержание кислорода на Земле не может превышать 1-3 %, тогда как водород должен быть преобладающим элементом.

Следовательно, изначальный состав Земли, возможно, был представлен водородистыми соединениями-гидридами.

Водород активно взаимодействует с большинством элементов, создавая водородистые соединения, и он может адсорбироваться на поверхности частиц конденсируемых веществ.

Рис. 10.17

Если же повышать давление, то взаимодействие водорода с металлами все более сдвигается в сторону образования гидридов. При повышении же температуры происходит разложение гидридов - атомы водорода теряют химическую связь с атомами металлов, переходят в растворенное состояние и дальнейшее повышение температуры вызывает дегазацию водорода из металла. В результате противоборства давления и температуры в недрах сжимающейся ПротоЗемли во внутренних частях планеты, в области наибольших давлений, формируются плотные, ионные гидриды. Это зона была окружена сферой из металлов с растворенным в них водородом, тогда как снаружи могла существовать оболочка, из которой водород дегазировался.

Молодая Земля должна была нагреваться из-за распада изотопов урана, тория и калия. Возможности увеличения давления в недрах Земли к этому времени были исчерпаны, и поэтому повышение температуры способствовало дегазации водорода из внутренних слоев Земли. Со временем внешняя оболочка должна была увеличивать свой объем, тогда как масса сферы с растворенным водородом и гидридной центральной зоной сокращались.

Еще в 30-х годах академиком Вернадским было высказано предположение, что в глубинах нашей планеты должны существовать водородистые соединения

При таком процессе развития Земли ее недра постоянно продувались водородом, что приводило к очистке их от кислорода, который накапливался во внешней геосфере, чем и было обусловлено образование силикатно-окисной оболочки планеты.

Вот почему так четко выражены границы между корой и мантией, между мантией и ядром.

На этой основе Лариным была предложена новая модель строения Земли (рис. 10.17).

Исследование новой геохимической модели строения Земли показало, что она согласуется с современными данными по физике ядра и мантии планеты, значительно упрощает решение проблемы геомагнетизма.

Насыщенные водородом металлы легко сжимаются и уменьшаются в объеме, а освобождаясь от водорода под действием высоких температур увеличиваются в объеме.

Поэтому Земля увеличивается в объеме.

Наиболее интенсивное расширение Земли должно было начаться в далекую геологическую эпоху, когда на ней происходило рождение океанов при разломах коры и раздвижения материков.

Действительно по дну всех океанов проходят гигантские трещины.

Известно, что кора Земли находится в постоянном движении.

Она опускается, вспучивается, собирается складками, растягивается, сжимается.

Например, образованию гор предшествует опускание пород и появление низин и морей. Тепло из недр планеты поступает к ее поверхности неравномерно.

Больше всего тепла идет к поверхности в зонах тектонической активности.

Согласно гипотезе "гидридной Земли" водород в виде протонного газа выделяется из гидридов земного ядра.

В Исландии, в зоне океанического разлома, обнаружены выходы потоков чистого водорода. Водород - газ и легко проходит сквозь мантию.

Скапливаясь в верхних областях мантии или земной коры, насыщает содержащиеся в ней металлы, которые уменьшаются в объеме.

Следовательно, кора Земли опускается, образуется впадина. Огромные массы земных пород начинают стекаться к этой впадине.

Потоки наплывают друг на друга, сжимаются, образуя складки, т.е. возникают горы. Когда же поток водорода из недр ослабевает, металлы, отдавая газ, вновь увеличиваются в объеме, что приводит к дальнейшему росту гор. Потоки протонного газа объясняют происхождение дипольного (двухполюсного) магнитного поля Земли.

Действительно, если Земля гидридная, то потоки протонного газа создают ток, т.е. Земля представляет собой гигантский гальванический элемент.

Отрицательным электродом служит гидридное ядро, а положительным электродом - земная кора.

Под действием вращения планеты потоки протонного газа отклоняются в направлении, противоположном ее вращению, т.е. к западу.

Это отклонение равносильно появлению замкнутого кольцевого контура, по которому течет ток, что и вызывает существование магнитного поля Земли.

Матрица жизни

В начале третьего тысячелетия открыто гигантское образование в Солнечной системе под кодовым названием Matrix BQI-33087 (МАТРИЦА), простирающееся от орбиты Венеры далее орбиты Плутона на ~10 млрд. километров.

Матрица представляет собой огромное разреженное облако, неизвестной природы, имеющее форму вытянутого яйца во многом похожая на космическую амебу или снимок Крабовидной диффузной туманности в созвездии "Тельца", как остатка взрыва сверхновой.

История открытия матрицы насчитывает не более 30 лет. Молодые тогда еще сотрудники астрофизической обсерватории США в Сиэтле Дэнил Роббинс, Рон Джереми и Соверн Чанг буквально по крупицам начали собирать сведения о странной материи, рассеянной как им казалось от Марса до Нептуна.

Ученые до сих пор не могут ответить на многие вопросы, например, куда исчезают огромные порции Солнечной энергии по пути к границам Солнечной системы. Или с чем связано появление и исчезновение белых и красных пятен на поверхности Юпитера, или отчего некоторые объекты Солнечной системы то подают признаки жизни, как, например, Ио - спутник Юпитера, или планета Хирон, или Титан - спутник Сатурна, или наш ближайший сосед - планета Марс, то нет. Наконец, почему резко изменяются траектории полета некоторых крупных комет, когда по расчетам они должны были бы столкнуться с некоторыми объектами Солнечной системы. Например, пять лет назад комета Хейла - Болла, неожиданно сделала крутой вираж непосредственно близко от поверхности планеты Марс и американского космического аппарата "Вояджер".

Матрица похожа на амебу и подвижна, протягивая свои щупальца на ~10 млрд. км. Источником ее питания является Солнечная энергия.

Время от времени матрица протягивает свои мощные щупальца к планетам, чтобы защитить или покарать их.

Действия матрицы неподвластны человеческой логике. Она одинаково легко может уберечь Землю от падения кометы или навлечь на нас стихийное бедствие.

Например, когда случилось мощное землетрясение на севере Индии в феврале 2001 г. телескопы зафиксировали, как содрогнулась матрица. Причем изменения в ее структуре начали происходить за 2-3 дня до катастрофы. Матрица иногда действует загадочно, т.к. с человеческой точки зрения, может быть жестокой, потому что она все порождает, и она же все убивает.

Она контролирует все, что происходит в Космосе и в Солнечной системе.

Является основой жизни Солнечной системы и на удалении ~716 млн. км от орбиты Плутона в матрице прослеживается некоторое уплотнение - ядро, которое можно условно назвать мозгом. Последние 2-3 года одно из щупальцев матрицы окутывало нашу планету Земля, как бы защищая ее, от внешнего воздействия. Можно вспомнить, что в сводках новостей неоднократно сообщалось, что буквально рядом с поверхностью нашей планеты пролетали гигантские астероиды, хотя по расчетам должны были столкнуться с Землей.

Последние события, на которые отреагировала матрица, связаны с землетрясением в Индии, или приближением кометы Икея - Секи, или взрывом сверхновой в эллиптической (шаровой) галактике М3 в созвездии Гончих Псов. Случайным свидетелем этого возмущения матрицы стал "Вояджер", оказавшийся, видимо, в гуще событий на пути полета от планеты Уран к планете Нептун. Этот аппарат давно уже ничего не передает на Землю, кроме редких радиосигналов, но 14 февраля 2001 г. он вдруг заговорил, передав на Землю целую серию радиосигналов. Наблюдения подтвердили наличие сильных возмущений в этой части космического пространства и в Солнечной системе.

Более подробную информацию о матрице, снимки 10-15-летней давности и прочее можно найти на страничке в интернете: www.matrixnewgod.com.

На обелиске над могилой наше­го великого соотечественника К. Э. Циолковского приведены его ставшие хрестоматийными слова: «Человечество не останется вечно на Земле, но, в погоне за светом и пространством, сначала робко проникнет за пределы атмосферы, а потом завоюет все околосолнечное пространство». Всю свою жизнь Циолковский мечтал о космическом будущем человечества и пытливым взглядом ученого всматривался в его фантастические горизонты. Он был не одинок. Начало ХХ века для многих было открытием Вселенной, хотя и видимым сквозь призму научных заблуждений того времени и фантазии литераторов. Итальянец Скиапарелли открыл «каналы» на Марсе — и человечество уверилось, что на Марсе существует цивилизация. Берроуз и А. Толстой населили этот воображаемый Марс похожими на людей жителями, и вслед за ними сотни фантастов последовали их примеру. Земляне просто привыкли к мысли, что жизнь на Марсе есть, и что эта жизнь — разумная. Поэтому призыв Циолковского лететь в космос был встречен пусть не сразу с энтузиазмом, но, во всяком случае, с одобрением. Прошло всего 50 лет после первых выступлений Циолковского, и в стране, которой он посвятил и передал все свои труды, был запущен Первый спутник и в космос полетел Первый космонавт.

Казалось бы, дальше все пойдет по замыслам великого мечтателя. Идеи Циолковского оказались настолько яркими, что самый знаменитый из его последователей — Сергей Павлович Королёв — все свои планы развития космонавтики выстраивал так, чтобы еще в ХХ веке нога человека ступила на Марс. Жизнь внесла свои поправки. Сейчас мы не очень-то уверены, что пилотируемая экспедиция к Марсу состоится хотя бы до конца XXI века.

Наверное, дело не только в технических трудностях и роковых обстоятельствах. Любые трудности можно одолеть мудростью и пытливостью человеческого ума, если перед ним поставлена достойная задача. А такой задачи нет! Есть доставшееся в наследство желание — долететь до Марса, но нет ясного понимания — зачем? Если заглянуть глубже, этот вопрос стоит перед всей нашей пилотируемой космонавтикой.

Циолковский видел в космосе неосвоенные просторы для человечества, которому становится тесной родная планета. Эти просторы нужно, разумеется, осваивать, но прежде нужно глубоко изучить их свойства. Полувековой опыт изучения космоса показывает, что очень, очень многое можно исследовать автоматическими аппаратами, не рискуя самой высокой ценностью мироздания — человеческими жизнями. Полвека назад эта идея еще была темой споров и обсуждений, но сейчас, когда мощь компьютеров и возможности роботов приближаются к человеческим пределам, этим сомнениям уже не место. За последние сорок лет автоматические аппараты успешно исследуют Луну, Венеру, Марс, Юпитер, Сатурн, спутники планет, астероиды и кометы, а американские «Вояджеры» и «Пионеры» уже достигли границ Солнечной системы. Хотя в планах космических агентств и проходят порой сообщения о подготовке пилотируемых миссий в дальний космос, пока не прозвучало в них ни одной научной задачи, для решения которой работа космонавтов совершенно необходима. Так что изучение Солнечной системы можно продолжать автоматами еще долго.

Давайте вернемся, все-таки, к проб­леме освоения космоса. Когда наше знание о свойствах космических просторов позволит нам начать обживать их и когда мы сможем для самих себя ответить на вопрос — зачем?

Оставим пока вопрос о том, что в космосе много энергии, в которой нуждается человечество, и много минеральных ресурсов, которые в космосе, возможно, будет добывать дешевле, чем на Земле. И то, и другое есть пока на нашей планете, и не они являются главной ценностью космоса. Главное в космосе — это то, что нам крайне трудно обеспечить на Земле — устойчивость условий обитания, и, в конечном счете, устойчивость развития человеческой цивилизации.

Жизнь на Земле постоянно подвергается рискам стихийных бедствий. Засухи, наводнения, ураганы, землетрясения, цунами и иные неприятности не только наносят прямой ущерб нашей экономике и благополучию населения, но требуют сил и затрат на восстановление потерянного. В космосе мы надеемся на избавление от этих привычных угроз. Если мы найдем такие иные земли, где природные стихийные бедствия оставят нас, то это и будет та «земля обетованная», которая станет достойным новым домом для человечества. Логика развития земной цивилизации с неизбежностью приводит к мысли, что в будущем, и возможно не столь далеком, человек будет вынужден искать вне планеты Земля среду обитания, которая могла бы вместить большую часть населения и обеспечить продолжение его жизни в стабильных и комфортных условиях.

Именно это имел в виду К. Э. Ци­ол­ковский, когда говорил, что человечество не останется вечно в колыбели. Его пытливая мысль нарисовала нам привлекательные картины жизни в «эфирных поселениях», то есть в больших космических станциях с искусственным климатом. Первые шаги в этом направлении уже сделаны: на постоянно обитаемых космических станциях мы научились поддерживать почти привычные условия жизни. Правда, неприятным фактором этих космических станций остается невесомость, — непривычное и губительное для земных организмов состояние. Циолковский догадывался, что невесомость может быть нежелательной, и предложил создавать в эфирных поселениях искусственную тяжесть осевым вращением станций. Во множестве проектов «космических городов» эта идея была подхвачена. Если вы посмотрите на иллюстрации к теме «космические поселения» в интернете, то увидите разнообразные торы и колеса со спицами, застекленные со всех сторон, как земные оранжереи.

Можно понять Циолковского, во времена которого была попросту неизвестна космическая радиация, предлагавшего создавать открытые солнечному свету космические оранжереи. На Земле мы защищены от радиации мощным магнитным полем родной планеты и достаточно плотной атмосферой. Магнитное поле практически непробиваемо для заряженных частиц, выбрасываемых Солнцем, — оно отбрасывает их в сторону от Земли, позволяя лишь небольшому количеству достигать атмосферы вблизи магнитных полюсов и вызывать красочные полярные сияния. Сегодняшние обитаемые космические станции расположены на орбитах, находящихся внутри радиационных поясов (по сути — магнитных ловушек), и это позволяет космонавтам годами находиться на станции, не получая опасных доз излучения. Там, где от радиации уже не защищает магнитное поле Земли, радиационная защита должна быть намного серьезнее. Главным препятствием для радиации является любое вещество, в котором она поглощается. Если считать, что поглощение космической радиации в земной атмосфере снижает ее уровень до безопасных значений, то в открытом космосе нужно ограждать обитаемые помещения слоем вещества такой же массы, то есть каждый квадратный сантиметр площади помещений должен быть укрыт килограммом вещества. Если принять плотность укрывающего вещества равной 2,5 грамма на кубический сантиметр (каменные породы), то геометрическая толщина защиты должна быть не меньше 4 метров. Стекло — тоже силикатное вещество, поэтому для защиты оранжерей в открытом космосе потребуются стекла 4-метровой толщины!

К сожалению, не только космическая радиация заставляет отказаться от заманчивых проектов. Внутри помещений нужно будет создавать искусственную атмосферу с привычной плотностью воздуха, то есть с давлением в 1 килограмм на квадратный сантиметр. Когда помещения имеют небольшой размер, прочность строительных конструкций космических аппаратов позволяет выдержать такое давление. Но огромные поселения с диаметром обитаемых помещений в десятки метров, способные выдерживать такое давление, технически построить будет сложно, а то и невозможно. Создание искусственной тяжести вращением тоже заметно увеличит нагрузку на конструкцию станции. К тому же движение всякого тела внутри вращающегося «бублика» будет сопровождаться действием кориолисовой силы, создавая большие неудобства (вспомните детские ощущения на дворовой карусели)! Ну и, наконец, большие помещения окажутся очень уязвимыми для метеоритных ударов: достаточно разбить одно стекло в большой оранжерее, чтобы из нее вышел весь воздух, и находящиеся в ней организмы погибли бы. Словом, «эфирные поселения» при внимательном рассмотрении оказываются невыполнимыми мечтаниями.

Может быть, не зря надежды человечества связывались с Марсом? Это достаточно крупная планета с вполне подходящей силой тяжести, у Марса есть атмосфера и даже сезонные изменения погоды. Увы! Это — только внешнее сходство. Средняя температура на поверхности Марса держится на уровне –50°С, зимой там так холодно, что замерзает даже углекислый газ, а летом тепла порой недостаточно, чтобы мог растаять водяной лед. Плотность марсианской атмосферы — такая же, как земной на высоте 30 километров, где даже самолеты не могут летать. Понятно, конечно же, что Марс никоим образом не защищен от космической радиации. В довершение всего, на Марсе очень слабые почвы: это или песок, который даже ветры разреженного марсианского воздуха вздымают в обширные бури, или тот же песок, смерзшийся со льдом в крепкую на вид породу. Только на такой породе ничего нельзя построить, да и подземные помещения не будут выходом без надежного их укрепления. Если в помещениях будет тепло (а люди не собираются жить в ледяных дворцах!), то мерзлота растает, и тоннели обрушатся.

Множество «проектов» марсианской застройки предполагает размещение на поверхности Марса готовых жилых модулей. Это очень наивные идеи. Для защиты от космической радиации каждое помещение нужно укрыть четырехметровым слоем защитных перекрытий. Проще говоря, укрыть все постройки толстым слоем марсианского грунта, и тогда в них можно будет жить. Но ради чего стоит обживать Марс? Ведь на Марсе нет той желанной стабильности условий, которой нам уже не хватает на Земле!

Марс все еще волнует людей, хотя уже никто не надеется найти на нем прекрасных Аэлит или хотя бы собратьев по разуму. На Марсе мы в первую очередь ищем следы внеземной жизни, чтобы понять, как и в каких формах возникает жизнь во Вселенной. Но это — исследовательская задача, и для ее решения вовсе не обязательно жить на Марсе. А для строительства космических поселений Марс — совсем не подходящее место.

Может быть, стоит обратить внимание на многочисленные астероиды? Судя по всему, условия на них очень стабильные. После Великой метеоритной бомбардировки, которая три с половиной миллиарда лет назад превратила поверхности астероидов в поля больших и малых воронок от метеоритных ударов, с астероидами ничего не происходит. В недрах астероидов можно построить обитаемые тоннели, и каждый астероид превратить в космический город. Достаточно крупных для этого астероидов в нашей Солнечной системе немного — около тысячи. Так что они не решат проблему создания обширных обитаемых территорий вне Земли. При этом все они будут иметь болезненный недостаток: в астероидах очень малая сила тяжести. Безусловно, астероиды станут для человечества источниками минерального сырья, но для строительства полноценного жилья они совершенно непригодны.

Так неужели бесконечные космические просторы для людей все равно, что безбрежный океан без клочка суши? Неужели все наши мечтания о чудесах космоса — только сладкие грезы?

Но нет, есть в космосе место, где сказки реально сделать былью, и, можно сказать, оно совсем по соседству. Это — Луна.

Из всех тел Солнечной системы Луна имеет наибольшее число достоинств с точки зрения человечества, ищущего стабильности в космосе. Луна достаточно велика, чтобы иметь заметную силу тяжести на ее поверхности. Основные породы Луны — прочные базальты, простирающиеся на глубину в сотни километров под поверхностью. На Луне нет вулканизма, землетрясений и климатических нестабильностей, так как у Луны нет ни расплавленной мантии в недрах, ни воздушных, ни водных океанов. Луна — ближайшее к Земле космическое тело, благодаря чему колониям на Луне будет легче оказать экстренную помощь и снизить транспортные издержки. Луна все время повернута к Земле одной стороной, и это обстоятельство может оказаться очень полезным во многих отношениях.

Итак, первое достоинство Луны — ее стабильность. Известно, что на освещенной солнцем поверхности температура поднимается до +120°С, а ночью опускается до –160°С, но при этом уже на глубине 2 метра перепады температуры становятся незаметными. В недрах Луны температура очень стабильная. Поскольку базальты имеют низкую теплопроводность (на Земле базальтовую вату используют как очень эффективную теплоизоляцию), в подземных помещениях можно поддерживать любую комфортную температуру. Базальт — газонепроницаемый материал, и внутри базальтовых сооружений можно создать искусственную атмосферу любого состава и поддерживать ее без особых усилий. Базальт — очень прочная порода. На Земле есть базальтовые скалы высотой 2 километра, а на Луне, где сила тяжести в 6 раз меньше, чем на Земле, базальтовые стены выдержали бы свой вес даже при высоте 12 километров! Следовательно, в базальтовых недрах можно строить залы с высотой потолков в сотни метров и не применять при этом дополнительных креплений. Поэтому в лунных недрах можно построить тысячи этажей помещений самого разного назначения, не используя иных материалов, кроме самого лунного базальта. Если вспомнить, что площадь лунной поверхности только в 13,5 раза меньше площади поверхности Земли, то легко подсчитать, что площадь подземных построек на Луне может быть в десятки раз больше всей территории, которую занимают на нашей родной планете все формы жизни от глубин океанов до вершин гор! И всем этим помещениям не будут угрожать никакие стихийные бедствия миллиарды лет! Перспективно!

Нужно, конечно, сразу задуматься: а куда девать добытый из туннелей грунт? Вырастить на поверхности Луны терриконы километровой высоты? Оказывается, и тут можно предложить интересное решение. На Луне нет атмосферы, а лунный день длится полмесяца, поэтому две недели в любом месте Луны непрерывно светит жаркое солнце. Если большим вогнутым зеркалом сфокусировать его лучи, то в получившемся пятне света температура будет почти такой же, как на поверхности Солнца — около 5000 градусов. При такой температуре плавятся почти все известные материалы, в том числе и базальты (они плавятся при 1100°С). Если в это горячее пятно медленно насыпать базальтовую крошку, то она будет плавиться, и из нее можно наплавлять слой за слоем стены, лестничные пролеты и перекрытия. Можно создать строительный робот, который будет это делать по заложенной в него программе совсем без участия человека. Если такой робот запустить на Луну сегодня, то к тому дню, когда на неё прибудет пилотируемая экспедиция, космонавтов уже будут ждать если не дворцы, то уж, во всяком случае, комфортабельное жилье и лаборатории.

Простое строительство помещений на Луне не должно быть самоцелью. Эти помещения будут нужны для жизни людей в комфортных условиях, для размещения сельскохозяйственных и промышленных предприятий, для создания зон отдыха, транспортных магистралей, школ и музеев. Только сначала нужно получить все гарантии, что переселившиеся на Луну люди и другие живые организмы не начнут деградировать из-за не совсем привычных условий. В первую очередь нужно исследовать, как длительное воздействие пониженной тяжести будет сказываться на организмах разнообразной земной природы. Эти исследования будут масштабными; едва ли опыты в пробирках смогут гарантировать биологическую устойчивость организмов на протяжении многих поколений. Нужно строить большие оранжереи и вольеры, и в них вести наблюдения и опыты. С этим не справятся никакие роботы, — только сами ученые-исследователи смогут заметить и проанализировать наследственные изменения в живых тканях и живых организмах.

Подготовка к созданию полноценных самообеспечиваемых колоний на Луне — вот та целевая задача, которая должна стать маяком для движения человечества к магистрали его устойчивого развития.

Сегодня многое в техническом построении обитаемых поселений в космосе не имеет ясного понимания. Энергетическое обеспечение в условиях космоса достаточно просто может быть реализовано солнечными станциями. Один квадратный километр солнечных батарей даже при коэффициенте полезного действия всего 10% будет обеспечивать мощность 150 мегаватт, правда только в течение лунного дня, то есть средняя генерация энергии будет вдвое меньшей. Кажется, что это немного. Однако, согласно прогнозам на 2020 год мирового потребления электроэнергии (3,5 тераватта) и численности населения Земли (7 миллиардов человек), среднему землянину достается 0,5 киловатта электрической мощности. Если же исходить из привычного для городского жителя среднесуточного энергообеспечения, скажем 1,5 киловатта на человека, то такая солнечная электростанция на Луне сможет удовлетворить потребности 50 тысяч человек — вполне достаточно для небольшой лунной колонии.

На Земле мы значительную часть электроэнергии расходуем на освещение. На Луне многие традиционные схемы будут радикально изменены, в частности, схемы освещения. Подземные помещения на Луне должны освещаться на хорошем уровне, особенно оранжерейное хозяйство. Нет никакого смысла на поверхности Луны производить электроэнергию, передавать ее в подземные постройки, а там снова преобразовывать электроэнергию в свет. Намного эффективнее на поверхности Луны установить концентраторы солнечного света и освещать от них световолоконные кабели. Уровень сегодняшней технологии изготовления световодов позволяет передавать свет почти без потерь на тысячи километров, поэтому не должно составить больших трудностей из освещенных областей Луны передать свет по системе световодов в любое подземное помещение, переключая концентраторы и световоды вслед за движением солнца по лунному небосводу.

На первых этапах строительства лунной колонии Земля может быть донором необходимых для обустройства поселений ресурсов. Но многие ресурсы в космосе будет добывать легче, чем доставлять с Земли. Лунные базальты наполовину состоят из окислов металлов — железа, титана, магния, алюминия и так далее. В процессе извлечения металлов из добываемых в шахтах и штольнях базальтов будут получаться кислород для разнообразных нужд и кремний для световодов. В открытом космосе можно перехватывать кометы, содержащие до 80% водяного льда, и обеспечить снабжение поселений водой из этих обильных источников (ежегодно мимо Земли не далее 1,5 миллиона километров от нее пролетает до 40 000 миникомет размером от 3 до 30 метров).

Мы уверены, что на ближайшие три-пять десятилетий исследования в области создания поселений на Луне станут доминантой перспективных разработок человечества. Если станет ясно, что на Луне могут быть созданы комфортные условия для жизни людей, то колонизация Луны несколько веков будет путем земной цивилизации к обеспечению ее устойчивого развития. Во всяком случае, никаких других более подходящих для этого тел в Солнечной системе нет.

Может быть, ничего этого не случится по совершенно иной причине. Освоение космоса — это не просто его исследование. Для его освоения требуется создание эффективных транспортных магистралей между Землей и Луной. Если такая магистраль не появится, то у космонавтики не окажется будущего, а человечество будет обречено оставаться в границах родной планеты. Ракетная техника, которая позволяет выводить в космос научное оборудование, является дорогостоящей технологией, а каждый пуск ракеты — еще и громадной нагрузкой на экологию нашей планеты. Нам потребуется дешевая и безопасная технология для вывода в космос полезной нагрузки.

В этом смысле Луна представляет для нас исключительный интерес. Поскольку она всегда обращена к Земле одной стороной, из середины обращенного к Земле полушария можно протянуть к нашей планете трос космического лифта. Пусть вас не пугает его длина — 360 тысяч километров. При толщине троса, выдерживающего 5-тонную кабину, общая его масса составит около тысячи тонн, — он весь уместится в нескольких карьерных самосвалах БелАЗ. Материал для троса нужной прочности уже изобретен, — это углеродные нанотрубки. Нужно только научиться делать его бездефектным по всей длине волокна. Конечно же, космический лифт должен двигаться намного быстрее своих земных аналогов и даже намного быстрее скоростных поездов и самолетов. Для этого трос лунного лифта нужно покрыть слоем сверхпроводника, и тогда кабина лифта сможет перемещаться вдоль него, не касаясь самого троса. Ничто тогда уже не помешает кабине двигаться с любой скоростью. Можно будет половину пути ускорять кабину, и половину пути — тормозить ее. Если при этом применять привычное на Земле ускорение «1 g», то весь путь от Земли до Луны займет всего 3,5 часа, а кабина сможет делать три рейса в сутки. Физики-теоретики утверждают, что сверхпроводимость при комнатной температуре не запрещена законами природы, и над ее созданием работают многие институты и лаборатории мира. Мы можем показаться кому-то оптимистами, но на наш ­взгляд, лунный лифт может стать реальностью уже через полвека.

Мы здесь рассмотрели только не­сколько сторон огромной проблемы колонизации космоса. Анализ обстановки в Солнечной системе показывает, что единственным приемлемым в ближайшие столетия объектом колонизации может стать только Луна.

Хотя Луна и ближе к Земле, чем любые другие тела в космосе, для ее колонизации обязательно нужно иметь средства ее достижения. Если их не будет, то Луна останется такой же недостижимой, как большая земля для Робинзона, застрявшего на маленьком острове. Если бы человечество имело в своем распоряжении много времени и достаточно ресурсов, то можно не сомневаться, что оно преодолело бы любые трудности. Но есть тревожные признаки иного развития событий. Масштабные климатические изменения, на наших глазах меняющие условия жизни людей на всей планете, могут в очень недалеком будущем заставить нас все свои силы и ресурсы направить на элементарное выживание в новых условиях. Если поднимется уровень Мирового океана, то придется заниматься переносом городов и сельскохозяйственных угодий в неосвоенные и непригодные для ведения сельского хозяйства территории. Если климатические изменения приведут к глобальному похолоданию, то придется решать проблему не только обогрева жилья, но и замерзающих полей и пастбищ. Все эти проблемы могут отнять у человечества все силы, и тогда на освоение космоса их может попросту не хватить. А человечество останется жить на родной планете как на родном, но единственном обитаемом острове в безбрежном океане космоса.

Земля - колыбель человечества

Считается, что Земля имеет железное ядро, а мантия - силикатная.

Сейчас установлено, что современную структуру геосферы (поверхностная кора, мантия, пластическое ядро и центральное ядро) Земля приобрела в результате длительной эволюции.

Главную роль в тепловом режиме Земли играют радиоактивные семейства урана, тория и калия, которые в прошлом давали »10 21 калорий в год радиоактивного тепла, что было достаточно для частичного плавления вещества Земли.

Установлено, что некоторые гидриды металлов значительно плотнее, чем исходные металлы, за счет того, что в решетке гидрида металлические атомы располагаются более плотно.

Так как глубинные недра планеты содержат гидриды, то, разлагаясь, они выделяют водород, а Земля при этом увеличивается в объеме.

В космогонии особое внимание уделяется характеру распределения момента импульса в Солнечной системе. Оказалось, что 98 % этой величины сосредоточено в планетах, суммарная масса которых намного меньше массы Солнца. Это означает, что при формировании Солнечной системы момент импульса каким-то образом был передан от центра на периферию.

В результате гравитационной неустойчивости система начала сжиматься к центру тяжести, имея начальный момент вращения. При сжатии она раскручивалась все быстрей и приобрела форму эллипсоида.

В плоскости его экватора произошло истечение протопланетного вещества, из которого в последствии возникли планеты, а центральное сгущение ПротоСолнце (небула) превратилось в звезду - наше Солнце.

Астрофизик Хойл высказал идею, что у ПротоСолнца на стадии формирования протопланетного диска имелось мощное дипольное магнитное поле.

Магнитные силовые линии, жестко связанные с частично ионизированным веществом ПротоСолнца, должны были поддерживать постоянной угловую скорость вращения в сжимающейся туманности.

За счет этого во внутренних частях туманности линейные скорости вращения уменьшались, тогда как внешняя ее часть увеличивала линейную скорость вращения. В результате вещество туманности центробежными силами разбрасывалось в плоскости экватора, образуя протопланетный диск.

Рис. 10.16

Если при формировании протопланетного диска ионизированное вещество перемещалосьперпендикулярно силовым линиям магнитного поля, то заряженные (ионизированные) частицы захватывались магнитным полем, тогда как нейтральные частицы (на рис. 10.16 отмечены светлым кружком) пересекали магнитное поле беспрепятственно. В результате такой магнитной сепарации произошло разделение и дифференциация вещества протопланетного диска.

Следовательно, распространенность химических элементов в Солнечной системе должна зависеть от их потенциалов ионизации.

По гипотезе Энеева и Козлова протопланетный диск при образовании Солнечной системы на всем этапе аккумуляции планет состоял из разреженных глобул-капель, плотность которых намного порядков меньше плотности твердых тел.

При этом необходимо, чтобы глобулы-капли были плотно упакованы и взаимодействовали между собой по закону абсолютно неупругого удара.

Таким образом, Земля унаследовала тот состав протопланетного вещества, который был определен магнитной сепарацией.

Оценки, проведенные на этой основе, показали, что исходное содержание кислорода на Земле не может превышать 1-3 %, тогда как водород должен быть преобладающим элементом.

Следовательно, изначальный состав Земли, возможно, был представлен водородистыми соединениями-гидридами.

Водород активно взаимодействует с большинством элементов, создавая водородистые соединения, и он может адсорбироваться на поверхности частиц конденсируемых веществ.

Рис. 10.17

Если же повышать давление, то взаимодействие водорода с металлами все более сдвигается в сторону образования гидридов. При повышении же температуры происходит разложение гидридов - атомы водорода теряют химическую связь с атомами металлов, переходят в растворенное состояние и дальнейшее повышение температуры вызывает дегазацию водорода из металла. В результате противоборства давления и температуры в недрах сжимающейся ПротоЗемли во внутренних частях планеты, в области наибольших давлений, формируются плотные, ионные гидриды. Это зона была окружена сферой из металлов с растворенным в них водородом, тогда как снаружи могла существовать оболочка, из которой водород дегазировался.

Молодая Земля должна была нагреваться из-за распада изотопов урана, тория и калия. Возможности увеличения давления в недрах Земли к этому времени были исчерпаны, и поэтому повышение температуры способствовало дегазации водорода из внутренних слоев Земли. Со временем внешняя оболочка должна была увеличивать свой объем, тогда как масса сферы с растворенным водородом и гидридной центральной зоной сокращались.

Еще в 30-х годах академиком Вернадским было высказано предположение, что в глубинах нашей планеты должны существовать водородистые соединения

При таком процессе развития Земли ее недра постоянно продувались водородом, что приводило к очистке их от кислорода, который накапливался во внешней геосфере, чем и было обусловлено образование силикатно-окисной оболочки планеты.

Вот почему так четко выражены границы между корой и мантией, между мантией и ядром.

На этой основе Лариным была предложена новая модель строения Земли (рис. 10.17).

Исследование новой геохимической модели строения Земли показало, что она согласуется с современными данными по физике ядра и мантии планеты, значительно упрощает решение проблемы геомагнетизма.

Насыщенные водородом металлы легко сжимаются и уменьшаются в объеме, а освобождаясь от водорода под действием высоких температур увеличиваются в объеме.

Поэтому Земля увеличивается в объеме.

Наиболее интенсивное расширение Земли должно было начаться в далекую геологическую эпоху, когда на ней происходило рождение океанов при разломах коры и раздвижения материков.

Действительно по дну всех океанов проходят гигантские трещины.

Известно, что кора Земли находится в постоянном движении.

Она опускается, вспучивается, собирается складками, растягивается, сжимается.

Например, образованию гор предшествует опускание пород и появление низин и морей. Тепло из недр планеты поступает к ее поверхности неравномерно.

Больше всего тепла идет к поверхности в зонах тектонической активности.

Согласно гипотезе "гидридной Земли" водород в виде протонного газа выделяется из гидридов земного ядра.



В Исландии, в зоне океанического разлома, обнаружены выходы потоков чистого водорода. Водород - газ и легко проходит сквозь мантию.

Скапливаясь в верхних областях мантии или земной коры, насыщает содержащиеся в ней металлы, которые уменьшаются в объеме.

Следовательно, кора Земли опускается, образуется впадина. Огромные массы земных пород начинают стекаться к этой впадине.

Потоки наплывают друг на друга, сжимаются, образуя складки, т.е. возникают горы. Когда же поток водорода из недр ослабевает, металлы, отдавая газ, вновь увеличиваются в объеме, что приводит к дальнейшему росту гор. Потоки протонного газа объясняют происхождение дипольного (двухполюсного) магнитного поля Земли.

Действительно, если Земля гидридная, то потоки протонного газа создают ток, т.е. Земля представляет собой гигантский гальванический элемент.

Отрицательным электродом служит гидридное ядро, а положительным электродом - земная кора.

Под действием вращения планеты потоки протонного газа отклоняются в направлении, противоположном ее вращению, т.е. к западу.

Это отклонение равносильно появлению замкнутого кольцевого контура, по которому течет ток, что и вызывает существование магнитного поля Земли.

Матрица жизни

В начале третьего тысячелетия открыто гигантское образование в Солнечной системе под кодовым названием Matrix BQI-33087 (МАТРИЦА), простирающееся от орбиты Венеры далее орбиты Плутона на ~10 млрд. километров.

Матрица представляет собой огромное разреженное облако, неизвестной природы, имеющее форму вытянутого яйца во многом похожая на космическую амебу или снимок Крабовидной диффузной туманности в созвездии "Тельца", как остатка взрыва сверхновой.

История открытия матрицы насчитывает не более 30 лет. Молодые тогда еще сотрудники астрофизической обсерватории США в Сиэтле Дэнил Роббинс, Рон Джереми и Соверн Чанг буквально по крупицам начали собирать сведения о странной материи, рассеянной как им казалось от Марса до Нептуна.

Ученые до сих пор не могут ответить на многие вопросы, например, куда исчезают огромные порции Солнечной энергии по пути к границам Солнечной системы. Или с чем связано появление и исчезновение белых и красных пятен на поверхности Юпитера, или отчего некоторые объекты Солнечной системы то подают признаки жизни, как, например, Ио - спутник Юпитера, или планета Хирон, или Титан - спутник Сатурна, или наш ближайший сосед - планета Марс, то нет. Наконец, почему резко изменяются траектории полета некоторых крупных комет, когда по расчетам они должны были бы столкнуться с некоторыми объектами Солнечной системы. Например, пять лет назад комета Хейла - Болла, неожиданно сделала крутой вираж непосредственно близко от поверхности планеты Марс и американского космического аппарата "Вояджер".

Матрица похожа на амебу и подвижна, протягивая свои щупальца на ~10 млрд. км. Источником ее питания является Солнечная энергия.

Время от времени матрица протягивает свои мощные щупальца к планетам, чтобы защитить или покарать их.

Действия матрицы неподвластны человеческой логике. Она одинаково легко может уберечь Землю от падения кометы или навлечь на нас стихийное бедствие.

Например, когда случилось мощное землетрясение на севере Индии в феврале 2001 г. телескопы зафиксировали, как содрогнулась матрица. Причем изменения в ее структуре начали происходить за 2-3 дня до катастрофы. Матрица иногда действует загадочно, т.к. с человеческой точки зрения, может быть жестокой, потому что она все порождает, и она же все убивает.

Она контролирует все, что происходит в Космосе и в Солнечной системе.

Является основой жизни Солнечной системы и на удалении ~716 млн. км от орбиты Плутона в матрице прослеживается некоторое уплотнение - ядро, которое можно условно назвать мозгом. Последние 2-3 года одно из щупальцев матрицы окутывало нашу планету Земля, как бы защищая ее, от внешнего воздействия. Можно вспомнить, что в сводках новостей неоднократно сообщалось, что буквально рядом с поверхностью нашей планеты пролетали гигантские астероиды, хотя по расчетам должны были столкнуться с Землей.

Последние события, на которые отреагировала матрица, связаны с землетрясением в Индии, или приближением кометы Икея - Секи, или взрывом сверхновой в эллиптической (шаровой) галактике М3 в созвездии Гончих Псов. Случайным свидетелем этого возмущения матрицы стал "Вояджер", оказавшийся, видимо, в гуще событий на пути полета от планеты Уран к планете Нептун. Этот аппарат давно уже ничего не передает на Землю, кроме редких радиосигналов, но 14 февраля 2001 г. он вдруг заговорил, передав на Землю целую серию радиосигналов. Наблюдения подтвердили наличие сильных возмущений в этой части космического пространства и в Солнечной системе.

Более подробную информацию о матрице, снимки 10-15-летней давности и прочее можно найти на страничке в интернете: www.matrixnewgod.com.

10.18. МегаВселенная – информационная голограмма

Существование фундаментальных свойств нашей Вселенной является уникальным. Расчеты ученых показывают, что Вселенная особенно чувствительна к их изменению. Например, при малом изменении массы электрона, Вселенная резко отличалась бы от нашей существующей.

Или небольшое изменение постоянной тонкой структуры привело бы к тому, что время жизни протона оказалось бы меньше времени существования Вселенной, т.е. все протоны распались бы, а все заряженные частицы превратились бы в нейтрино и фотоны или другие элементарные частицы..

Следовательно, жизненный интервал физических условий и свойств, обеспечивающий существование и развитие органической и биологической жизни, крайне узок.

Большинство ученых и философов сходятся в одном: существует поразительная по своей красоте и стройности сверхтонкая подстройка параметров Вселенной к потребностям человека.

Вероятность случая здесь полностью исключается.

Таким образом, при формировании Вселенной, с учетом появления в ней разумной жизни, существовал Высший Разум. На возможность его существования указывают многие факторы, например, космические ритмы, связанные с периодичностью многих (если не всех) процессов, протекающих на Земле, а также с живыми клетками, организмом человека и биосферы. Этим самым подтверждаются идеи выдающихся мыслителей древности, античности и средневековья о гармонии Мироздания и неслучайной соразмерности структуры Вселенной.

О существовании Высшего Разума свидетельствуют не только достижения физики и астрофизики, но и новейшие исследования в области генетики.

Например, у всех живых организмов Земли в ДНК закодирована информация о построении белковых молекул, последовательности расположения в них аминокислот , которые являются их составными частями. Каждая аминокислота, из известных 20 разновидностей, кодируется определенной тройкой нуклеотидов. Это и есть генетический код , который, за редчайшим исключением, совершенно одинаков для всех живых организмов Земли (от растений, бактерий и животных до человека).

Из палеонтологических данных следует, что, по крайней мере, на протяжении последних трех-четырех миллиардов лет генетический код не изменялся.

Это означает, что генетический информационный код возник не в результате постепенной эволюции, а был таким с самого начала.

Еще раньше было известно, что гены, содержащие информацию о построении белков в клетках, занимают всего лишь около одного процента всей длины ДНК. Но белки - это только "кирпичики" или "строительные блоки", которые еще нужно объединить в целостный живой организм, причем это сделано так, что из зародышевых клеток льва или тигра не получился бы леопард, а из клеток человека - обезьяна.

Где же генеральный план-код такого объединения? Недавно российскими учеными выяснено, что пространственно-временная программа формирования любого организма заключена в остальной части ДНК, т.е. существует мощный генетический сверхкомпьютер с информацией о построении будущего организма, о его резервных возможностях.

Именно этот генетический компьютер формирует и посылает необходимые для эволюции команды, которые считываются с помощью особых стоячих волн - солитонов, возникающих в ДНК зародышевых клеток.

В результате создается голографический образ будущей биосистемы того же человека.

Могли ли записанные таким образом в ДНК программы возникнуть в результате длительной эволюции? По мнению генетиков, для записи такого рода колоссального объема информации потребовались бы фантастические промежутки времени, несоизмеримо превосходящие время существование Вселенной.

Следовательно, для того чтобы, например, создать род человеческий должен был действовать Высший Разум колоссальной мощности.

Тем более, что для создания организма из множества белковых кирпичиков одной внутренней информации, содержащейся в структурах ДНК, недостаточно. Необходима еще и внешняя информация, для приема которой ДНК играют роль своеобразной антенны, принимающая кодированные сигналы от внешнего источника информации - Высшего Разума.

Таким образом, процессы самоорганизации (превращение хаоса в порядок) происходят без участия человека.

Следовательно, кто-то или что-то ими управляет, т.е. в процессах самоорганизации участвует сознательное начало - Высший Разум, незримо управляющий Природой.

Вероятно, по этой причине во Вселенной образуются устойчивые, жизнестойкие структуры.

Согласно выводам современной физики все фундаментальные свойства Вселенной сложились около 15 - 20 миллиардов лет назад в результате колоссального всплеска физического вакуума, в процессе фазового превращения которого скрытая мощная энергия перешла в реальное вещество.

Возможно, единая теория так всесильна, что сама является причиной своей реализации или возможно ей нужен Великий Разум.

Законы биологической эволюции записаны в генетическом коде молекул ДНК. Но где были записаны законы физики (природы), если Вселенной не было?

К заключению о присутствии в процессе формирования Вселенной Сознательного Начала приводят соображения квантово-механического порядка, т.к. физические явления, относящиеся к стадии ранней Вселенной, имели квантовую природу.

Однако квантовая механика отличается от классической физики тем, что наблюдатель занимает в ней не положение стороннего наблюдателя, а принимает в происходящих событиях непосредственное участие. Без этого условия нельзя получить правильное решение соответствующих уравнений.

Но о каком наблюдателе может идти речь в первые мгновения расширения Вселенной, когда температура и давление были колоссальны?

Научные данные свидетельствуют о том, что сознание человека нельзя рассматривать лишь как функцию высокоорганизованной материи.

Наше сознание не только обладает определенной автономностью, но и, судя по всему, является составной частью Великого Разума, т.е. входит в состав Мировых Информационных Полей, носителем которого может служить физический вакуум.

Не исключено, что за длительный срок, неизмеримо превосходящий возраст нашей Вселенной, в Информационном Поле накопился колоссальный объем информации о многообразных связях между явлениями, о прошлом, настоящем и будущем; и все это сливается, переплетается и существует синхронно.

Такое поле, работая как универсальный сверхкомпьютер, способно формулировать сложнейшие задачи, связанные с эволюцией космических процессов, рассчитывать и осуществлять пути их решения.

При определенных условиях Информация способна непосредственно воздействовать на материальные объекты и даже порождать материальные образования из того же физического вакуума - как бы из ничего.

Поэтому Великий Разум спроектировал, реализовал нашу материальную Вселенную, предусмотрев возможность появления в нем человека (возможно и других разумных существ), и незримо управляет всем происходящим, в том числе и на Земле, оставляя при этом человеку определенную степень свободы выбора.

В свою очередь, Великий Разум постоянно пополняется различными сведениями не только о течении и взаимодействии природных процессов, но и вырабатываемой людьми информации, которая может извлекаться и человеком.

Действительно, прорывы индивидуального сознания в Великий Разум и объясняют такие загадочные явления, как феномены неограниченной памяти, озарения, видения "внутренним взором" событий, происходящих на значительных расстояниях и др.

Естественно возникает много вопросов, например, зачем Великому Разуму понадобилось создавать материальную Вселенную и человека?

Почему при этом он не устранил в процессе развития возможность вырождения материи? Или он оставил решение этого вопроса за человеком.

В процессе развития классической физики сложилось представление о том, что любое событие занимает вполне определенное место в цепи причин и следствий. Однако в дальнейшем ситуация значительно усложнилась.

На смену этой взаимозависимости причин и следствий, механическому детерминизму пришли вероятностные связи между событиями и явлениями, и существование случайности возможно вообще исключено.

Деление событий на сверхестественные и естественные, вероятно, считается чисто условным.

В одних условиях природные явления (физические параметры) проявляются как экстремальные условия, а в других - это считается нормой. Все, что реально существует или происходит, не может рассматриваться как сверхестественное.

С точки зрения современной науки все происходящее естественно!

Космос вокруг нас – наши материализованные мысли, т.е. мы, видим лишь то, о чем думаем, что хотим видеть.

Квантовая физика обнаружила зависимость реальности от разума людей. Субатомные частицы – кванты взаимодействуют между собой на любых расстояниях. Информация от кванта к кванту передается мгновенно, а не со скоростью света в вакууме, как постулировал Эйнштейн.

Ситуация в квантовой физике сейчас складывается так, как это было с гипотезой Бора в классической физике, в которой он ввел постулаты, объясняющие некоторые свойства атома. После рождения квантовой механики надобность в использовании постулатов Бора отпала сама собой.


Противоречие между гипотезой Эйнштейна и открытиями квантовой физики, доказавшей, что субатомные частицы взаимодействуют между собой быстрее скорости света в вакууме, разрешил физик Д. Бом, который предложил принцип не локальности, согласно которого кванты не передают информацию через пространство-время, они сами находятся в таком измерении, где информация существует всюду и одновременно. Более того, он считает, что поведение квантов "загадочным" образом связано с мышлением людей. Объединение множества квантов проявляет коллективное сознание, т.е. они не проявляют свои индивидуальные качества (неразли-имость тождественных частиц), а подчиняются информационному разуму.

Следовательно, в каждом кванте закодирована одна и та же информация, достаточная для воспроизведения всей Вселенной. Такая Вселенная, как некоторое целое, содержится в свернутом виде внутри каждой своей микроскопической сущности, т.е. кванте. Не проявляется ли это в периодичности системы элементов Д. Менделеева, т.к. каждый последующий элемент содержит в себе предыдущий, путем добавления определенной микроскопической порции материи. В каждом семени (яблони, кедра и т.д.) закодирована информация, которая при определенных условиях позволяет вырасти той же яблони или кедру.

Сейчас все знают, что такое голограмма – это трехмерное изображение предмета, на которой записаны не только амплитудные, и фазовые соотношения складываемых когерентных волн материи, но и поляризационные эффекы. На фотоголографической пластинке, вместо конкретного изображения предмета, наблюдаются сложная картина чередующихся дифракционных концентрических максимумов и минимумов (рис. 10.18) с учетом поляризации света.

Любая малая часть голограммы способна восстановить изображение всего предмета, т.е. изображение предмета хранится на голограмме в любой ее точке. Оно подчиняется тому же принципу не локальности, что и кванты. В этом и состоит сходство между голограммой и Вселенной. Это позволяет говорить о существовании Вселенной-голограммы.

Мозг человека и его сознание – это тоже голограмма. Но думает не мозг, а некая вездесущая энергетическая сущность, которая пока неизвестна науке. Согласно гипотезе Р. Шейдрейка существуют энергетические морфологичекие поля, посредством которых и действует разум.

Эти поля существуют в измерении, неподвластном пространству-времени. Через эти поля разум из других миров космического пространства вполне может проникать в наш мир. Речь идет о существовании во Вселенной вне пространственно-временных туннелей, которые создают проходы из одних измерений в другие, т.е. в параллельные миры.

Предполагают, что роль таких туннелей могут выполнять черные дыры или мини черные дыры.

Поскольку все точки космического пространства связаны между собой на квантовом информационном уровне, то посредством мини черных дыр, можно мгновенно переместиться в другие точки Вселенной.

Осталось дело за малым – научиться сворачивать пространство-время с помощью особых энергетических полей, т.е. искусственно создать необходимую мини черную дыру.

Можно предположить, что в бескрайних просторах Вселенной существуют цивилизации, которые уже давно открыли природу информационной голографии Вселенной и секреты сворачивания собственного пространства-времени.

"Земля - колыбель человечества». Продолжение этой фразы Циолковского знает каждый: «... но нельзя вечно жить в колыбели». Сегодня его слова стали самым растиражированным эпиграфом к статьям о завоевании космоса.

Прошу заметить: именно «завоеванием» космоса обычно называют ту деятельность, в рамках которой происходит «покорение» межпланетного пространства, лунная и марсианская «гонки» и «соперничество» на орбите. В самом мягком виде эти слова несут спортивный оттенок, но никто особенно не скрывает их боевого смысла. И в этом нет ничего странного. Мощные ракеты рождались как оружие. Запуск человека в космос полвека назад носил военный характер: в докомпьютерную эпоху управлять орбитальной разведывательной станцией мог только живой оператор. До сих пор космонавтика остается в руках военных. Отсюда и своеобразие языка, и направление решаемых задач, и степень экономической эффективности.

Параллельно с решением военных задач выяснились идеологические возможности космонавтики. Публику воодушевляют космические запуски, особенно - достижение в них мирового приоритета, и особенно - с участием человека. Для государственных идеологов этот факт стал неожиданным и приятным открытием. Оказалось, что настроение жителей огромной страны можно изменить с помощью спортивного рекорда на орбите - первый человек в космосе, первый групповой полет, первый выход в открытый космос.

Герои этих экспериментов иногда выживали, иногда гибли. И те, и другие заслуживают высочайшего уважения как любые первопроходцы, сознательно идущие на риск, сделавшие первые шаги в неизвестное. И восхищения достойны инженеры, создавшие для них фантастическую технику.

Однако за 50 лет пилотируемая космонавтика превратилась из череды героических поступков в просто опасную профессию, от которой мы вправе ждать результата. Что лично вам дает космонавтика? Удобный навигатор в автомобиле, надежную глобальную связь, весьма уверенные прогнозы погоды... Где здесь роль космического пилота? Всю эту работу делают космические автоматы.

За полвека выяснились возможности человека в космосе - они весьма ограничены. Труд человека на околоземной орбите малоэффективен и опасен для здоровья. Когда речь идет о решении конкретных задач в космосе, специалисты предпочитают роботов. Но может быть, на их железные плечи пока нельзя переложить роль человека-исследователя, способного видеть новое, принимать нестандартные решения? Мы помним, в какие опасные ситуации попадали наши космонавты и американские астронавты,какое мужество и изобретательность проявляли они, чтобы... спасти свою жизнь.

А помним ли мы о совершенных ими научных открытиях? На фоне тех знаний, которые мы получили от космических автоматов, роль человека в этом смысле ничтожна.

Говоря о необходимости покинуть когда-нибудь колыбель Земли, Циолковский, вероятно, был прав. Однако в те годы, когда он рассуждал об этом, представление о космосе был совсем не таким, как сегодня: ближайшие планеты казались благоприятными для жизни, а сообщение о высадке марсиан реально вызывало панику у населения. Сегодня мы понимаем, что космос - весьма суровое место. Поиск уютных уголков в нем нужно вести максимально эффективно, добывая знания с минимальными затратами.

Закроет ли это надолго путь человеку в космос? Думаю, нет. Пилотируемая космонавтика как спорт и туризм - личное дело каждого. Но для человечества в целом она стремительно теряет привлекательность как любая бессмысленная трата ресурсов.

Владимир Сурдин
"Наука в фокусе" декабрь 2011

(1)«3емля - колыбель человечества», - говорил К.Э.Циолковский. (2) Земля - родина человечества. (3) А что для человека может быть дороже Родины! (4) Ведь Родина - это не только место, где ты родился, не только точка на географической карте. (5) Холмы и овраги, луга и озёра, реки и степи, стога и скирды хлеба - всё это в зрелом возрасте складывается в совершенно конкретное понятие - Родина, и чувства, которые испытывает человек, общаясь с природой, и составляют ту основу, которая определяет человека как личность. (Г.Титов)










Пре- преклонение (перед чем-то) презрение (презирать кого- то) преходящий (временный, недолговечный) претворить (воплотить) преемник (человек) При- приклонение (к чему-то) призрение (дать кому-то приют) приходящий (приходить в дом) притворить (что-то, дверь) приемник (прибор)


I. Укажите слово, в приставке которого пишется буква т. Пре_видеть; на_кусить; по_менить; о_резать. II. Укажите слово с орфографической ошибкой. Бессовестный; зберечь; вспыхнули; сзади. III. Укажите слово, в приставке которого пишется буква и. Пр _терпеть; пр _способлен; пр_ пятствие; пр _возносить. IV. Укажите слово, в котором пишется буква с. И _мучить; бе_радостный; и_ черпать; бе_людный. V. Укажите слово, в котором пишется буква з. Бе_ценный; во _прянуть; во_клицать; и_ ведать. VI. Укажите слово, в котором пишется буква е. Пр_годиться; пр_сутствовать; пр_усадебный; пр_градить. VII. Укажите слово, в котором пишется буква и. Раз _скивать; под _тожить; сверх_нтересный; без_скусный.


П, упр. 149 (письменно), упр (устно).