Болезни Военный билет Призыв

В чем состоит эффект комптона. Эффект комптона и его элементарная теория. В честь кого эффект получил свое название

Наличие у света корпускулярных свойств также подтверждается комптоновским рассеянием фотонов. Эффект назван в честь открывшего в 1923 г. это явление американского физика Артура Холли Комптона. Он изучал рассеяние рентгеновских лучей на различных веществах.

Эффект Комптона – изменение частоты (или длины волны) фотонов при их рассеянии. Может наблюдаться при рассеянии на свободных электронах фотонов рентгеновского диапазона или на ядрах при рассеянии гамма-излучения.

Рис. 2.5. Схема установки для исследования эффекта Комптона.

Тр – рентгеновская трубка

Эксперимент Комптона заключался в следующем: он использовал так называемую линию К α в характеристическом рентгеновском спектре молибдена с длиной волны λ 0 = 0.071нм. Такое излучение можно получить при бомбардировке электронами молибденового анода (рис. 2.5), отрезав излучения других длин волн с помощью системы диафрагм и фильтров (S ). Прохождение монохроматического рентгеновского излучения через графитовую мишень (М ) приводит к рассеянию фотонов на некоторые углы φ , то есть к изменению направления распространения фотонов. Измеряя с помощью детектора (Д ) энергию рассеянных под различными углами фотонов, можно определить их длину волны.

Оказалось, что в спектре рассеянного излучения наряду с излучением, совпадающим с падающим, присутствует излучение с меньшей энергией фотонов. При этом различие между длинами волн падающего и рассеянного излучений ∆λ = λ – λ 0 тем больше, чем больше угол, определяющий новое направление движения фотона. То есть на большие углы рассеивались фотоны с бóльшей длиной волны.

Этот эффект не может быть обоснован классической теорией: длина волны света при рассеянии изменяться не должна, т.к. под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому должен излучать под любым углом вторичные волны той же частоты.

Объяснение эффекту Комптона дала квантовая теория света, в рамках которой процесс рассеяния света рассматривается как упругое столкновение фотонов с электронами вещества . В процессе этого столкновения фотон передает электрону часть своих энергии и импульса в соответствии с законами их сохранения в точности как при упругом столкновении двух тел.

Рис. 2.6. Комптоновское рассеяние фотона

Поскольку после взаимодействия релятивистской частицы фотона с электроном последний может получить ультравысокую скорость, закон сохранения энергии необходимо писать в релятивистской форме:

(2.8)

Где hν 0 и – энергии соответственно падающего и рассеянного фотонов, mc 2 – релятивистская энергия покоя электрона – энергия электрона до столкновения, E e – энергия электрона после столкновения с фотоном. Закон сохранения импульса имеет вид:



(2.9)

где p 0 и p – импульсы фотона до и после столкновения, p e – импульс электрона после столкновения с фотоном (до столкновения импульс электрона равен нулю).

Возведем в квадрат выражение (2.30) и помножим на с 2 :

Воспользуемся формулами (2.5) и выразим импульсы фотонов через их частоты: (2.11)

Учитывая, что энергия релятивистского электрона определяется формулой:

(2.12)

и используя закон сохранения энергии (2.8), получим:

Возведем в квадрат выражение (2.13):

Сравним формулы (2.11) и (2.14) и проведем простейшие преобразования:

(2.16)

Частота и длина волны связаны соотношением ν =с/λ , поэтому формулу (2.16) можно переписать в виде: (2.17)

Разность длин волн λ λ 0 является очень малой величиной, поэтому комптоновское изменение длины волны излучения заметно лишь при малых абсолютных значениях длины волны, то есть эффект наблюдается только для рентгеновского или гамма-излучения.

Длина волны рассеянного фотона, как показывает эксперимент, не зависит от химического состава вещества, она определяется только углом θ , на который рассеивается фотон. Это легко объяснить, если учесть, что рассеяние фотонов происходит не на ядрах, а на электронах, которые в любом веществе идентичны.

Величина h/mc в формуле (2.17) называется комптоновской длиной волны и для электрона равна λ c = 2.43·10 –12 м.

КОМПТОНА ЭФФЕКТ (комптон-эффект, комптонов-ское рассеяние) - рассеяние эл--магн. волны на свободном электроне, сопровождающееся уменьшением частоты. Эффект наблюдается для больших частот рассеиваемого эл--магн. излучения (в рентг. области и выше). Он проявлялся уже в первых опытах по рассеянию рснтг; лучей на свободных электронах, но впервые с требуёмой тщательностью был изучен А. Комп-тоном (A. Compton) в 1922-23. Исторически К. э. явился одним из гл. свидетельств в пользу корпускулярной природы эл--магн. излучения (в частности, света). С точки зрения классич. электродинамики рассеяние с изменением частоты невозможно.

Элементарная теория эффекта была дана А. Комп-тоном и независимо от него П. Дебаем (P. Debye) на основе представления о том, что рентг. излучение состоит из фотонов .Для объяснения эффекта приходилось предположить, что фотон обладает как энергией , так и импульсом (здесь v и - частота и длина волны света, п - единичный вектор в направлении распространения волны).

Комптон рассмотрел упругое рассеяние фотона на свободном покоящемся электроне (что является хорошим приближением для рассеяния фотонов рентг. лучей на атомных электронах лёгких атомов). При рассеянии фотон передаёт электрону часть энергии и импульса, что соответствует уменьшению частоты (увеличению длины волны) рассеиваемого света. Из законов сохранения энергии и импульса он получил ф-лу для сдвига длины волны:

где - длины волн до и после рассеяния, - угол рассеяния, m е - масса электрона. Параметр наз. комптоновской длиной волны электрона и равен 2,4*10 -10 см. Из кинематики процесса легко также определить энергию и импульс электрона отдачи.

Поскольку ф-ла (*) основана только на кинематпч. соображениях, она оказывается справедливой и в точной теории. Из неё следует, что относит. изменение длины волны велико только для коротких длин волн, когда

Данная Комптоном упрощённая теория эффекта не позволяет определить все характеристики компто-новского рассеяния, в частности зависимость интенсивности рассеяния от . Точная релятивистская теория К. э. была сформулирована в рамках квантовой электродинамики . (КЭД). Во втором порядке теории возмущений К. э. в КЭД описывается двумя Фейнмана диаграммами , изображёнными на рис. 1. Вычисление по этим диаграммам (с использованием Дирака уравнения для электрона) дифференц. сечения К. э. приводит к Клейна - Нишины формуле , хорошо согласующейся с опытом.

Рис. 1. Диаграммы Фсйнмана для Комптона эффекта: е, и - электрон и фотон соответственно в начальном и конечном состояниях; е* - виртуальный электрон в промежуточном состоянии.

Для К. э. при высоких энергиях характерна острая направленность рассеянного излучения по направлению первичного фотона; с ростом энергии фотонов эта угл. асимметрия увеличивается. Полное эфф. сечение комптоновского рассеяния (полученное интегрированием по углам ф-лы Клейна - Нишины) падает с увеличением (рис. 2).

К. э. является одним из осн.. механизмов, определяющих потери энергии при прохождении -излучения через вещество. Абс. сечение К. э., а также его соотношение с сечениями фотоэффекта и рождения пар электрон-позитрон в реальных веществах сильно зависят от ат. номера Z . На рис. 2 показано соотношение указанных процессов в свинце. В пределе нулевых частот полное сечение К. э. на отд. электроне переходит в сечение классич. (томсоновского) рассеяния , где =2,8*10 -13 см - т. н. классич. радиус электрона. При этом =6,65 10 -25 см 2 . Как видно из рис. 2, при энергиях в интервале 0,5-5 МэВ К. э. даёт осн. вклад в потери энергии фотонами в свинце (в воздухе соответствующий интервал составляет 0,1-20 МэВ).

Рис. 2. Зависимость полного сечения о в свинце от энергии фотона в единицах энергии покоя электрона m е c 2 для Комптона эффекта (1) , фотоэффекта (2) , рождения пар е + е - (3); по оси ординат отложена величина линейного поглощения фотонов = N (N - концентрация атомов вещества).

Если электрон, на к-ром рассеивается фотон, не покоится, а является ультрарелятивистским с энергией , то при столкновении электрон теряет, а фотон приобретает энергию и длина волны света при столкновении уменьшается (частота увеличивается). Такое явление наз. обратным к о м п т о н-эффектом. Если направления скоростей нач. фотонов распределены изотропно, то ср. энергия рассеянных фотонов при обратном К. э. определяется соотношением

Обратный К. э. является гл. механизмом потерь энергии электронами, движущимися в магн. поле космич. радиоисточников. Он является также причиной возникновения изотропного рентг. космич. излучения с энергией 50-100 кэВ, представляющего собой фотоны отдачи при рассеянии релятивистских электронов на изотропном микроволновом космич. фоновом излучении.

В процессе рассеяния электрон может поглотить один, а излучить в конечном состоянии не один (как в случае обычного К. э.), а два фотона. Это явление наз. двойным комптон-эффектом. Оно было теоретически исследовано В. Гайтлером (W. Heit-ler) и Л. Нордхеймом (L. Nordheim) в 1934. Возможен также процесс re-кратного К. э., когда в конечном состоянии излучается п фотонов. Его сечение, вообще говоря, подавлено фактором . Но в случае, когда излучаемые фотоны являются мягкими и непосредственно не регистрируются, такой процесс неотличим от обычного К. э. и имеет большое сечение. Поэтому учёт поправок от n -кратного К. э. важен для интерпретации данных по обычному К. э.

Если К. э. происходит во внеш. поле интенсивной эл--магн. волны [где в каждом конечном интервале частоты содержится много фотонов], то возможен процесс, в к-ром происходит как поглощение из внеш. поля, так и испускание электроном большого числа фотонов. Такой процесс является сложной ф-цией напряжённости внеш. электрич. поля Е и наз. нелинейным комптон-эффектом. Он происходит с заметной вероятностью при , где E 0 имеет масштаб полей на электронной орбите атома водорода. Такие напряжённости электрич. поля пока недостижимы в земных условиях, но существуют на поверхности сверхплотных звёзд.

Комптоновское рассеяние происходит также на др. заряж. частицах, в частности на протоне, однако вследствие большой массы протона эффект заметен лишь при очень высоких энергиях -квантов.

Комптоновское рассеяние используется в исследованиях -излучения атомных ядер, а также для измерения поляризуемости элементарных частиц и ядер и лежит в основе принципа действия нек-рых гамма-спектрометров .

Лит.: Шпольский Э. В., Атомная физика, 7 изд., т. 1-2, М., 1984; Альфа-, бета- и гамма-спектроскопия, пер. с англ., в. 1-4, М., 1969; Л е н г К., Астрофизические формулы, пер. с англ., т. 1-2, М., 1978; Квантовая электродинамика явлений в интенсивном поле, М., 1979. М. В. Терентъев .

К. э. на связанном электроне . В рассеянии фотона связанным (атомным или молекулярным) электроном, в отличие от случая рассеяния на свободном электроне, выделяют три след. канала: рэлеевское рассеяние, при к-ром состояние мишени не меняется; комбинационное рассеяние света , в результате к-рого мишень переходит в др. связанное состояние; комптонов-ское рассеяние, сопровождающееся ионизацией.

Эффект связи электрона в атоме в нач. состоянии приводит в процессе комптоновской ионизации к уши-рению комптоновской линии, т. е. к появлению распределения по частотам вылетающих фотонов при фиксированном угле рассеяния . Взаимодействие электрона с ионным остатком в конечном состоянии приводит к сдвигу максимума комптоновской линии в сторону высоких частот, тем большему, чем больше энергия связи . При любых нач. энергиях фотона ширина комптоновской линии пропорц. . В нерелятивистской области энергий пропорц. частоте налетающего фотона, , а сдвиг её максимума порядка [ - постоянная тонкой структуры, Z эфф - эфф. заряд ядра (в единицах элементарного заряда e ) для рассматриваемой электронной оболочки].

Рис. 3. Диаграмма Фейнмана типа "чайка"; двойная сплошная линия описывает электрон в поле атома, волнистая линия- фотон.

В области энергий электрону в процессе комптоновской ионизации передаётся энергия, значительно большая энергии связи в атоме. Это позволяет интерпретировать рассеяние фотона как процесс, происходящий на свободном электроне, имеющем точно такое же распределение по импульсам, как в связанном состоянии. Такое рассмотрение в рамках импульсного приближения является теоретич. основой нерелятивистского метода изучения электронной структуры атомов, молекул и кристаллов - метода комптоновских, профилей .

В области энергий амплитуда комптон-эффекта на слабо связанном () электроне описывается диаграммой Фейнмана типа "чайка" (рис. 3), в к-рой оператор взаимодействия выражается через волновые векторы k , и поляризации е , падающего и рассеянного фотонов и оператор импульса :

(i = 1, 2, 3) -Дирака матрицы ,_ В области энергий на сечение К. э. определяющее влияние оказывает взаимодействие электрона с ионным остатком в конечном состоянии, т. к. из-за приближённого выполнения закона сохранения импульса (узости комптоновской линии и малости её сдвига) вылетающий электрон обладает в среднем относительно малой энергией. При таких энергиях фотонов процесс комптоновской ионизации интерпретируется как "встряска" типа рассеяния (см. Внезапных возмущений метод) . В соответствии с концепцией "встряски" гл. характеристикой угл. распределения рассеянных фотонов в К. э. на связанном электроне является подходящим образом выбранный "встрясочный" параметр :

где b = 1+ . Величиной параметра N определяются отношения эфф. сечений , показанных для К -электронов на рис. 4.

Рис. 4. Угловые распределения рассеянных фотонов в процессе комптоновской ионизации К-оболочек лёгких элементов (штрих-пунктирные линии; r e = е 2 /mс 2 - классический радиус электрона); сплошные линии - расчёт по формуле Клейна - Нишины.

Эти отношения как ф-ции параметра N оказываются универсальными не только для К -электронов, но и для каждой конкретной атомной оболочки.

В связи с прогрессом лазерной техники в ряде исследований ставятся вопросы о влиянии сильных эл--магн. полей на разл. элементарные атомные процессы. Имеется целый класс эффектов вынужденного поглощения или испускания фотонов внеш. лазерного поля, происходящих на фоне осн. процесса, к-рым может быть фотоионизация, комптоновская ионизация, тор-можение электрона на атоме и т. д. . В области параметров, где сечения этих вынужденных процессов велики, они могут быть интерпретированы как процессы "встряски". В случаях, когда параметр N не содержит постоянной Планка (напр., в процессах испускания и рассеяния фотонов классич. электроном), вынужденные эффекты имеют классич. объяснение при любом чпсле испускаемых (поглощаемых) лазерных фотонов. Так, процесс комптоновского рассеяния жёсткого фотона с энергией на электроне, помещённом в интенсивное низкочастотное (с частотой ) лазерное поле, с классич. точки зрения описывается как высокочастотное излучение электрона, находящегося в поле двух эл--магн. волн .

Лит.: 1) Зоммерфельд А., Строение атома и спектры, пер. с нем., т. 2, М., 1956; 2) Б у ш у е в В. А., Кузьмин Р. Н., Неупругое рассеяние рентгеновского и синхро-тронного излучений в кристаллах, когерентные эффекты в неупругом рассеянии, "УФН", 1977, т. 122, с. 81; 3) Дыхне A.M., Юдин Г. Л., "Встряхивание" квантовой системы и характер стимулированных им переходов, "УФН", 1978, т. 125, с. 377; 4) Дыхне А. М., Юдин Г. Л., Вынужденные эффекты при "встряске" электрона во внешнем электромагнитном поле, "УФН", 1977, т. 121, с. 157. Г.Л.Юдин .

Наличие у света корпускулярных свойств также подтверждается комптоновским рассеянием фотонов. Эффект назван в честь открывшего в 1923 г. это явление американского физика Артура Холли Комптона. Он изучал рассеяние рентгеновских лучей на различных веществах.

Эффект Комптона – изменение частоты (или длины волны) фотонов при их рассеянии. Может наблюдаться при рассеянии на свободных электронах фотонов рентгеновского диапазона или на ядрах при рассеянии гамма-излучения.

Рис. 2.5. Схема установки для исследования эффекта Комптона.

Тр – рентгеновская трубка

Эксперимент Комптона заключался в следующем: он использовал так называемую линию К α в характеристическом рентгеновском спектре молибдена с длиной волны λ 0 = 0.071нм. Такое излучение можно получить при бомбардировке электронами молибденового анода (рис. 2.5), отрезав излучения других длин волн с помощью системы диафрагм и фильтров (S ). Прохождение монохроматического рентгеновского излучения через графитовую мишень (М ) приводит к рассеянию фотонов на некоторые углы φ , то есть к изменению направления распространения фотонов. Измеряя с помощью детектора (Д ) энергию рассеянных под различными углами фотонов, можно определить их длину волны.

Оказалось, что в спектре рассеянного излучения наряду с излучением, совпадающим с падающим, присутствует излучение с меньшей энергией фотонов. При этом различие между длинами волн падающего и рассеянного излучений ∆λ = λ – λ 0 тем больше, чем больше угол, определяющий новое направление движения фотона. То есть на большие углы рассеивались фотоны с бóльшей длиной волны.

Этот эффект не может быть обоснован классической теорией: длина волны света при рассеянии изменяться не должна, т.к. под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому должен излучать под любым углом вторичные волны той же частоты.

Объяснение эффекту Комптона дала квантовая теория света, в рамках которой процесс рассеяния света рассматривается как упругое столкновение фотонов с электронами вещества . В процессе этого столкновения фотон передает электрону часть своих энергии и импульса в соответствии с законами их сохранения в точности как при упругом столкновении двух тел.

Рис. 2.6. Комптоновское рассеяние фотона

Поскольку после взаимодействия релятивистской частицы фотона с электроном последний может получить ультравысокую скорость, закон сохранения энергии необходимо писать в релятивистской форме:

(2.8)

Где hν 0 и – энергии соответственно падающего и рассеянного фотонов, mc 2 – релятивистская энергия покоя электрона – энергия электрона до столкновения, E e – энергия электрона после столкновения с фотоном. Закон сохранения импульса имеет вид:

(2.9)

где p 0 и p – импульсы фотона до и после столкновения, p e – импульс электрона после столкновения с фотоном (до столкновения импульс электрона равен нулю).

Возведем в квадрат выражение (2.30) и помножим на с 2 :

Воспользуемся формулами (2.5) и выразим импульсы фотонов через их частоты: (2.11)

Учитывая, что энергия релятивистского электрона определяется формулой:

(2.12)

и используя закон сохранения энергии (2.8), получим:

Возведем в квадрат выражение (2.13):

Сравним формулы (2.11) и (2.14) и проведем простейшие преобразования:

(2.16)

Частота и длина волны связаны соотношением ν =с/λ , поэтому формулу (2.16) можно переписать в виде: (2.17)

Разность длин волн λ λ 0 является очень малой величиной, поэтому комптоновское изменение длины волны излучения заметно лишь при малых абсолютных значениях длины волны, то есть эффект наблюдается только для рентгеновского или гамма-излучения.

Длина волны рассеянного фотона, как показывает эксперимент, не зависит от химического состава вещества, она определяется только углом θ , на который рассеивается фотон. Это легко объяснить, если учесть, что рассеяние фотонов происходит не на ядрах, а на электронах, которые в любом веществе идентичны.

Величина h/mc в формуле (2.17) называется комптоновской длиной волны и для электрона равна λ c = 2.43·10 –12 м.

ЭФФЕКТ КОМПТОНА

Наиболее полно корпускулярные свойства света проявляются в эффекте Комптона. Американский физик А. Комптон (1892-1962), исследуя в 1923 г. рассеяние монохроматического рентгеновского излучения веществами с легкими атомами (парафин, бор), обнаружил, что в составе рассеянного излучения наряду с излучением первоначальной длины волны λ наблюдается также излучение более длинных волн λ ′ . Опыты показали, что разность λ = λ ′− λ не зависит от длины волны падающего излучения и природы рассеивающего вещества, а определяется только величиной угла рассеяния θ:

где λ ′ длина волны рассеянного излучения, λ C - комптоновская длина волны. (при рассеянии фотона на электроне λ C =2,426 пм).

Эффектом Комптона называется упругое рассеяние коротковолнового электромагнитного излучения (рентгеновского и γ-излучений) на свободных (или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны. Этот эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты.

Объяснение эффекта Комптона дано на основе квантовых представлений о природе света. Если считать, как это делает квантовая теория, что излучение имеет корпускулярную природу, т. е. представляет собой поток фотонов, то эффект Комптона

Результат упругого столкновения рентгеновских или γ- фотонов со свободными электронами вещества (для легких атомов электроны слабо связаны с ядрами атомов, поэтому их можно считать свободными). В процессе этого столкновения фотон передает электрону часть своих энергии и импульса в соответствии с законами их сохранения.

Рис. 1. Закон сохранения импульса при рассеянии фотона на свободном электроне

Рассмотрим упругое столкновение двух частиц (рис.1) - налетающего фотона,

обладающего

импульсом p =

и энергией

E = h ν , с покоящимся свободным

W = m c2

где m 0 - масса покоя электрона. Фотон,

электроном,

энергия покоя которого

столкнувшись с электроном, передает ему часть своей энергии и импульса и изменяет направление движения (рассеивается). Уменьшение энергии фотона означает увеличение длины волны рассеянного излучения. Пусть импульс и энергия рассеянного фотона равны

hν ′

E γ

H ν

Электрон, ранее покоившийся, приобретает

импульс p = m υ , энергию

W = mc2 и

приходит в движение - испытывает отдачу. При каждом таком столкновении выполняются законы сохранения энергии и импульса.

W0 + Eγ = W + Eγ ′ ,

′ + p

Подставив в выражении (3) значения величин и представив (4) используя теорему косинусов, в соответствии с рис. 1, получим

m0 c2 + hν = mc2 + hν ′ ,

(m υ )

′ 2

−2

ν ν cos θ .

Перепишем равенство (5) в виде

mc2 = m0 c2 + hν − hν ′ ,

и возведем его в квадрат

2 hm0 c

(ν − ν )

H ν

H ν

− 2 h νν

2 ′ 2

Вычитая из равенства (7) равенство (6), умноженное на c 2 , получим

m 2c 4 − m 2υ 2c 2 = m 20 c 4 + h 2ν

2 + h 2ν ′ 2 − 2 h 2νν

2 hm0 c

2 ′ 2

2 ′

− ν )

− h ν

− h ν

ν ν cos θ

Масса электрона отдачи связана с его скоростью соотношением

Или m 2 (c 2 − υ 2 ) = m

2c 2 .

1− υ 2 / c 2

Учитывая (9), на основании (8) запишем

− cosθ ) .

− ν )

H ν ν(1

, ν ′=

, λ = λ′− λ ,

Поскольку ν =

(1− cosθ ) , или,

λ′

λ′

λλ′

окончательно

2 θ

λ = (λ

− λ ) = m c (1− cosθ ) = m c sin 2

Выражение (11) есть не что иное, как полученная экспериментально Комптоном формула. Подстановка в нее значений h , m 0 , c дает комптоновскую длину волны электрона

λ C =2,426 пм.

Наличие в составе рассеянного излучения несмещенной линии (излучения первоначальной длины волны) можно объяснить следующим образом. При рассмотрении механизма рассеяния предполагалось, что фотон соударяется лишь со свободным электроном. Однако если электрон сильно связан с атомом, как это имеет место для внутренних электронов (особенно в тяжелых атомах), то фотон обменивается энергией и импульсом с атомом в целом. Так как масса атома по сравнению с массой электрона очень велика, то атому передается лишь ничтожная часть энергии фотона. Поэтому в данном случае длина волны рассеянного излучения практически не будет отличаться от длины волны падающего излучения.

Из приведенных рассуждений следует также, что эффект Комптона не может наблюдаться в видимой области спектра, поскольку энергия фотона видимого света сравнима с энергией связи электрона с атомом, при этом даже внешний электрон нельзя считать свободным.

Эффект Комптона наблюдается не только на электронах, но и на других заряженных частицах, например протонах, однако из-за большой массы протона его отдача просматривается лишь при рассеянии фотонов очень высоких энергий. Как эффект Комптона, так и фотоэффект на основе квантовых представлений обусловлены взаимодействием фотонов с электронами. В первом случае фотон рассеивается, во втором

Поглощается. Рассеяние происходит при взаимодействии фотона со свободным электроном, а фотоэффект - со связанными электронами. Можно показать, что при

столкновении фотона со свободным электроном не может произойти поглощения фотона, так как это находится в противоречии с законами сохранения импульса и энергии. Поэтому при взаимодействии фотонов со свободными электронами может наблюдаться только их рассеяние, т. е. эффект Комптона.

На рис. 2 показаны экспериментальные результаты по наблюдению комптоновского рассеяния на мишени из графита, имеющего электрон, слабо связанный с ядром атома. С увеличением угла θ все более отчетливо проявляется сигнал (правый на рисунке), связанный с комптоновским рассеянием.

Левый пик соответствует длине волны падающего фотона (в данном случае так называемая K α - линия молибдена). Это те фотоны, которые без изменения рассеиваются

на электронах внутренних оболочек. На первом графике комптоновское рассеяние отсутствует, θ =0°. На втором при θ =60°появляется пик, связанный с комптоновским рассеянием, далее, с ростом угла рассеяния при θ = 90° пик сдвигается по горизонтальной оси пропорционально увеличению длины волны (согласно формуле), что соответствует его лучшей разрешимости.

Очевидно, что для наблюдения эффекта необходимо выполнение двух условий 1. Длина волны рассеиваемого излучения должна быть сравнима с комптоновским

излучение рентгеновского диапазона 2. Рассеяние должно происходить на электронах минимально связанных с ядрами

атомов мишени, то есть на электронах, максимально удаленных от ядра атома. Для выполнения этого условия экспериментаторами выбирались характерные веществамишени.

При большой энергии фотонов, в частности, для рентгеновского излучения ( ~ 0,1 МэВ) процесс поглощения фотонов электронами вещества становится маловероятным. В этом случае при взаимодействии электромагнитного излучения с веществом наблюдается его рассеяние с изменением направления распространения.

Действительно, в системе отсчета, в которой свободный электрон первоначально покоился, закон сохранения энергии с учетом возможных релятивистских скоростей электрона после удара может быть записан в виде

где - масса покоя электрона, - релятивистский множитель, - скорость электрона после столкновения с фотоном, - частота падающего излучения, - частота рассеянного излучения.


Рассеяние фотона на свободном электроне

Разделив члены уравнения (1.60) на , его можно преобразовать к виду

где , .

Заметим, что уже закон сохранения энергии (6.41.14) объясняет эффект Комптона качественно. Действительно, так как > , то из (6.41.14) следует, что > ( < ) .

Возведем левую и правую части уравнения (6.41.15) в квадрат:

(6.41.16)

В упругом столкновении фотона с электроном выполняется также закон сохранения импульса, который можно записать в виде

(6.41.17)

Построив векторную диаграмму закона сохранения импульса, из треугольника импульсов находим, что

где - угол между направлениями падающего и рассеянного излучения.

Треугольник импульсов

Вычтем из (6.41.16) выражение (6.41.18):

Выражение (6.41.19) можно преобразовать к виду:

Умножив члены равенства (6.41.20) на 2 и разделив на , получим:

(6.41.21)

Так как окончательно получаем формулу Комптона:

Следует заметить, что значительная часть электронов вещества не является свободными, а связаны с атомами. Если энергия кванта излучения велика по сравнению с энергией связи электрона, то рассеяние на таком электроне происходит как на свободном электроне. В противном случае, рассеиваясь на связанном электроне, фотон обменивается энергией и импульсом фактически со всем атомом в целом. При таком рассеянии для расчета изменения длины волны излучения также можно применить формулу (6.41.22), где, однако, под следует понимать уже массу всего атома. Это изменение оказывается настолько малым, что его нельзя практически обнаружить экспериментально.

В диапазоне энергий квантов 0,1− 10 МэВ комптон-эффект является основным физическим механизмом энергетических потерь -излучения при его распространении в веществе. Поэтому комптоновское рассеяние широко используется в исследованиях -излучения атомных ядер. Оно лежит в основе принципа действия некоторых гамма-спектрометров.