Болезни Военный билет Призыв

Третичные амины являются органическими. Ароматические амины. Номенклатура, изомерия аминов

Амины - органические производные аммиака, в молекуле которого один, два или все три атома водорода замещены углеродным остатком.

Обычно выделяют три типа аминов:

Амины, в которых аминогруппа связана непо­средственно с ароматическим кольцом, называют­ся ароматическими аминами.

Простейшим представителем этих соединений является аминобензол, или анилин:

Основной отличительной чертой электронного строения аминов является наличие у атома азота, входящего в функциональную группу, неподеленной электронной пары. Это приводит к тому, что амины проявляют свойства оснований.

Существуют ионы, которые являются продук­том формального замещения на углеводородный радикал всех атомов водорода в ионе аммония:

Эти ионы входят в состав солей, похожих на соли аммония. Они называются четвертичными аммонийными солями.

Изомерия и номенклатура аминов

1. Для аминов характерна структурная изомерия:

а) изомерия углеродного скелета:

б) изомерия положения функциональной группы:

2. Первичные, вторичные и третичные амины изомерны друг другу (межклассовая изомерия):

Как видно из приведенных примеров, для то­го чтобы назвать амин, перечисляют заместители, связанные с атомом азота (по порядку старшин­ства), и добавляют суффикс —амин.

Физические свойства аминов

Простейшие амины (метиламин, диметиламин, триметиламин) - газообразные вещества. Остальные низшие амины - жидкости, которые хорошо рас­творяются в воде. Имеют характерный запах, напоми­нающий запах аммиака.

Первичные и вторичные амины способны образовывать водородные связи. Это приводит к заметному повышению их температур кипения по сравнению с соединениями, имеющими ту же молекулярную массу, но не способными образовывать водородные связи.

Анилин - маслянистая жидкость, ограниченно растворимая в воде, кипящая при температуре 184 °С.

Химические свойства аминов

Химические свойства аминов определяются в основном наличием у атома азота неподеленной электронной пары.

Амины как основания. Атом азота аминогруппы, подобно атому азота в молекуле аммиака, за счет не­поделенной пары электронов может образовывать ковалентную связь по донорно-акцепторному меха­низму, выступая в роли донора. В связи с этим ами­ны, как и аммиак, способны присоединять катион водорода, т. е. выступать в роли основания:

1. Реакция амионов с водой приводит к образо­ванию гидроксид-ионов:

2. Реакция с кислотами . Аммиак, реагируя с кислотами, образует соли аммония. Амины так­же способны вступать в реакцию с кислотами:

Основные свойства алифатических аминов вы­ражены сильнее, чем у аммиака. Это связано с на­личием одного и более донорных алкильных за­местителей, положительный индуктивный эффект которых повышает электронную плотность на атоме азота. Повышение электронной плотности превра­щает азот в более сильного донора пары электронов, что повышает его основные свойства:

Горение амионов . Амины горят на воздухе с об­разованием углекислого газа, воды и азота:

Применение аминов

Амины широко применяются для получения лекарств, полимерных материалов. Анилин - важнейшее соединение данного класса, которое используют для производства анилиновых краси­телей, лекарств (сульфаниламидных препаратов), полимерных материалов (анилинформальдегидных смол).


Амины

Аминами называются органические производные аммиака, в котором один, два или все три атома водорода замещены на углеводородные радикалы (предельные, непредельные, ароматические).

Название аминов производят от названия углеводородного радикала с добавлением окончания -амин или от названия соответствующего углеводорода с приставкой амино-.

CH 3 - NH 2 CH 3 - NH - C 2 H 5

метиламин метилэтиламинмтилдифениламин

фениламин (анилин)

В зависимости от числа атомов водорода, замещенных в аммиаке на углеводородные радикалы, различают первичные, вторичные и третичные амины:

R- NH 2 R - NH - R"R - N - R”

первичный аминвторичный аминтретичный амин

Где R, R", R"" - углеводородные радикалы.

Первичные, вторичные и третичные амины можно получить, проводя алкилирование (введение алкильного радикала) аммиака. При этом происходит постепенное замещение атомов водорода аммиака на радикалы, и образуется смесь аминов:

NH 3 + CH 3 I - CH 3 NH 2 + HI

CH 3 NH 2 + CH 3 I - (CH 3) 2 NH + HI

(CH 3) 2 NH + CH 3 I - (CH 3) 2 N + HI

Обычно в смеси аминов преобладает один из них в зависимости от соотношения исходных веществ.

Для получения вторичных и третичных аминов можно использовать реакцию аминов с галогеналкилами:

(CH 3) 2 NH + C 2 H 5 Br - (CH 3) 2 NC 2 H 5 + HBr

Амины можно получить восстановлением нитросоединений. Обычно нитросоединения подвергают каталитическому гидрированию водородом:

C 2 H 5 NO 2 + 3H 2 - C 2 H 5 NH 2 + 2H 2 O

Этот метод используется в промышленности для получения ароматических аминов.

Предельные амины. При обычных условиях метил амин CH 3 NH 2 , диметиламин (CH 3) 2 NH, триметиламин (CH 3) 3 N и этиламин C 2 H 5 NH 2 - газы с запахом, напоминающим запах аммиака. Эти амины хорошо растворимы в воде. Более сложные амины - жидкости, высшие амины - твердые вещества.

Для аминов характерны реакции присоединения, в результате которых образуются алкиламиновые соли. Например, амины присоединяют галогеноводороды:

(CH 3) 2 NH 2 +HCl - [(CH 3) 2 NH 3 ]Cl

хлорид этиламмония

(CH 3) 2 NH + HBr - [(CH 3) 2 NH 2 ]Br

бромид диметиламмония

(CH 3) 3 N + HI - [(CH 3) 3 NH]I

иодид триметиламмония

Третичные амины присоединяют галогенопроизводные углеводорода с образованием тетраалкиламмониевых солей, например:

(C 2 H 5) 3 N + C 2 H 5 I - [(C 2 H 5) 4 N]I

Алкиламониевые соли растворимы в воде и в некоторых органических растворителях. При этом они диссоциируют на ионы:

[(C 2 H 5) 4 N]I = [(C 2 H 5) 4 N] + + I -

В результате водные и неводные растворы этих солей проводят электрический ток. Химическая связь в алкиламмониевых соединениях ковалентная, образованная по донорно-акцепторному механизму:

Ион метиламмония

Как и аммиак, в водных растворах амины проявляют свойства оснований. В их растворах появляются гидроксид-ионы за счет образования алкиламониевых оснований:

C 2 H 5 NH 2 + H 2 O = + + OH -

Щелочную реакцию растворов аминов можно обнаружить при помощи индикаторов.

Амины горят на воздухе с выделением CO 2 , азота и воды, например:

4(C 2 H 5) 2 NH + 27O 2 - 16CO 2 + 2N 2 + 22H 2 O

Первичные, вторичные и третичные амины можно различить, используя азотную кислоту HNO 2 . при взаимодействии этой кислоты с первичными аминами образуется спирт и выделяется азот:

CH 3 - NH 2 + HNO 2 - CH 3 - OH + N 2 +H 2 O

Вторичные амины дают азотистой кислотой нитрозосоединения, которые имеют характерный запах:

CH 3 - NH 2 - CH3 + HNO 2 - (CH 3) 2 - N=NO+H 2 O

Третичные амины не реагируют азотистой кислотой.

Анилин C 6 H 5 NH 2 является важнейшим ароматическим амином. Он представляет собой бесцветную маслянистую жидкость, которая кипит при температуре 184,4 0 С.

Анилин был впервые получен в XIX в. русским химиком-органиком Н. Н. Зининым, который использовал реакцию восстановления нитробензола сульфидом аммония (NH 4) 2 S. В промышленности анилин получают каталитическим гидрированием нитробензола с использованием медного катализатора:

C 6 H 5 - NO 2 + 3H 2 - cu -- C 6 H 5 - NH 2 + 2H 2 O

Старый способ восстановления нитробензола, который потерял промышленное значение, заключается в использовании в качестве восстановителя железа в присутствии кислоты.

По химическим свойствам анилин во многом аналогичен предельным аминам, однако по сравнению с ними является более слабым основанием, что обусловлено влиянием бензольного кольца. Свободная электронная пора атома азота, с наличием которой связаны основные свойства, частично втягивается в П - электронную систему бензольного кольца:

Уменьшение электронной плотности на атоме азота снижает основные свойства анилина. Анилин образует соли лишь с сильными кислотами. Например, с хлороводородной кислотой он образует хлорид фениламмония:

C 6 H 5 NH 2 + HCl - Cl

Азотная кислота образует с анилином диазосоединения:

C 6 H 5 - NH 2 + NaNO 2 +2HCl - Cl - + NaCl + 2H 2 O

Диазосоединения, особенно ароматические, имеют большое значение в синтезе органических красителей.

Некоторые особые свойства анилина обусловлены наличием в его молекуле ароматического ядра. Так, анилин легко взаимодействует в растворах с хлором и бромом, при этом происходит замещение атомов водорода в бензольном ядре, находящихся в орто- и пара-положенияхк аминогруппе:


Анилин сульфируется при нагревании с серной кислотой, при этом образуется сульфаниловая кислота:

Сульфаниловая кислота - важнейший промежуточный продукт при синтезе красителей и лекарственных препаратов.

Гидрированием анилина в присутствии катализаторов можно получить циклогексиламин:

C 6 H 5 - NH 2 + 3H 2 -C 6 H 11 - NH 2

Анилин используется в химической промышленности для синтеза многих органических соединений, в том числе красителей и лекарств.

Метиламин

Общие традиционные названия

Монометиламинаминометан MMA

Химическая формула CH 5 N

Молярная масса 31,1 г/моль

Физические свойства

Состояние (ст. усл.) бесцветный газ

0,23 Па·с (при 20°C)

Термические свойства

Температура плавления - 94°C

Температура кипения - 6°C

Температура вспышки 8°C

Химические свойства

Растворимость в воде 108 г/100 мл

Некоторые наиболее известные амины

Метиламин

Метиламин (CH 3 --NH 2)-- бесцветный газ с запахом аммиака, t кип? 6,32°C. Применяется для синтеза пестицидов, лекарств, красителей. Наиболее важными из продуктов являются N-Метил-2-пирролидон (NMP), метилформамид, кофеин, эфедрин и N,N"-диметилмочевина. Также является второстепенным азотистым экскретом у костных рыб.

Метиламин является типичным первичным амином. С кислотами метиламин образует соли. Реакции с альдегидами и ацеталями ведут к основаниям Шиффа. При взаимодействии со сложными эфирами или ацил хлоридами дает амиды.

Как правило, используется в виде растворов: 40% масс в воде, в метаноле, этаноле или ТГФ.

Получение

Промышленное производство метиламина основывается на взаимодействии метанола с аммиаком при высокой температуре (от 370 до 430 °C) и давлении от 20 до 30 бар. Реакция проходит в газовой фазе на гетерогенном катализаторе на основе цеолита. В качестве побочных продуктов реакции образуются также вода, диметиламин (CH 3) 2 NH и триметиламин (CH 3) 3 N:

CH 3 OH + NH 3 > CH 3 NH 2 + H 2 O

CH 3 NH 2 + CH 3 OH > (CH 3) 2 NH + H 2 O

(CH 3) 2 NH + CH 3 OH > (CH 3) 3 N + H 2 O

Чистый метиламин получают путем многократной перегонки.

Альтернативное получение метиламина основано на взаимодействии формалина с хлористым аммонием при нагревании.

Горение метиламина проходит по уравнению:

4 СH 3 NH 2 + 9 O 2 = 4 CO 2 + 10 H 2 O + 2 N 2

Диметиламин

Диметиламимн -- вторичный амин, производное аммиака, в молекуле которого два атома водорода замещены метильными радикалами. Бесцветный газ с резким неприятным запахом, легко сжижающийся при охлаждении в бесцветную жидкость. Горюч.

CH 3 --NH --CH 3

Применение

Применяется для получения веществ, используемых в производстве резины. Служит сырьём для производства гептила -- ракетного топлива. Использовался в производстве химического оружия (табуна).

Триэтиламин

Систематическое наименование

триэтиламин

Химическая формула

Эмпирическая формула

Молярная масса

101,19 г/моль

Физические свойства

Состояние (ст. усл.)

жидкость

Плотность

Термические свойства

Температура плавления

Температура кипения

Температура вспышки

Энтальпия образования (ст. усл.)

99.58 кДж/моль

Удельная теплота испарения

Давление пара

70 гПа (20 °C)

Химические свойства

Растворимость в воде

13.3 г/100 мл

Оптические свойства

Показатель преломления

Структура

Дипольный момент

0,66 (20 °C) Д

Токсикология

Токсичность

Триэтиламин

Триэтиламин -- третичный амин. Химическая формула (С 2 H 5) 3 N, часто используется обозначение Et 3 N. Нашёл широкое применение, как простейший симметричный третичный амин, находящийся в жидком состоянии.

Получение

В промышленности получают совместно с этиламином, диэтиламином при парофазном аминировании этанола аммиаком над Al 2 O 3 или SiO 2 или их смесью при 350-450°C и давлении 20-200 атм либо над Ni, Co, Cu, Re и H 2 при 150-230°C и давлении 17-35 атм. Состав получаемой смеси зависит от исходных соотношений.

CH 3 CH 2 OH + NH 3 = CH 3 CH 2 NH 2 + H 2 O

CH 3 CH 2 OH + CH 3 CH 2 NH 2 = (CH 3 CH 2) 2 NH + H 2 O

CH 3 CH 2 OH + (CH 3 CH 2) 2 NH = (CH 3 CH 2) 3 N + H 2 O

Полученная смесь разделяется ректификацией

Физические свойства

При комнатной температуре представляет собой подвижную бесцветную жидкость, имеющая сильный рыбный запах, напоминающий аммиачный. Температура плавления?114,8°C, температура кипения 89,5°C. Ограниченно растворим в воде (нижняя критическая точка при T=19,1°C и 31,6% вес. триэтиламина), хорошо растворим в ацетоне, бензоле, хлороформе, смешивается с этанолом, диэтиловым эфиром. С водой образует азеотроп с т. кип. 75°C и содержащий 90% весовых триэтиламина.

Химические свойства

Как сильное органическое основание (pKa=10.87) образует кристаллические триэтиламмонийные соли с органическими и минеральными кислотами.

HCl + Et 3 N > Et 3 NH + Cl ?

В качестве основания триэтиламин широко используется в органическом синтезе, в частности при синтезе сложных эфиров и амидов из ацилхлоридов для связывания образующегося хлороводорода.

R 2 NH + R"C(O)Cl + Et 3 N > R"C(O)NR 2 + Et 3 NH + Cl ?

Также используется в реакции дегидрогалогенирования

Триэтиламин легко алкилируется, образуя четвертичные аммониевые соли

RI + Et 3 N > Et 3 NR + I ?

поэтому для создания основной среды в присутствии алкилаторов используют диизопропилэтиламин.

Применение

Катализирует образование пенополиуретанов и эпоксидных смол. Находит некоторое применение в качестве ракетного топлива. Используется в производстве гербицидов, лекарств, красок.

Для удаления первичных и вторичных аминов перегоняют над уксусным ангидридом. Сушат над КОН и перегоняют.

Безопасность

Концентрационный предел воспламенения = 1,2--8% по объёму.

Раздражает дыхательные пути, глаза и кожу, при прямом контакте может вызвать сильный ожог. ПДК=10 мг/м 3

амин производный аммиак углеводородный

Этилендиамин

Свойства

Жидкость без цвета с запахом аммиака. t kип 116,5°C, t пл 8,5°C, плотность 0,899 г/смі (20°C); Этилендиамин растворим в воде, спирте, хуже -- в эфире, нерастворим в бензоле. Является сильным основанием.

Применение

Этилендиамин применяется для получения этилендиаминтетрауксусной кислоты взаимодействием с хлоруксусной кислотой. Его соли с жирными кислотами используются как смягчающие агенты при производстве текстиля. Также этилендиамин применяется в производстве красителей, эмульгаторов, стабилизаторов латексов, пластификаторов и фунгицидов.

Получение

Токсичность

Традиционные названия

ФениламинАминобензол

Химическая формула

Эмпирическая формула

Молярная масса

93,13 г/моль

Физические свойства

Плотность

1,0217 г/смі

Динамическая вязкость (ст. усл.)

3,71 Па·с(при 20 °C)

Термические свойства

Температура плавления

Температура кипения

Химические свойства

Растворимость в воде

Анилимн (фениламин) -- органическое соединение с формулой C 6 H 5 NH 2 , простейший ароматический амин. Представляет собой бесцветную маслянистую жидкость с характерным запахом, немного тяжелее воды и плохо в ней растворим, хорошо растворяется в органических растворителях. На воздухе быстро окисляется и приобретает красно-бурую окраску. Ядовит! Название «анилин» происходит от названия одного из растений, содержащих индиго -- Indigofera anil (современное международное название растения -- Indigofera suffruticosa).

Впервые анилин был получен в 1826 году при перегонке индиго с известью немецким химиком Отто Унфердорбеном (нем. Otto Unverdorben), который дал ему название «кристаллин».

В 1834 Ф. Pyнгe обнаружил анилин в каменно-угольной смоле и назвал «кианолом».

В 1841 Ю.Ф. Фришце получил анилин нагреванием индиго с раствором KOH и назвал его «анилином».

В 1842 анилин был получен Н.Н. Зининым восстановлением нитробензола действием (NH 4) 2 S 3 и назван им «бензидамом».

В 1843 А.В. Гофман установил идентичность всех перечисленных соединений.

Промышленное производство фиолетового красителя мовеина на основе анилина началось в 1856 году.

Химические свойства

Для анилина характерны реакции как по аминогруппе, так и по ароматическому кольцу. Особенности этих реакций обусловлены взаимным влиянием атомов. С одной стороны, бензольное кольцо ослабляет основные свойства аминогруппы по сравнению с алифатическими аминами и даже с аммиаком. С другой стороны, под влиянием аминогруппы бензольное кольцо становится более активным в реакциях замещения, чем бензол. Например, анилин энергично реагирует с бромной водой с образованием 2,4,6-триброманилина (белый осадок).

Получение

Восстановление железом:

4C 6 H 5 NO 2 + 9Fe + 4H 2 O >4C 6 H 5 NH 2 + 3Fe 3 O 4

Восстановление водородом в присутствии катализатора и при высокой температуре:

C 6 H 5 NO 2 + 3H 2 > C 6 H 5 NH 2 + 2H 2 O

Восстановление нитросоединений -- Реакция Зинина:

C 6 H 5 NO 2 + 3(NH 4) 2 S > C 6 H 5 NH 2 + 6NH 3 + 3S + 2H 2 O

Производство и применение

Изначально анилин получали восстановлением нитробензола молекулярным водородом; практический выход анилина не превышал 15%. При взаимодействии концентрированной соляной кислоты с железом выделялся атомарный водород, более химически активный по сравнению с молекулярным. Реакция Зинина является более эффективным методом получения анилина. В реакционную массу вливали нитробензол, который восстанавливается до анилина.

По состоянию на 2002 год, в мире основная часть производимого анилина используется для производства метилдиизоцианатов, используемых затем для производства полиуретанов. Анилин также используется при производстве искусственных каучуков, гербицидов и красителей (фиолетового красителя мовеина).

В России он в основном применяется в качестве полупродукта в производстве красителей, взрывчатых веществ и лекарственных средств (сульфаниламидные препараты), но в связи с ожидаемым ростом производства полиуретанов возможно значительное изменение картины в среднесрочной перспективе.

Токсичные свойства

Анилин оказывает негативное воздействие на центральную нервную систему. Вызывает кислородное голодание организма за счёт образования в крови метгемоглобина, гемолиза и дегенеративных изменений эритроцитов.

В организм анилин проникает при дыхании, в виде паров, а также через кожу и слизистые оболочки. Всасывание через кожу усиливается при нагреве воздуха или приёме алкоголя.

При лёгком отравлении анилином наблюдаются слабость, головокружение, головная боль, синюшность губ, ушных раковин и ногтей. При отравлениях средней тяжести также наблюдаются тошнота, рвота, иногда, шатающаяся походка, учащение пульса. Тяжёлые случаи отравления крайне редки. При хроническом отравлении анилином (анилизм) возникают токсический гепатит, а также нервно-психические нарушения, расстройство сна, снижение памяти и т. д.

При отравлении анилином необходимо, прежде всего, удаление пострадавшего из очага отравления, обмывание тёплой (но не горячей!) водой. Так же вдыхание кислорода с карбогеном. Также применяют кровопускание, введение антидотов (метиленовая синь), сердечнососудистые средства. Пострадавшему надо обеспечить покой.

Предельно допустимая концентрация анилина в воздухе рабочей зоны 3 мг/м3. В водоёмах (при их промышленном загрязнении) 0,1 мг/л (100 мг/м3).

Этилендиамин

Этилендиамин (1,2-диаминоэтан) H 2 NCH 2 CH 2 NH 2 -- органическое соединение класса аминов.

Свойства

Жидкость без цвета с запахом аммиака. t kип 116,5°C, t пл 8,5°C, плотность 0,899 г/смі (20 °C); Этилендиамин растворим в воде, спирте, хуже -- в эфире, нерастворим в бензоле. Является сильным основанием.

Применение: Этилендиамин применяется для получения этилендиаминтетрауксусной кислоты взаимодействием с хлоруксусной кислотой. Его соли с жирными кислотами используются как смягчающие агенты при производстве текстиля. Также этилендиамин применяется в производстве красителей, эмульгаторов, стабилизаторов латексов, пластификаторов и фунгицидов.

Получение

Основным способом синтеза этилендиамина в промышленности является взаимодействие аммиака с дихлорэтаном.

Токсичность

Этилендиамин токсичен; предельно допустимая концентрация его паров в воздухе составляет 0,001 мг/л.

Пиридин -- шестичленный ароматический гетероцикл с одним атомом азота, бесцветная жидкость с резким неприятным запахом; смешивается с водой и органическими растворителями. Пиридин -- слабое основание, дает соли с сильными минеральными кислотами, легко образует двойные соли и комплексные соединения.

История открытия

Пиридин был открыт в 1846 г. Андерсоном при исследовании костяного масла, получающегося сухой перегонкой необезжиренных костей. В 1869 г. Кернер в частном письме к Каниццаро высказал мысль, что П. может быть рассматриваем, как бензол, в котором одна группа СН замещена азотом. По мнению Кернера, подобная формула не только объясняет синтезы пиридина, но, главным образом, указывает, почему простейший член ряда пиридиновых оснований имеет пять атомов углерода. Через год Дьюар (Dewar), независимо от Кернера, пришел к той же формуле, которая затем нашла себе подтверждение и в позднейших работах других химиков. Позже изучением структуры пиридина занимались Томсен, Бамбергер и Пехманн, Чамичан и Деннштедт. В 1879 г. А. Вышнеградский высказал мнение, что, может быть, все растительные основания суть производные пиридина или хинолина, а в 1880 г. Кенигс предлагал даже именем алкалоидов называть только те растительные основания, которые могут быть рассматриваемы, как дериваты пиридина. Однако на настоящее время границы понятия «алкалоиды» значительно расширились.

Получение

Основным источником для получения пиридина является каменноугольная смола.

Химические свойства

Пиридин проявляет свойства, характерные для третичных аминов: образует N-оксиды, соли N-алкилпиридиния, способен выступать в качестве сигма-донорного лиганда.

В то же время пиридин обладает явными ароматическими свойствами. Однако наличие в кольце сопряжения атома азота приводит к серьёзному перераспределению электронной плотности, что приводит к сильному снижению активности пиридина в реакциях электрофильного ароматического замещения. В таких реакциях реагируют преимущественно мета-положения кольца.

Для пиридина характерны реакции ароматического нуклеофильного замещения, протекающие преимущественно по орто-пара положениям кольца. Такая реакционная способность свидетельствует о электроннодефицитной природе пиридинового кольца, что может быть обобщено в следующем эмпирическом правиле: реакционная способность пиридина как ароматического соединения примерно соответствует реакционной способности нитробензола.

Применение

Применяют в синтезе красителей, лекарственных веществ, инсектицидов, в аналитической химии, как растворитель многих органических и некоторых неорганических веществ, для денатурирования спирта.

Безопасность

Пиридин токсичен, действует на нервную систему, кожу.

Пиперидин

Пиперидин

Традиционные названия

пентаметиленимин

Химическая формула

Молярная масса

85.15 г/моль

Физические свойства

Состояние (ст. усл.)

жидкость

Плотность

Динамическая вязкость (ст. усл.)

1.573 Па·с(при 20 °C)

Термические свойства

Температура плавления

Температура кипения

Химические свойства

Растворимость в воде

смешивается г/100 мл

Оптические свойства

Показатель преломления

Пиперидин (пентаметиленимин) -- гексагидропиридин, шестичленный насыщенный цикл с одним атомом азота. Бесцветная жидкость с аммиачным запахом, смешивается с водой, а также с большинством органических растворителей, образует азеотропную смесь с водой (35% воды по массе, T кип 92.8°C) Входит в виде структурного фрагмента в фармацевтические препараты и алкалоиды. Получил своё название от латинского названия черного перца Piper nigrum, из которого впервые был выделен.

Впервые пиперидин быль выделен Эрстедом из черного перца в 1819 году. В 1894 году осуществлён его полный синтез Альбертом Ладенбургом и Шолцом

Методы получения

В промышленности в основном гидрированием пиридина над дисульфидом молибдена или никелем при 200 °C в качестве катализатора

Электрохимическим восстановлением

Из пиридина восстановлением натрием в абсолютном этаноле.

Нагреванием пентаметилендиамина дигидрохлорида.

NH 2 CH 2 CH 2 CH 2 CH 2 CH 2 NH 2 *2HCl > C 5 H 10 NH*HCl

Реакционная способность

По своим химическим свойствам пиперидин является типичным вторичным алифатическим амином. Образует соли с минеральными кислотами, легко алкилируется и ацилируется по атому азота, образует комплексные соединения с переходными металлами (Cu, Ni и т.п.). Нитрозируется азотистой кислотой с образованием N-нитрозопиперидина, при действии гипохлоритов в щелочной среде образует соответствующий N-хлорамин C 5 H 10 NCl,

При кипячении пиперидина с концентрированной йодоводородной кислотой происходит восстановительное раскрытие цикла с образованием пентана:

(CH 2) 5 NH + HJ > CH 3 CH 2 CH 2 CH 2 CH 3

При расщеплении исчерпывающем метилировании и расщеплении по Гофману образует пента-1,3-диен.

При нагревании в серной кислоте в присутствии солей меди или серебра пиперидин дегидрируется в пиридин.

Нахождение в природе и биологическая роль

Сам пиперидин выделялся из перца. Пиперидиновый цикл является структурным фрагментом ряда алкалоидов. Так пиперидиновый цикл входит в состав алкалоида кониина, содержащегося в болиголове пятнистом, в состав пиперина, который придаёт жгучий вкус черному перцу. Также в Solenopsin токсине Огненных муравьёв.

Применение

Пиперидин широко используется в органическом синтезе используется в качестве основного катализатора при альдольной конденсации, реакции Кнёвенагеля, как аминный компонент в реакции Манниха и реакции Михаэля.

Пиперидин как высококипящий вторичный амин используется для превращения кетонов в енамины, которые могут быть проалкилированы или проацилированы в б-положение (реакция Сторка).

Безопасность

Токсичен как при попадании на кожу, так и при вдыхании паров. Лекговоспламеним, температура вспышки 16 °C. Работы с ним проводятся в вытяжном шкафу.

Хинолин -- органическое соединение гетероциклического ряда. Применяют как растворитель для серы, фосфора и др., для синтеза органических красителей. Производные хинолина, используют в медицине (плазмоцид, хинин).

Промышленное получение

Хинолин встречается в составе каменноугольной смолы, из которой и добывается.

Методы синтеза

Производные хинолина с заместителями в положениях 2 и 4 можно получить путем конденсации анилина (1) и в-дикетонов (2) в кислой среде. Этот метод получил название «синтез хинолинов по Комба»

Из анилина и б,в-ненасыщеных альдегидов (метод Дёбнера-Миллера). Механизм данной реакции очень близок к механизму реакции Скраупа

Из 2-аминобензальдегида и карбонильных соединений, содержащих б-метиленовую группу (синтез Фридлендера). Метод практически не употребляется из-за низкой доступности о-карбонильных производных анилина

Конденсацией анилина и глицерина в присутствии серной кислоты (метод Скраупа)

Механизм этой реакции точно не установлен, но предполагают, что процесс идет как 1,4-присоединение анилина к акролеину. Акролеин образуется в результате дегидратации глицерина в присутствии серной кислоты (образование акролена подтверждено: из готового акролеина и анилина также образуется хинолин.


Реакция сильно экзотермична, поэтому процесс обычно проводят в присутствии сульфата железа (II). В качестве окислителя используют также оксид мышьяка (V), в этом случае процесс протекает не так бурно,как с нитробензолом и выход хинолина выше.

По реакции Поварова из бензальдегида, анилина и алкена.

Из орто-ацилацетофенона и гидроксида (en:Camps quinoline synthesis).

Из в-кетоанилида (en:Knorr quinoline synthesis).

Из анилина и в-кетоэфиров (en:Conrad-Limpach synthesis).

en:Gould-Jacobs reaction

Токсикология и безопасность

LD 50 для млекопитающих составляет несколько сотен мг/кг.

Морфолин

Морфолин

Систематическое наименование

тетрагидрооксазин-1,4

Традиционные названия

морфолин

Химическая формула

Молярная масса

87,1 г/моль

Физические свойства

Состояние (ст. усл.)

жидкость

Плотность

Термические свойства

Температура плавления

Температура кипения

Химические свойства

Растворимость в воде

смешивается г/100 мл

Токсикология

Морфолин -- гетероциклическое соединение (тетрагидрооксазин-1,4). Химическая формула HN(CH 2 CH 2) 2 O. Используется в органическом синтезе как катализатор в качестве основания (акцептор протона), в частности, для получения геминальных дитиолов. Молекула имеет конформацию «кресла».

Получение

Морфолин получают дегидратацией диэтаноламина или бис (2-хлорэтилового) эфира.

Для очистки его сушат над дриеритом, после чего с осторожностью дробно перегоняют. Рекомендуют также перегонку или высушивание над натрием.

Применение

Промышленность

Морфолин -- ингибитор коррозии. Морфолин -- обычная добавка, в миллионных долях, для регулирования pH как в системах на ископаемом топливе, так и в системах ядерных реакторов. Морфолин применяется из-за его летучести близкой к такой для воды, то есть будучи добавленным в воду, его концентрация в воде и парах одинакова. Его pH регулирующее свойство затем распространяется через парогенератор, обеспечивая защиту от коррозии. Морфолин разлагается медленно в отсутствие кислорода при высоких температурах и давлениях в парообразующих системах.

Органический синтез

Морфолин подвергается большинству реакций характерных для химии вторичных аминов, благодаря наличию атома кислорода, оттягивающего электронную плотность на себя от атома азота, он менее нуклеофильный и менее основный, чем структурно анологичный вторичный амин такой как пиперидин. По этой причине он образует стойкий хлорамин. Он также широко используется для получения енаминов Морфолин широко используется в органическом синтезе. Например, он билдинг блок в получении антибиотика линезолида и противоракового агента Gefitinib.

В исследованиях и в промышленности, дешевизна и полярность морфолина привела к его широкому применению в качестве растворителя для химических реакций.

Безопасность

Морфолин -- легко воспламеняющаяся жидкость. т. всп. 35°С, температура самовоспламенения 230°С. Пары раздражают слизистые оболочки дыхательных путей, при попадании на кожу вызывают жжение. ЛД50 1,65 г/кг (мыши и морские свинки, перорально); ПДК 0,5 мг/м3.

I. По числу углеводородных радикалов в молекуле амина:


Первичные амины R-NH 2


(производные углеводородов, в которых атом водорода замещен на аминогруппу -NH 2),


Вторичные амины R-NH-R"

II. По строению углеводородного радикала:


Алифатические, например: C 2 H 5 -NH 2 этиламин




Предельные первичные амины

Общая формула C n H 2n+1 NH 2 (n ≥ 1); или C n H 2n+3 N (n ≥ 1)

Номенклатура

Названия аминов (особенно вторичных и третичных) обычно дают по радикально-функциональной номенклатуре, перечисляя в алфавитном порядке радикалы и добавляя название класса - амин. Названия первичных аминов по заместительной номенклатуре составляют из названия родоначального углеводорода и суффикса - амин.


CH 3 -NH 2 метанамин (метиламин)


CH 3 -CH 2 -NH 2 этанамин (этиламин)




Первичные амины часто называют как производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на аминогруппы NH 2 . Аминогруппа при этом рассматривается как заместитель, а ее местоположение указывается цифрой в начале названия. Например:


H 2 N-CH 2 -CH 2 -CH 2 -CH 2 -NH 2 1,4-диаминобутан.


Анилин (фениламин) C 6 H 5 NH 2 в соответствии с этим способом называется аминобензолом.

Гомологический ряд предельных аминов

СН 3 NH 2 - метиламин (первичный амин), (СН 3) 2 NH - диметиламин (вторичный амин), (СН 3) 3 N - триметиламин (третичный амин) и т.д.

Изомерия

Структурная изомерия


Углеродного скелета, начиная с С 4 H 9 NH 2:






Положения аминогруппы, начиная с С 3 H 7 NH 2:



Изомерия аминогруппы, связанная с изменением степени замещенности атомов водорода при азоте:




Пространственная изомерия


Возможна оптическая изомерия, начиная с С 4 H 9 NH 2:


Оптические (зеркальные) изомеры - пространственные изомеры, молекулы которых относятся между собой как предмет и несовместимое с ним зеркальное изображение (как левая и правая руки).


Физические свойства

Низшие предельные амины - газообразные вещества; средние члены гомологического ряда - жидкости; высшие амины - твердые вещества. Метиламин имеет запах аммиака, другие низшие амины - резкий неприятный запах, напоминающий запах селедочного рассола.


Низшие амины хорошо растворимы в воде, с ростом углеводородного радикала растворимость аминов падает. Амины образуются при гниении органических остатков, содержащих белки. Ряд аминов образуется в организмах человека и животных из аминокислот (биогенные амины) .

Химические свойства

Амины, как и аммиак, проявляют ярко выраженные свойства оснований, что обусловлено наличием в молекулах аминов атома азота, имеющего неподеленную пару электронов.


1. Взаимодействие с водой



Растворы аминов в воде имеют щелочную реакцию среды.


2. Взаимодействие с кислотами (образование солей)



Амины выделяются из их солей при действии щелочей:


Cl + NaOH → СН 3 CH 2 NH 2 + NaCl + Н 2 O


3. Горение аминов


4CH 3 NH 2 + 9O 2 → 4СO 2 + 10Н 2 O + 2N 2


4. Реакция с азотистой кислотой (отличие первичных аминов от вторичных и третичных)


Под действием HNO 2 первичные амины превращаются в спирты с выделением азота:


C 2 H 5 NH 2 + HNO 2 → С 2 Н 5 OН + N 2 + Н 2 O

Способы получения

1. Взаимодействие галогеналканов с аммиаком


СН 3 Вr + 2NH 3 → CH 3 NH 2 + NH 4 Br





2. Взаимодействие спиртов с аммиаком



(Практически в этих реакциях образуется смесь первичных, вторичных, третичных аминов и соли четвертичного аммониевого основания.)

Классификация аминов разнообразна и определяется тем, какой признак строения взят за основу.

В зависимости от числа органических групп, связанных с атомом азота, различают:

первичные амины – одна органическая группа у азота RNH 2

вторичные амины – две органических группы у азота R 2 NH, органические группы могут быть различными R"R"NH

третичные амины – три органических группы у азота R 3 N или R"R"R""N

По типу органической группы, связанной с азотом, различают алифатические СH 3 – N6H 5 – N

По числу аминогрупп в молекуле амины делят на моноамины СH 3 – NН 2 , диамины H 2 N(СH 2) 2 NН 2 , триамины и т.д.

Номенклатура аминов.

к названию органических групп, связанных с азотом, добавляют слово «амин», при этом группы упоминают в алфавитном порядке, например, СН 3 NHС 3 Н 7 – метилпропиламин, СН 3 N(С 6 Н 5) 2 – метилдифениламин. Правила допускают также составлять название, взяв за основу углеводород, в котором аминогруппу рассматривают как заместитель. В таком случае ее положение указывают с помощью числового индекса: С 5 Н 3 С 4 Н 2 С 3 Н(NН 2)С 2 Н 2 С 1 Н 3 – 3-аминопентан (верхние числовые индексы синего цвета указывают порядок нумерации атомов С). Для некоторых аминов сохранились тривиальные (упрощенные) названия: С 6 Н 5 NH 2 – анилин (название по правилам номенклатуры – фениламин).

В некоторых случаях применяют устоявшиеся названия, которые представляют собой искаженные правильные названия: Н 2 NСН 2 СН 2 ОН – моноэтаноламин (правильно – 2-аминоэтанол); (ОНСН 2 СН 2) 2 NH – диэтаноламин, правильное название – бис(2-гидроксиэтил)амин. Тривиальные, искаженные и систематические (составленные по правилам номенклатуры) названия довольно часто сосуществуют в химии.

Физические свойства аминов.

Первые представители ряда аминов – метиламин CH 3 NH 2 , диметиламин (CH 3) 2 NH, триметиламин (CH 3) 3 N и этиламин C 2 H 5 NH 2 – при комнатной температуре газообразные, далее при увеличении числа атомов в R амины становятся жидкостями, а при увеличении длины цепи R до 10 атомов С – кристаллическими веществами. Растворимость аминов в воде убывает по мере увеличения длины цепи R и при возрастании числа органических групп, связанных с азотом (переход к вторичным и третичным аминам). Запах аминов напоминает запах аммиака, высшие (с большими R) амины практически лишены запаха.

Химические свойства аминов.

Отличительная способность аминов – присоединять нейтральные молекулы (например, галогеноводороды HHal, с образованием органоаммониевых солей, подобных аммонийным солям в неорганической химии. Для образования новой связи азот предоставляет неподеленную электронную пару, исполняя роль донора. Участвующий в образовании связи протон Н + (от галогеноводорода) играет роль акцептора (приемника), такую связь называют донорно-акцепторной (рис. 1). Возникшая ковалентная связь N–H полностью эквивалентна имеющимся в амине связям N–H.

Третичные амины также присоединяют HCl, но при нагревании полученной соли в растворе кислоты она распадается, при этом R отщепляется от атома N:

(C 2 H 5) 3 N + HCl ® [(C 2 H 5) 3 N H]Сl

[(C 2 H 5) 3 N H]Сl ® (C 2 H 5) 2 N H + C 2 H 5 Сl

При сравнении этих двух реакций видно, что C 2 H 5 -группа и Н, как бы меняются местами, в итоге из третичного амина образуется вторичный.

Растворяясь в воде, амины по такой же схеме захватывают протон, в результате в растворе появляются ионы ОН – , что соответствует образованию щелочной среды, ее можно обнаружить с помощью обычных индикаторов.

C 2 H 5 N H 2 + H 2 O ® + + OH –

С образованием донорно-акцепторной связи амины могут присоединять не только HCl, но и галогеналкилы RCl, при этом образуется новая связь N–R, которая также эквивалентна уже имеющимся. Если в качестве исходного взять третичный амин, то получается соль тетраалкиламмония (четыре группы R у одного атома N):

(C 2 H 5) 3 N + C 2 H 5 I ® [(C 2 H 5) 4 N ]I

Эти соли, растворяясь в воде и некоторых органических растворителях, диссоциируют (распадаются), образуя ионы:

[(C 2 H 5) 4 N ]I ® [(C 2 H 5) 4 N ] + + I –

Такие растворы, как и все растворы, содержащие ионы, проводят электрический ток. В тетраалкиламмониевых солях можно заменить галоген НО-группой:

[(CH 3) 4 N ]Cl + AgOH ® [(CH 3) 4 N ]OH + AgCl

Получающийся гидроксид тетраметиламмония представляет собой сильное основание, по свойствам близкое к щелочам.

Первичные и вторичные амины взаимодействуют с азотистой кислотой HON=O, однако реагируют они различным образом. Из первичных аминов образуются первичные спирты:

C 2 H 5 N H 2 + HN O 2 ® C 2 H 5 OH + N 2 +H 2 O

В отличие от первичных, вторичные амины образуют с азотистой кислотой желтые, трудно растворимые нитрозамины – соединения, содержащие фрагмент >N–N = O:

(C 2 H 5) 2 N H + HN O 2 ® (C 2 H 5) 2 N –N =O + H 2 O

Третичные амины при обычной температуре с азотистой кислотой не реагируют, таким образом, азотистая кислота является реагентом, позволяющим различить первичные, вторичные и третичные амины.

При конденсации аминов с карбоновыми кислотами образуются амиды кислот – соединения с фрагментом –С(О)N

Конденсация аминов с альдегидами и кетонами приводит к образованию так называемых оснований Шиффа – соединений, содержащих фрагмент –N=C2.

При взаимодействии первичных аминов с фосгеном Cl 2 С=O образуются соединения с группировкой –N=C=O, называемые изоцианатами (рис. 2Г, получение соединения с двумя изоцианатными группами).

Среди ароматических аминов наиболее известен анилин (фениламин) С 6 Н 5 NH 2 . По свойствам он близок к алифатическим аминам, но его основность выражена слабее – в водных растворах он не образует щелочную среду. Как и алифатические амины, с сильными минеральными кислотами он может образовывать аммониевые соли [С 6 Н 5 NH 3 ] + Сl – . При взаимодействии анилина с азотистой кислотой (в присутствии HCl) образуется диазосоединение, содержащее фрагмент R–N=N, оно получается в виде ионной соли, называемой солью диазония (рис. 3А). Таким образом, взаимодействие с азотистой кислотой идет не так, как в случае алифатических аминов. Бензольное ядро в анилине обладает реакционной способностью, характерной для ароматических соединений (см . АРОМАТИЧНОСТЬ), при галогенировании атомы водорода в орто - и пара -положениях к аминогруппе замещаются, получаются хлоранилины с различной степенью замещения (рис. 3Б). Действие серной кислоты приводит к сульфированию в пара -положение к аминогруппе, образуется так называемая сульфаниловая кислота (рис. 3В).

Получение аминов.

При взаимодействии аммиака с галогеналкилами, например RCl, образуется смесь первичных, вторичных и третичных аминов. Образующийся побочный продукт HCl присоединяется к аминам, образуя аммониевую соль, но при избытке аммиака соль разлагается, что позволяет проводить процесс вплоть до образования четвертичных аммониевых солей (рис. 4А). В отличие от алифатических галогеналкилов, арилгалогениды, например, С 6 Н 5 Cl, реагируют с аммиаком с большим трудом, синтез возможен только при катализаторах, содержащих медь. В промышленности алифатические амины получают каталитическим взаимодействием спиртов с NH 3 при 300–500° С и давлении 1–20 МПа, в результате получают смесь первичных, вторичных и третичных аминов(рис. 4Б).

При взаимодействии альдегидов и кетонов с аммонийной солью муравьиной кислоты HCOONH 4 образуются первичные амины (рис. 4В), а реакция альдегидов и кетонов с первичными аминами (в присутствии муравьиной кислоты НСООН) приводит к вторичным аминам (рис. 4Г).

Нитросоединения (содержащие группу –NO 2) при восстановлении образуют первичные амины. Этот метод, предложенный Н.Н.Зининым, мало применяется для алифатических соединений, но важен для получения ароматических аминов и лег в основу промышленного производства анилина (рис. 4Д).

Как отдельные соединения амины применяются мало, например, в быту используется полиэтиленполиамин [-C 2 H 4 NH-] n (торговое название ПЭПА) как отвердитель эпоксидных смол. Основное применение аминов – как промежуточные продукты при получении различных органических веществ. Ведущая роль принадлежит анилину, на основе которого производится широкий спектр анилиновых красителей, причем цветовая «специализация» закладывается уже на стадии получения самого анилина. Сверхчистый анилин без примеси гомологов называют в промышленности «анилин для синего» (имеется в виду цвет будущего красителя). «Анилин для красного» должен содержать, помимо анилина, смесь орто - и пара -толуидина (СН 3 С 6 Н 4 NH 2).

Алифатические диамины – исходные соединения для получения полиамидов, например, найлона (рис. 2), широко применяемого для изготовления волокон, полимерных пленок, а также узлов и деталей в машиностроении (полиамидные зубчатые передачи).

Из алифатических диизоцианатов (рис. 2) получают полиуретаны, которые обладают комплексом технически важных свойств: высокой прочностью в сочетании с эластичностью и очень высоким сопротивлением истиранию (полиуретановые обувные подошвы), а также хорошей адгезией к широкому кругу материалов (полиуретановые клеи). Широко их применяют и во вспененной форме (пенополиуретаны).

На основе сульфаниловой кислоты (рис. 3) синтезируют противовоспалительные лекарственные препараты сульфаниламиды.

Соли диазония (рис. 2) применяют в фоточувствительных материалах для светокопирования, которое позволяет получать изображение, минуя обычную галоидосеребряную фотографию (см . СВЕТОКОПИРОВАНИЕ).

Михаил Левицкий

Амины - это производные аммиака (NH 3), в молекуле которого один, два или три атома водорода замещены уг­леводородными радикалами.

По числу углеводородных радикалов, замещающих атомы водорода в молекуле NH 3 , все амины можно разделить на три типа:

Группа - NH 2 называется аминогруппой. Существуют также амины, которые содержат две, три и более аминогрупп

Номенклатура

К названию органических остатков, связанных с азотом, добавляют слово «амин», при этом группы упоминают в алфавитном порядке: CH3NC3H - метилпропиламин, CH3N(C6H5)2 - метилдифениламин. Для высших аминов название составляется, взяв за основу углеводород, прибавлением приставки «амино», «диамино», «триамино», указывая числовой индекс атома углерода. Для некоторых аминов используются тривиальные названия: C6H5NH2 - анилин (систематическое название - фениламин).

Для аминов возможна изомерия цепи, изомерия положения функциональной группы, изомерия между типами аминов

Физические свойства

Низшие предельные первичные амины - газообразные вещества, имеют запах аммиака, хорошо растворяются в воде. Амины с большей относительной молекулярной массой - жидкости или твердые вещества, растворимость их в воде с увеличением молекулярной массы уменьшается.

Химические свойства

По химическим свойствам амины похожи на аммиак.

1. Взаимодействие с водой - образование гидроксидов замещенного аммония. Раствор аммиака в воде обладает слабыми щелочными (основными) свойствами. Причина основных свойств аммиака - наличие у атома азота неподеленной электронной пары, которая участвует в образовании донорно-акцепторной связи с ионом водорода. По этой же причине амины также являются слабыми основаниями. Амины - органические основания.

2. Взаимодействие с кислотами - образование солей (реакции нейтрализации). Как основание аммиак с кислотами образует соли аммония. Аналогично при взаимодействии аминов с кислотами образуются соли замещенного аммония. Щелочи, как более сильные основания, вытесняют аммиак и амины из их солей.

3. Горение аминов. Амины являются горючими веществами. Продуктами горения аминов, как и других азотсодержащих органических соединений, являются углекислый газ, вода и свободный азот.

Алкилирование - введение алкильного заместителя в молекулу органического соединения. Типичными алкилирующими агентами являются алкилгалогениды, алкены, эпоксисоединения, спирты, реже альдегиды, кетоны, эфиры, сульфиды, диазоалканы. Катализаторами алкилирования являются минеральные кислоты, кислоты Льюиса а также цеолиты.

Ацилирование. При нагревании с карбоновыми кислотами, их ангидридами, хлорангидридами или сложными эфирами первичные и вторичные амины ацилируются с образованием N-замещенных амидов, соединений с фрагментом -С(О)N<:

Реакция с ангидридами протекает в мягких условиях. Ещё легче реагируют хлорангидриды, реакция проводится в присутствии основания, чтобы связать образующийся HCl.

Первичные и вторичные амины взаимодействуют с азотистой кислотой различным образом. При помощи азотистой кислоты первичные, вторичные и третичные амины отличают друг от друга. Из первичных аминов образуются первичные спирты:

C2H5NH2 + HNO2 → C2H5OH + N2 +H2O

При этом выделяется газ (азот). Это признак того, что в колбе первичный амин.

Вторичные амины образуют с азотистой кислотой желтые, трудно растворимые нитрозамины - соединения, содержащие фрагмент >N-N=O:

(C2H5)2NH + HNO2 → (C2H5)2N-N=O + H2O

Вторичные амины сложно не узнать, по лаборатории распространяется характерный запах нитрозодиметиламина.

Третичные амины при обычной температуре в азотистой кислоте просто растворяются. При нагревании возможна реакция с отщеплением алкильных радикалов.

Способы получения

1.Взаимодействие спиртов с аммиаком при нагревании в присутствии Аl 2 0 3 в качестве катализатора.

2.Взаимодействие алкилгалогенидов (галогеналканов) с аммиаком. Образовавшийся первичный амин может вступать в реакцию с избытком алкилгалогенида и аммиака, в результате чего образуется вторичный амин. Аналогично могут быть получены третичные амины

    Аминокислоты. Классификация, изомерия, номенклатура, получение. Физические и химические свойства. Амфотерные свойства, биполярная структура, изоэлектрическая точка. Полипептиды. Отдельные представители: глицин, аланин, цистеин, цистин, а-аминокапроновая кислота, лизин, глутаминовая кислота.

Аминокислоты - это производные углеводородов, содержащие аминогруппы (-NH 2) и карбоксильные группы –СООН.

Общая формула: (NH 2) f R(COOH) n где m и n чаще всего равны 1 или 2. Таким образом, аминокислоты являются соединениями со смешанными функциями.

Классификация

Изомерия

Изомерия аминокислот, как и гидроксикислот, зависит от изомерии углеродной цепи и от положения аминогруппы по отношению к карбоксилу (a -, β - и γ- аминокислоты и т.д.). Кроме того, все природные аминокислоты, кроме аминоуксусной, содержат асимметрические атомы углерода, поэтому они имеют оптические изомеры (антиподы). Различают D- и L-ряды аминокислот. Следует отметить, что все аминокислоты, входящие в состав белков, относятся к L-ряду.

Номенклатура

Аминокислоты обычно имеют тривиальные названия (например, аминоуксусная кислота называется иначе гликоколом или иицином, а аминопропионовая кислота - аланином и т.д.). Название аминокислоты по систематической номенклатуре складывается из названия соответствующей карбоновой кислоты, производным которой она является, с добавлением в качестве приставки слова амино-. Положение аминогруппы в цепи указывается цифрами.

Способы получения

1.Взаимодействие α-галогенкарбоновых кислот с избытком аммиака. В ходе этих реакций происходит замещение атома галогена в галогенкарбоновых кислотах (об их получении см. § 10.4) на аминогруппу. Вьщеляющийся при этом хлороводород связывается избытком аммиака в хлорид аммония.

2.Гидролиз белков. При гидролизе белков обычно образуются сложные смеси аминокислот, однако с помощью специальных методов из этих смесей можно выделять отдельные чистые аминокислоты.

Физические свойства

Аминокислоты - бесцветные кристаллические вещества, хорошо растворяются в воде, температура плавления 230-300°С. Многие α-аминокислоты имеют сладкий вкус.

Химические свойства

1. Взаимодействие с основаниями и с кислотами:

а) как кислота (участвует карбоксильная группа).

б) как основание (участвует аминогруппа).

2. Взаимодействие внутри молекулы - образование внутренних солей:

а) моноаминомонокарбоновые кислоты (нейтральные кислоты). Водные растворы моноаминомонокарбоновых кислот нейтральны (рН = 7);

б) моноаминодикарбоновые кислоты (кислые аминокислоты). Водные растворы моноаминодикарбоновых кислот имеют рН < 7 (кислая среда), так как в результате образования внутренних солей этих кислот в растворе появляется избыток ионов водорода Н + ;

в) диаминомонокарбоновые кислоты (основные аминокислоты). Водные растворы диаминомонокарбоновых кислот имеют рН > 7 (щелочная среда), так как в результате образования внутренних солей этих кислот в растворе появляется избыток гидроксид-ионов ОН - .

3. Взаимодействие аминокислот друг с другом - образование пептидов.

4. Взаимодействуют со спиртами с образованием сложных эфиров.

Изоэлектрическая точка аминокислот, не содержащих дополнительных NH2- или СООН-групп, представляет собой среднее арифметическое между двумя значениями рК": соответственно для аланина.

Изоэлектрическая точка ряда других аминокислот, содержащих дополнительные кислотные или основные группы (аспарагиновая и глутаминовая кислоты, лизин, аргинин, тирозин и др.), зависит, кроме того, от кислотности или основности радикалов этих аминокислот. Для лизина, например, рI должна вычисляться из полусуммы значений рК" для α- и ε-NН2-групп. Таким образом, в интервале рН от 4,0 до 9,0 почти все аминокислоты существуют преимущественно в форме цвиттерионов с протонированной аминогруппой и диссоциированной карбоксильной группой.

Полипептиды содержат более десяти аминокислотных остатков.

Глицин (аминоуксусная кислота, аминоэтановая кислота) - простейшая алифатическая аминокислота, единственная аминокислота, не имеющая оптических изомеров. Эмпирическая формула C2H5NO2

Аланин (аминопропановая кислота) - алифатическая аминокислота. α-аланин входит в состав многих белков, β-аланин - в состав ряда биологически активных соединений. Химическая формула NH2 -CH -CH3 -COOH. Аланин легко превращается в печени в глюкозу и наоборот. Этот процесс носит название глюкозо-аланинового цикла и является одним из основных путей глюконеогенеза в печени.

Цистеин (α-амино-β-тиопропионовая кислота; 2-амино-3-сульфанилпропановая кислота) - алифатическая серосодержащая аминокислота. Оптически активна, существует в виде L- и D- изомеров. L-Цистеин входит в состав белков и пептидов, играет важную роль в процессах формирования тканей кожи. Имеет значение для дезинтоксикационных процессов. Эмпирическая формула C3H7NO2S.

Цисти́н (хим.) (3,3"-дитио-бис-2-аминопропионовая к-та, дицистеин) - алифатическая серосодержащая аминокислота, бесцветные кристаллы, растворимые в воде.

Цистин - некодируемая аминокислота, представляющая собой продукт окислительной димеризации цистеина, в ходе которой две тиольные группы цистеина образуют дисульфидную связь цистина. Цистин содержит две аминогруппы и две карбоксильных группы и относится к двухосновным диаминокислотам. Эмпирическая формула C6H12N2O4S2

В организме находятся в основном в составе белков.

Аминокапроновая кислота (6-аминогексановая кислота или ε-аминокапроновая кислота) - лекарственное гемостатическое средство, тормозит превращение профибринолизина в фибринолизин. Брутто-

формула C6H13NO2.

Лизин (2,6-диаминогексановая кислота) - алифатическая аминокислота с выраженными свойствами основания; незаменимая аминокислота. Химическая формула: C6H14N2O2

Лизин входит в состав белков. Лизин - это незаменимая аминокислота, входящая в состав практически любых белков, необходима для роста, восстановления тканей, производства антител, гормонов, ферментов, альбуминов.

Глутаминовая кислота (2-аминопентандиовая кислота) - алифатическая аминокислота. В живых организмах глутаминовая кислота в виде аниона глутамата присутствуют в составе белков, ряда низкомолекулярных веществ и в свободном виде. Глутаминовая кислота играет важную роль в азотистом обмене. Химическая формула C5H9N1O4

Глутаминовая кислота также является нейромедиаторной аминокислотой, одним из важных представителей класса «возбуждающих аминокислот». Связывание глутамата со специфическими рецепторами нейронов приводит к возбуждению последних.

    Простые и сложные белки. Пептидная связь. Понятие о первичной, вторичной, третичной и четвертичной структуре белковой молекулы. Типы связей, определяющих пространственное строение молекулы белка (водородные, дисульфидные, ионные, гидрофобные взаимодействия). Физические и химические свойства белков (реакции осаждения, денатурации, цветные реакции). Изоэлектрическая точка. Значение белков.

Белки - это природные высокомолекулярные соединения (биополимеры), структурную основу которых составляют полипептидные цепи, построенные из остатков α-аминокислот.

Простые белки (протеины) - высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот.

Сложные белки (протеиды) - двухкомпонентные белки, в которых помимо пептидных цепей (простого белка) содержится компонент неаминокислотной природы - простетическая группа.

Пептидная связь - вид амидной связи, возникающей при образовании белков и пептидов в результате взаимодействия α-аминогруппы (-NH2) одной аминокислоты с α-карбоксильной группой (-СООН) другой аминокислоты.

Первичная структура - последовательность аминокислот в полипептидной цепи. Важными особенностями первичной структуры являются консервативные мотивы - сочетания аминокислот, играющих ключевую роль в функциях белка. Консервативные мотивы сохраняются в процессе эволюции видов, по ним часто удаётся предсказать функцию неизвестного белка.

Вторичная структура - локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями.

Третичная структура - пространственное строение полипептидной цепи (набор пространственных координат составляющих белок атомов). Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль. В стабилизации третичной структуры принимают участие:

ковалентные связи (между двумя остатками цистеина - дисульфидные мостики);

ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;

водородные связи;

гидрофильно-гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула «стремится» свернуться так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.

Четвертичная структура (или субъединичная, доменная) - взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса. Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру. В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной. Надмолекулярные белковые комплексы могут состоять из десятков молекул.

Физические свойства

Свойства белков так же разнообразны, как и функции, которые они выполняют. Одни белки растворяются в воде,-образуя, как правило, коллоидные растворы (например, белок яйца); другие растворяются в разбавленных растворах солей; третьи нерастворимы (например, белки покровных тканей).

Химические свойства

В радикалах аминокислотных остатков белки содержат различные функциональные группы, которые способны вступать во многие реакции. Белки вступают в реакции окисления-восстановления, этерификации, алкилирования, нитрования, могут образовывать соли как с кислотами, так и с основаниями (белки амфотерны).

Например, альбумин - яичный белок - при температуре 60-70° осаждается из раствора (свертывается), теряя способность растворяться в воде.