Болезни Военный билет Призыв

В каком году был открыт протон. Открытие нейтрона — Гипермаркет знаний. Атом и субатомные частицы

История открытия нейтрона начинается с безуспешных попыток Чедвика обнаружить нейтроны при электрических разрядах в водороде (на основе вышеупомянутой гипотезы Резерфор-да). Резерфорд, как мы знаем, осуществил первую искусственную ядерную реакцию, бомбардируя ядра атома а-частицами. Этим методом удалось также осуществить искусственные реакции с ядрами бора, фтора, натрия, алюминия и фосфора. При этом вылетали длиннопробежные протоны. В дальнейшем удалось расщепить ядра неона, магния, кремния, серы, хлора, аргона и калия. Эти реакции были подтверждены опытами венских физиков Кирша и Петтерсона (1924), которые утверждали также, что им удалось расщепить ядра лития, бериллия и углерода, чего не удалось сделать Резерфорду и его сотрудникам.

Разгорелась дискуссия, в которой Резерфорд оспаривал расщепление указанных трех ядер. Недавно О. Фриш высказал предположение, что результаты венцев объясняются участием в наблюдениях студентов, стремившихся «угодить» руководителям и видевших вспышки там, где их не было.

В 1930 г. Вальтер Боте (1891-1957) и Г. Беккер бомбардировали бериллий а-частицами полония. При этом они обнаружили, что бериллий, а также бор испускают сильно проникающее излучение, которое они отождествили с жестким у-излучением.

И января 1932 г. Ирен и Фредерик Жолио-Кюри доложили на заседании Парижской Академии наук результаты исследований излучения, открытого Боте и Беккером. Они показали, что это излучение «способно освобождать в водородсодержащих веществах протоны, сообщая им большую скорость».

Эти протоны были ими сфотографированы в камере Вильсона.

В следующем сообщении, сделанном 7 марта 1932 г., Ирен и Фредерик Жолио-Кюри показали фотографии следов протонов в камере Вильсона, выбиваемых из парафина бериллиевым излучением.

Интерпретируя свои результаты, они писали: «Предположения об упругих столкновениях фотона с ядром приводят к затруднениям, состоящим, с одной стороны, в том, что для этого требуется квант со значительной энергией, и, с другой стороны, в том, что этот процесс происходит слишком часто. Чедвик предлагает допустить, что излучение, возбуждаемое в бериллии, состоит из нейтронов - частиц с единичной массой и нулевым зарядом».

Результаты Жолио-Кюри поставили под угрозу закон сохранения энергии. В самом деле, если попытаться интерпретировать опыты Жолио-Кюри, исходя из наличия в природе только известных частиц: протонов, электронов, фотонов, то объяснение появления длиннопробежных протонов требует рождения в бериллии фотонов с энергией в 50 МэВ. При этом энергия фотона оказывается зависящей от вида ядра отдачи, используемого для определения энергии фотона.

Эту коллизию разрешил Чедвик. Он помещал бериллиевый источник перед ионизационной камерой, в которую попадали протоны, выбитые из парафиновой пластинки. Располагая между парафиновой пластинкой и камерой поглощающие экраны из алюминия, Чедвик нашел, что бериллиевое излучение выбивает из парафина протоны с энергией до 5,7 МэВ. Для сообщения протонам такой энергии фотон должен сам обладать энергией в 55 МэВ. Но энергия ядер отдачи азота, наблюдаемая при таком же бериллиевом излучении, оказывается равной 1,2 МэВ. Чтобы передать азоту такую энергию, фотон излучения должен иметь энергию по меньшей мере 90 МэВ. Закон сохранения энергии несовместим с фотонной интерпретацией бериллиевого излучения.

Чедвик показал, что все трудности снимаются, если предположить, что бе-риллиевое излучение состоит из частиц с массой, равной примерно массе протона, и нулевым зарядом. Эти частицы он назвал нейтронами. Чедвик опубликовал статью о своих результатах в «Трудах Королевского общества» за 1932 г. Однако предварительная заметка о нейтроне была опубликована в номере «Nature» от 27 февраля 1932 г. В дальнейшем И. и ф. Жолио-Кюри в ряде работ 1932-1933 гг. подтвердили существование нейтронов и их свойство выбивать протоны из легких ядер. Они установили также испускание нейтронов ядрами аргона, натрия и алюминия при облучении а-лучами.

В современной экспериментальной и прикладной физике большую роль играют нейтроны. При их помощи удалось освободить энергию атомного ядра в процессе деления ядер и создать мощные источники энергии. Так как нейтрон - частица незаряженная, то кулоновский барьер не препятствует ее проникновению в ядро. Это обусловливает особые возможности использования нейтрона для изучения ядерных структур и реакций.

История открытия нейтрона весьма характерна для путей развития ядерной физики вообще. Резерфорд еще в 1920 г. на основании общих соображений предсказал существования частицы с и массой, примерно равной массе протона, и даже обрисовал некоторые ее свойства.

В 1930 г. Боте и Беккер, облучая пластинку -частицами, наблюдали какое-то излучение, которое действовало на счетчик. Это «что-то» не могло быть -частицами, так как пробеги -частиц были меньше толщины использовавшейся пластинки Поскольку это излучение слабо поглощалось свинцом, естественно было считать его у-лучами.

В 1932 г. Жолио и Кюри повторили опыт с На пути неизвестного излучения они помещали парафин и наблюдали протоны, выбитые из парафина. Энергия протонов оказалась равной Было высказано предположение, что происходит ядерный фотоэффект. Из общих законов кинематики можно показать, что протоны такой энергии могли быть выбиты из ядра за счет ядерного фотоэффекта, только если энергия первичных превышала Но к этому времени уже было выяснено, что ядру свойственны энергетические уровни порядка лишь нескольких единиц и поэтому ядра, испускавшие не могли иметь возбужденного уровня с энергией, равной Таким образом, вопрос об источнике такого жесткого был не решен.

Чэдвик, руководствуясь идеей Резерфорда, анализировал результаты опытов Боте и Беккера, Жолио и Кюри и предположил, что новое проникающее излучение состоит не из фотонов, а из тяжелых нейтральных частиц. Наблюдая в камере Вильсона ядра отдачи азота, возникшие в результате взаимодействия нового излучения с азотом, и протоны отдачи, образованные в парафине, Чэдвик первый определил массу нейтрона, которая оказалась приблизительно равной массе протона.

Рассмотрим законы сохранения энергии и импульса, из которых было впервые получено значение массы нейтрона. Если предположить, что нейтроны выбивают из парафина протоны отдачи и рассматривать столкновение нейтрона с протоном как упругое рассеяние, то можно написать для лобового столкновения, когда скорость, приобретаемая протоном, максимальна:

где масса нейтрона; скорость нейтрона до столкновения; скорость нейтрона после столкновения; масса и скорость протона.

Здесь в двух уравнениях содержатся три неизвестные величины: (скорость протона определяется по его пробегу). Поэтому необходим дополнительный опыт. Чтобы получить третье уравнение, с теми же нейтронами повторяют опыт на азоте (масса ядра азота и определяют максимальную энергию отдачи ядра азота, с которым столкнулся нейтрон Она равна Энергия отдачи протона равна Следовательно, можно определить скорости протонов и ядер азота Решая уравнения совместно для скоростей ядер отдачи, получим

>> Открытие нейтрона

§ 103 ОТКРЫТИЕ НЕЙТРОНА

Важнейшим этапом в развитии физики атомного ядра было открытие нейтрона в 1932 г.

Искусственное превращение атомных ядер. Впервые в истории человечества искусственное превращение ядер осуществил Резерфорд в 1919 г. Это было уже не случайное открытие.

Так как ядро весьма устойчиво, и ни высокие температуры, ни давления, ни электромагнитные поля не вызывают превращения элементов и не влияют на скорость радиоактивного распада, то Резерфорд предположил, что для разрушения или преобразования ядра нужна очень большая энергия. Наиболее подходящими носителями большой энергии в то время были а-частицы, вылетающие из ядер при радиоактивном распаде.

Первым ядром, подвергшимся искусственному преобразованию, было ядро атома азота . Бомбардируя азот -частицами большой энергии, испускаемыми радием, Резерфорд обнаружил появление протонов - ядер атома водорода.

В первых опытах регистрация протонов проводилась методом сцинтилляций 1 , и их результаты не были достаточно убедительными и надежными. Но спустя несколько лет превращение азота удалось наблюдать в камере Вильсона. Примерно одна -частица на каждые 50 000 -частиц, испущенных радиоактивным препаратом в камере, захватывается ядром азота, что и приводит к испусканию протона. При этом ядро азота превращается в ядро изотопа кислорода :

На рисунке 13.9 показана одна из фотографий этого процесса. Слева видна характерная «вилка» - разветвление трека. Жирный след принадлежит ядру кислорода, а тонкий - протону. Остальные -частицы не претерпевают столкновений с ядрами, и их треки прямолинейны. Другими исследователями были обнаружены превращения под влиянием -частиц ядер фтора, натрия, алюминия и др., сопровождающиеся испусканием протонов. Ядра тяжелых элементов, находящихся в конце периодической системы, не испытывали превращений. Очевидно, из-за большого электрического (положительного) заряда -частица не могла приблизиться к ядру вплотную.



1 Сцинтилляция - вспышка происходящая при попадании частиц на поверхность, покрытую слоем специального веществаа, например слоем сульфида цинка.

Жолио-Кюри Фредерик (1900-1958) - французский ученый и прогрессивный общественный деятель. Совместно с женой Ирен открыл в 1934 г. искусственную радиоактивность. Большое значение для открытия нейтронов имели работы супругов Кюри по исследованию излучения бериллия под действием -частиц. С сотрудниками в 1939 г. впервые определил среднее число нейтронов, вылетающих при делении ядра атома урана, и показал принципиальную возможность цепной ядерной реакции с освобождением энергии .

Открытие нейтрона. В 1932 г. произошло важнейшее для всей ядерной физики событие: учеником Резерфорда английским физиком Д. Чедвиком был открыт нейтрон.

При бомбардировке бериллия -частицами протоны не появлялись. Но обнаружилось какое-то сильно проникающее излучение, способное преодолеть такую преграду, как свинцовая пластина толщиной 10-20 см. Было сделано предположение, что это -лучи большой энергии.

Ирен Жолио-Кюри (дочь Марии и Пьера Кюри) и ее муж Фредерик Жолио-Кюри обнаружили, что если на пути излучения, образующегося при бомбардировке бериллия -частицами, поставить парафиновую пластину, то ионизирующая способность этого излучения резко увеличивается. Они справедливо предположили, что излучение выбивает из парафиновой пластины протоны, имеющиеся в большом количестве в таком водородсодержащем веществе. С помощью камеры Вильсона (схема опыта приведена на рисунке 13.10) супруги Жолио-Кюри обнаружили эти протоны и по длине пробега оценили их энергию. По их данным, если протоны ускорялись в результате столкновения с -квантами, то энергия этих квантов должна была быть огромной -около 55 МэВ.

Чедвик наблюдал в камере Вильсона треки ядер азота , испытавших столкновение с бериллиевым излучением. По его оценке, энергия -квантов, способных сообщать ядрам азота скорость , которая обнаруживалась в этих наблюдениях, должна была составлять 90 МэВ. Аналогичные лее наблюдения в камере Вильсона треков ядер аргона привезли к выводу, что энергия этих гипотетических -квантов должна составлять 150 МэВ. Таким образом, считая, что ядра приходят в движение в результате столкновения с безмассовыми частицами, исследователи пришли к явному противоречию: одни и те же -кванты обладали различной энергией.

Стало очевидным, что предположение об излучении бериллием -квантов, т. е. безмассовых частиц, несостоятельно. Из бериллия под действием -частиц вылетают какие-то достаточно тяжелые частицы. Ведь только при столкновении с тяжелыми частицами протоны или ядра азота и аргона могли получить ту большую энергию, которая наблюдалась на опыте. Поскольку эти частицы обладали большой проникающей способностью и непосредственно не ионизировали газ, то, следовательно, они были электрически нейтральными. Ведь заряженная частица сильно взаимодействует с веществом и поэтому быстро теряет свою энергию.

Новая частица была названа нейтроном. Существование ее предсказывал Резерфорд более чем за 10 лет до опытов Чедвика. По энергии и импульсу ядер, сталкивающихся с нейтронами, была определена масса этих новых частиц. Она оказалась чуть больше массы протона - 1838,6 электронной массы вместо 1836,1 для протона. Было установлено в итоге, что при попадании -частиц в ядра бериллия происходит следующая реакция:

Здесь - символ нейтрона; его заряд равен нулю, а относительная масса - примерно единице».

Нейтрон - нестабильная частица: свбодный нейтрон за время около 15 мин распадается на протон, электрон и нейтрино - безмассовую нейтральную частицу.

Элементарная частица - нейтрон не имеет электрического заряда. Масса нейтрона больше массы протона примерно на 2,5 электронной массы.

Объясните, почему при центральном столкновении с протоном нейтрон передает ему всю энергию, а при столкновении с ядром азота - только ее часть.

Мякишев Г. Я., Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 17-е изд., перераб. и доп. - М. : Просвещение, 2008. - 399 с: ил.

Календарно-тематическое планирование по физике, видео по физике онлайн , Физика и астрономия в школе скачать

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

С древних времен человека интересовала структура вещества, которое он наблюдает вокруг себя каждый день. Одна из гипотез, выдвинутая еще в Античной Греции,...

Кто открыл нейтрон, протон и электрон, и какое значение это имело для человечества

От Masterweb

01.08.2018 14:00

С древних времен человека интересовала структура вещества, которое он наблюдает вокруг себя каждый день. Одна из гипотез, выдвинутая еще в Античной Греции, постулировала, что вещество состоит из элементарных частиц - атомов. Однако только в XX веке было экспериментально установлено, что атом также состоит из субатомных частиц: протонов, электронов и нейтронов. В статье раскрывается тема, кто открыл нейтрон, протон и электрон, и какое влияние оказали эти открытия на развитие человечества.

Атом и субатомные частицы

Материя Вселенной состоит из маленьких частиц, которые называются атомами. Эта концепция была выдвинута греческим математиком и философом Демокритом еще в V веке до нашей эры. С древнегреческого языка слово "атом" переводится как "неделимый". Ввиду технической невозможности проверить, что представляет собой атом, эта гипотеза существовала вплоть до XIX века, когда достижения науки и технологий позволили изучить атом более тщательно. Благодаря изучению атома в конце XIX века было установлено, что он не является элементарной единицей материи и состоит из более мелких частиц, которые были названы субатомными. К этим частицам принято относить электрон, протон и нейтрон, поскольку они образуют атомы всего вещества.

В настоящее время в вопросе изучения элементарных частиц наука продвинулась далеко вперед. Так, было установлено, что даже субатомные частицы тоже имеют свою внутреннюю структуру. Кроме того, существует так называемая антиматерия, образованная атомами, состоящими из античастиц, которые тоже являются субатомными. Тем не менее начало ядерной физики и ядерной истории человечества положило именно открытие электронов, протонов и нейтронов. Кто открыл эти субатомные частицы, рассматривается в этой статье.

Современные представления о строении атома

Прежде чем переходить к ответу на вопрос, кто открыл нейтроны, протоны и электроны, рассмотрим, что с современной точки зрения представляет собой атом.

Каждое вещество, которое мы видим каждый день, состоит из молекул. Они же образованы атомами. Хотя количество различных молекул достаточно велико, все они образованы ограниченным количеством различных атомов (порядка 100). Каждый атом имеет ядро, состоящее из протонов и нейтронов, и вращающиеся вокруг ядра электроны, электрический заряд которых является отрицательным и противоположен по знаку заряду ядра.

Если применять эти представления к воде, то следует сказать, что в капле воды диаметром 4 мм находится приблизительно 1015 молекул. Молекула воды состоит из 3 атомов: 2 атома водорода и 1 атом кислорода. Атом кислорода состоит из ядра, образованного 8 протонами и 8 нейтронами, и электронной оболочки, состоящей из 8 электронов.

Открытие электрона


До 1897 года человечество считало атом неделимым, когда британский физик Джозеф Джон Томсон открыл электрон в своих экспериментах с катодными лучами. Прибор, который использовал Томсон, представлял собой герметичную трубку из стекла, в которую были помещены два катода, и был выкачан воздух. Ученый обнаружил, что испускаемые катодные лучи отклоняются от пути своего распространения, если на них воздействовать электрическим полем. В итоге ученый установил, что образующие эти лучи частицы должны иметь отрицательный заряд. Впоследствии эти частицы получили название электроны.

Открытие протона


Ученик Дж. Дж. Томсона, новозеландский физик Эрнест Резерфорд, считается ученым, открывшим протон. Он в начале XX века предложил планетарную модель строения атома, в которой основная масса находится в центре. К такой гипотезе Резерфорд пришел после анализа экспериментов, в которых ученые Ганс Гейгер и Эрнест Марсден бомбардировали альфа-частицами пластинку из золота.

В 1918 году Резерфорд провел самостоятельно эксперименты по взаимодействию альфа-частиц с азотом. В этих экспериментах ученый наблюдал испускание ядер атома водорода и пришел к заключению, что они являются "кирпичиками" для всех других ядер. Так Резерфорд открыл протон. Впоследствии было установлено, что ядерная масса значительно превосходила суммарную массу всех протонов атома, поэтому Резерфорд предположил, что в ядре атома существует еще некоторая тяжелая частица, не обладающая зарядом. Этой частицей стал нейтрон, который был открыт позже.

Кто открыл нейтрон?

Третья составляющая атом частица была открыта в 1932 году. Ученым, открывшим существование нейтронов, стал английский физик Джеймс Чедвик. Изучая поведение атомов, когда их бомбардируют альфа-частицы, Чедвик обнаружил существование радиационного излучения, частицы которого имели массу приблизительно такую же, как протоны, но являлись электрически нейтральными, поскольку не взаимодействовали с электрическим полем. Кроме того, эти частицы были способны пронизывать вещество и заставлять атомы тяжелых элементов делиться на более легкие. Из-за физических свойств новой частицы Чедвик назвал ее нейтроном, поэтому он по праву считается ученым, открывшим нейтрон.

Энергия атомного ядра

После того, как нейтроны были открыты, ядерная физика, а также химия и технологии сделали огромный шаг вперед. Перед человеком открылся новый, практически неисчерпаемый и в то же время опасный источник энергии.

Начало ядерной эры человечество ощутило на себе в 1945 году, когда США испытало в действии разрушительную первую ядерную бомбу "Тринити", сбросив ее на японские города Хиросима и Нагасаки.


Первое использование ядерной энергии в мирных целях следует отнести к середине 50-х годов XX века, когда в 1953 году был построен первый ядерный реактор, который заменил дизельный двигатель на американской подводной лодке "Наутилус".

Улица Киевян, 16 0016 Армения, Ереван +374 11 233 255

Тема сегодняшнего занятия - «Открытие протона. Открытие нейтрона». На нём мы узнаем, как произошло одно из великих открытий ХХ века. Эти две важнейшие частицы, из которых состоят все ядра, протон и нейтрон были открыты соответственно Резерфордом в 1919 г. и Чедвиком в 1932 г. Они опытным путем смогли установить и доказать, что эти две частицы входят в состав любого ядра.

Удивительная история случилась в самом начале ХХ века. Именно тогда были открыты две важнейшие частицы, из которых состоят все ядра химических элементов - протон и нейтрон.

Протон

Начнем по порядку - с протона. Как известно, был открыт в 1919 г. Э. Резерфордом. Мы знаем, что в 1911 г. уже состоялся опыт Резерфорда по определению строения атома. А в 1913 г., т.е. через 2 года после своего знаменитого эксперимента, Резерфорд выдвинул очень важную идею. Он предложил считать, что в состав любого ядра, т.е. всех химических элементов, в ядре любого химического элемента находится водород. На чем основывались его такие размышления?

Уже был определены характеристики ядер водорода. Была известна масса, был известен заряд ядра водорода. Оказалось, что массы химических элементов делятся на массу водорода без остатка. Таким образом, Резерфорд сделал заявление, что, по всей вероятности, внутри любого ядра находится то или иное количество атомов водорода.

Но любая теория должна подтверждаться обязательно экспериментом. Такой эксперимент состоялся в 1919 г., именно тогда и был открыт протон. В своем эксперименте Резерфорд использовал a-частицы. Их Резерфорд направил на ядра азота. В результате этого эксперимента были получены два каких-то химических элемента. Один из них был отождествлен - кислород, а второй, по всей вероятности, являлся водородом. Обращаю ваше внимание: уверенности здесь не было. Почему?

Резерфорд использовал в своем эксперименте метод, о котором мы уже говорили на предыдущем уроке, - метод сцинтилляций, когда попадающая частица дает вспышку. По результатам таких экспериментов он судил о том, что там есть какая-то частица, соответствующая атому ядра водорода.

Рис.1. Результат бомбардировки a-частицами ядер азота: образовались кислород и частица, тождественная ядру водорода

Эту частицу, ядро водорода, он назвал протоном (от греч. «протос» - «первый»). Когда этот эксперимент повторили, но уже в камере Вильсона, причем эта камера находилась в магнитном поле, то уже не было никаких сомнений: открыта новая частица - протон. Итак, является ядром атома водорода. Давайте посмотрим на эту первую искусственную ядерную реакцию.

Ставится буква Р, внизу отмечается порядковый номер 1, как у водорода. И массовое число ставится 1, т.е. по оценке уже тогда, когда были проведены исследования в камере Вильсона, ясно стало, что масса протона приблизительно соответствует 1 атомной массе.

Обратите внимание на реакцию. Реакция происходила следующим образом:

Азот, порядковый номер 7 и массовое число 14, обстреливался a-частицами. Мы знаем, что a-частицы - это ядра атома гелия с порядковым номером 2 и с массовым числом 4. В результате такой реакции образовались два новых ядра. Два совершенно новых элемента.

Первое ядро - это ядро, соответствующее атому кислорода, с порядковым номером 8 и массовым числом 17. И та частица, ядро атома водорода, которое мы теперь можем смело назвать протоном.

Итак, ядро атома водорода и протон - это одно и то же, были открыты в 1919 г. по сути своей в опытах Резерфорда.

Нейтрон

Следующий этап в развитии строения ядра атома был связан с именем Чедвика. Это ученик Резерфорда. Именно ему удалось в 1932 г. открыть нейтрон. Обнаружить нейтрон было гораздо сложнее, ведь - электрически нейтральная частица, как мы уже знаем.

В 1930 г. двое немецких ученых, Боте и Беккер, в результате опытов обнаружили, что при облучении a-частицами бериллия образуется какое-то неизвестное излучение.

После открытия Резерфордом протона, многие ученые направили свои помыслы и силы на то, чтобы провести ядерные реакции, искусственные ядерные реакции. При помощи a-лучей стали облучать многие элементы, наблюдая за реакцией. Вот и немецкие ученые в 1930 г., облучая бериллий, получили неизвестное излучение. Вначале это излучение решили отождествить с g-лучами. Они распространялись вдоль прямой, не отклонялись в электрическом и магнитном полях, обладали большой энергией и высокой проникающей способностью.

В дальнейшем при изучении других реакций стало ясно, что такие же лучи образуются, когда a-лучами обстреливают бор и некоторые другие химические элементы. Сравнивая химические элементы, полученные в результате такого рода реакций, поняли, что данные лучи не являются никакими лучами (g-лучами уж точно не являются, поскольку обладают более высокой проникающей способностью энергией по сравнению с g-лучами).

Рис. 2. Джеймс Чедвик

В 1932 г. Чедвик предположил, что это какая-то новая частица, которая не обладает электрическим зарядом. Именно этим объясняются все ее свойства: она хорошо проникает через преграды, потому что не взаимодействует с ядрами. Такую новую частицу назвали нейтрон (т.к. он электрически нейтрален).

Давайте посмотрим на обозначения этой частицы и обсудим ее свойства. Обозначение нейтрона следующее:

Поскольку у нейтрона нет заряда, то 0 ставится внизу, где пишется зарядовое число, а вот массовое число у него равно 1. Масса нейтрона почти равна, но чуть больше массы протона. Поэтому тоже было решено ставить в массовом обозначении число, равное 1.

Теперь можно смело говорить о том, что нейтрон и протон составляют ядро атома. Но о том, какова модель ядра атома, что она собой представляет, мы поговорим на следующем уроке.

Список дополнительной литературы

  1. Боровой А.А. Как регистрируют частицы (по следам нейтрино). «Библиотечка “Квант”». Вып. 15. М.: Наука, 1981
  2. Бронштейн М.П. Атомы и электроны. «Библиотечка “Квант”». Вып. 1. М.: Наука, 1980
  3. Кикоин И.К., Кикоин А.К. Физика: Учебник для 9 класса средней школы. М.: «Просвещение»
  4. Китайгородский А.И. Физика для всех. Фотоны и ядра. Книга 4. М.: Наука
  5. Мякишев Г.Я., Синякова А.З. Физика. Оптика Квантовая физика. 11 класс: учебник для углубленного изучения физики. М.: Дрофа
  6. Резерфорд Э. Избранные научные труды. Строение атома и искусственное превращение элементов. М.: Наука, 1965

Задание к уроку