Болезни Военный билет Призыв

Сколько длится оборот земли вокруг своей оси. Вращение земли вокруг солнца и своей оси. Что, если она остановится

Земля вращается вокруг оси с запада на восток, т. е. против часовой стрелки, если смотреть на Землю с Полярной звезды (с Северного полюса). При этом угловая скорость вращения, т. е. угол, на который поворачивается любая точка на поверхности Земли, одинаков и составляет 15° за час. Линейная скорость зависит от широты: на экваторе она наибольшая – 464 м/с, а географические полюса неподвижны.

Главным физическим доказательством вращения Земли вокруг оси служит опыт с качающимся маятником Фуко. После того как французский физик Ж. Фуко в 1851. г. в парижском Пантеоне осуществил свой знаменитый опыт, вращение Земли вокруг оси стало непреложной истиной. Физическим доказательством осевого вращения Земли являются также измерения дуги 1° меридиана, которая у экватора составляет 110,6 км, а у полюсов – 111,7 км (рис. 15). Эти измерения доказывают сжатие Земли у полюсов, а оно свойственно лишь вращающимся телам. И наконец, третье доказательство – отклонение падающих тел от отвесной линии на всех широтах, кроме полюсов (рис. 16). Причина этого отклонения обусловлена сохранением ими по инерции большей линейной скорости точки А (на высоте) по сравнению с точкой В земной поверхности). Падая, предметы отклоняются на Земле к востоку потому, что она вращается с запада на восток. Величина отклонения максимальна на экваторе. На полюсах тела падают вертикально, не отклоняясь от направления земной оси.

Географическое значение осевого вращения Земли исключительно велико. Прежде всего оно влияет на фигуру Земли. Сжатие Земли у полюсов – результат ее осевого вращения. Раньше, когда Земля вращалась с большей угловой скоростью, полярное сжатие было значительнее. Удлинение суток и, как следствие, уменьшение экваториального радиуса и увеличение полярного сопровождается тектоническими деформациями земной коры (разломы, складки) и перестройкой макрорельефа Земли.

Важным следствием осевого вращения Земли является отклонение тел движущихся в горизонтальной плоскости (ветров, рек, морских течений и др.). от их первоначального направления: в северном полушарии – вправо, в южном – влево (это одна из сил инерции, названная ускорением Кориолиса в честь французского ученого, который первым объяснил это явление). По закону инерции каждое движущееся тело стремится сохранить неизменными направление и скорость своего движения в мировом пространстве (рис. 17). Отклонение – результат того, что тело участвует одновременно как в поступательном, так и во вращательном движениях. На экваторе, где меридианы параллельны друг другу, направление их в мировом пространстве при вращении не меняется и отклонение равно нулю. К полюсам отклонение нарастает и становится у полюсов наибольшим, поскольку там каждый меридиан за сутки изменяет свое направление в пространстве на 360°. Сила Кориолиса вычисляется по формуле F = m x 2ω x υ x sin φ, где F – сила Кориолиса, т – масса движущегося тела, ω – угловая скорость, υ – скорость движущегося тела, φ – географическая широта. Проявление силы Кориолиса в природных процессах весьма многообразно. Именно из-за нее в атмосфере возникают вихри разного масштаба, в том числе циклоны и антициклоны, отклоняются от градиентного направления ветры и морские течения, оказывая влияние на климат и через него на природную зональность и региональность; с ней связана асимметрия крупных речных долин: в северном полушарии у многих рек (Днепр, Волга и др.) по этой причине правые берега крутые, левые – пологие, а в южном – наоборот.

С вращением Земли связана естественная единица измерения времени – сутки и происходит смена дня и ночи. Сутки бывают звездные и солнечные. Звездные сутки – промежуток времени между двумя последовательными верхними кульминациями звезды через меридиан точки наблюдения. За звездные сутки Земля совершает полный оборот вокруг своей оси. Они равны 23 ч 56 мин 4 с. Звездные сутки используются при астрономических наблюдениях. Истинные солнечные сутки – промежуток времени между двумя последовательными верхними кульминациями центра Солнца через меридиан точки наблюдения. Продолжительность истинных солнечных суток изменяется в течение года прежде всего из-за неравномерного движения Земли по эллиптической орбите. Следовательно, они также неудобны для измерения времени. В практических целях пользуются средними солнечными сутками. Среднее солнечное время измеряют по так называемому среднему Солнцу – воображаемой точке, равномерно перемещающейся по эклиптике и совершающей полный оборот за год, как и истинное Солнце. Средние солнечные сутки равны 24 ч. Они длиннее звездных, так как Земля вращается вокруг оси в том же направлении, в котором движется по орбите вокруг Солнца с угловой скоростью около 1° в сутки. Из-за этого Солнце смещается на фоне звезд, и Земле нужно еще «довернуться» примерно на 1°, чтобы Солнце «пришло» на тот же самый меридиан. Таким образом, за солнечные сутки Земля совершает оборот примерно на 361°. Для перевода истинного солнечного времени в среднее солнечное время вводится поправка – так называемое уравнение времени. Его максимальное положительное значение + 14 мин 11 февраля, наибольшее отрицательное –16 мин 3 ноября. За начало средних солнечных суток принимают момент нижней кульминации среднего Солнца – полночь. Такой счет времени называют гражданским временем.

В повседневной жизни средним солнечным временем пользоваться тоже неудобно, поскольку на каждом меридиане оно свое, местное время. Например, на двух соседних меридианах, проведенных с интервалом в 1°, местное время отличается на 4 мин. Наличие в различных пунктах, лежащих на разных меридианах, своего местного времени приводило ко многим неудобствам. Поэтому на Международном астрономическом конгрессе в 1884 г. был принят поясной счет времени. Для этого всю поверхность земного шара разделили на 24 часовых пояса, по 15° каждый. За поясное время принято местное время среднего меридиана каждого пояса. Для перевода местного времени в поясное и обратно существует формула T n m = N λ °, где Т п – поясное время, m – местное время, N – число часов, равное номеру пояса, λ ° – долгота, выраженная в часовой мере. Нулевой (он же 24-й) пояс тот, по середине которого проходит нулевой (Гринвичский) меридиан. Его время принято в качестве всемирного времени. Зная всемирное время, легко вычислить поясное время по формуле T n = T 0 + N , где Т 0 – всемирное время. Счет поясов ведется на восток. В двух соседних поясах поясное время отличается ровно на 1 ч. Границы часовых поясов на суше для удобства проведены не строго по меридианам, а по естественным рубежам (рекам, горам) или государственным и административным границам.

В нашей стране поясное время введено с 1 июля 1919 г. Россия расположена в десяти часовых поясах: со второго по одиннадцатый. Однако в целях более рационального использования летом дневного света в нашей стране в 1930 г. специальным постановлением правительства было введено так называемое декретное время, опережающее поясное на 1 ч. Так, например, Москва формально находится во втором часовом поясе, где поясное время исчисляется по местному времени меридиана 30° в. д. Но фактически время зимой в Москве устанавливается по времени третьего часового пояса, соответствующего местному времени на меридиане 45° в. д. Подобная «передвижка» действует на всей территории России, кроме Калининградской области, время в которой реально соответствует второму часовому поясу.

Рис. 17. Отклонение тел, движущихся по меридиану, в северном полушарии – вправо, в южном полушарии – влево

В ряде стран время переводят на один час вперед лишь на лето. В России с 1981 г. на период с апреля по октябрь также вводится летнее время за счет перевода времени еще на час вперед по сравнению с декретным. Таким образом, летом время в Москве фактически соответствует местному времени на меридиане 60° в. д. Время, по которому живут жители Москвы и второго часового пояса, в котором она расположена, называется московским. По московскому времени в нашей стране составляют расписание движения поездов, самолетов, отмечается время на телеграммах.

По середине двенадцатого пояса, примерно вдоль 180° меридиана, в 1884 г. проведена международная линия перемены даты. Это условная линия на поверхности земного шара, по обе стороны от которой часы и минуты совпадают, а календарные даты отличаются на одни сутки. Например, в Новый год в 0 ч 00 мин к западу от этой линии наступает уже 1 января нового года, а к востоку – только 31 декабря старого года. При пересечении границы дат с запада на восток в счете календарных дней возвращаются на одни сутки назад, а с востока на запад одни сутки в счете дат пропускаются.

Смена дня и ночи создает суточную ритмичность в живой и неживой природе. Суточный ритм связан со световыми и температурными условиями. Общеизвестен суточный ход температуры, дневной и ночной бризы и т. д. Очень ярко проявляется суточный ритм живой природы. Известно, что фотосинтез возможен лишь днем, при наличии солнечного света, что многие растения раскрывают свои цветки в разные часы. Животных по времени проявления активности можно подразделить на ночных и дневных: большинство из них бодрствует днем, но многие (совы, летучие мыши, ночные бабочки) – во мраке ночи. Жизнь человека тоже протекает в суточном ритме.

Рис. 18. Сумерки и белые ночи

Период плавного перехода от дневного света к ночной темноте и обратно называется сумерками. В основе их лежит оптическое явление, наблюдаемое в атмосфере перед восходом и после захода Солнца, когда оно еще (или уже) находится под линией горизонта, но освещает небосвод, от которого отражается свет. Продолжительность сумерек зависит от склонения Солнца (углового расстояния Солнца от плоскости небесного экватора) и географической широты места наблюдения. На экваторе сумерки короткие, с увеличением широты возрастают. Различают три периода сумерек. Гражданские сумерки наблюдаются, когда центр Солнца погружается под горизонт неглубоко (на угол до 6°) и ненадолго. Это фактически белые ночи, когда вечерняя заря сходится с утренней зарей. Летом они наблюдаются на широтах 60° и более. Например/в Санкт-Петербурге (широта 59°56" с.ш.) они продолжаются с 11 июня по 2 июля, в Архангельске (64°33" с.ш.) – с 13 мая по 30 июля. Навигационные сумерки наблюдаются, когда центр солнечного диска погружается под горизонт на 6–12°. При этом видна линия горизонта, и с корабля можно определить угол звезд над ней. И наконец, астрономические сумерки наблюдаются, когда центр диска Солнца погружается под горизонт на 12–18°. При этом заря на небе еще препятствует астрономическим наблюдениям слабых светил (рис. 18).

Вращение Земли дает две неподвижные точки – географические полюса (точки пересечения воображаемой оси вращения Земли с земной поверхностью) – и тем самым позволяет построить координатную сетку из параллелей и меридианов. Экватор (лат. aequator – уравнитель) – линия пересечения земного шара плоскостью, проходящей через центр Земли перпендикулярно оси ее вращения. Параллели (греч. parallelos – идущие рядом) – линии пересечения земного эллипсоида плоскостями, параллельными плоскости экватора. Меридианы (лат. meridlanus – полуденный) – линии пересечения земного эллипсоида плоскостями, проходящими через оба ее полюса. Длина 1° меридиана в среднем 111,1 км.

Люди с давних времен интересовались, почему ночь сменяется днем, зима весной, а лето осенью. Позже, когда на первые вопросы были найдены ответы, ученые начали поподробнее рассматривать Землю как объект , стараясь узнать, с какой скоростью Земля вращается вокруг Солнца и вокруг своей оси.

Движение Земли

Все небесные тела пребывают в движении, Земля не исключение. Причем у нее одновременно происходит осевое движение и движение вокруг Солнца.

Чтобы наглядно представить движение Земли , достаточно взглянуть на волчок, одновременно вращающийся вокруг оси и быстро перемещающийся по полу. Если бы этого движения не было, Земля не была бы пригодной для жизни. Так, наша планета без вращения вокруг своей оси была бы постоянно повернута к Солнцу одной своей стороной, на которой температура воздуха достигала бы +100 градусов, и вся имеющаяся на этом участке вода превратилась бы в пар. На другой же стороне температура была бы постоянно минусовая и всю поверхность этой части покрывали льды.

Орбита вращения

Вращение вокруг Солнца следует по определенной траектории – орбите, которая установилась за счет притяжения Солнца и скорости движения нашей планеты. Если бы притяжение было в несколько раз сильнее или скорость значительно ниже, то Земля упала на Солнце. А если бы притяжение исчезло или сильно уменьшилось, то планета, ведомая своей центробежной силой, улетела по касательной в космос. Это было бы подобно тому, как если предмет, привязанный на веревку, вращать над головой, а затем резко отпустить.

Траектория движения Земли имеет форму эллипса, а не идеального круга, а расстояние до светила неодинаково в течение года. В январе планета подходит к точке, находящейся ближе всего к светилу, – она называется перигелием – и отстоит от светила на 147 млн км. А в июле Земля отдаляется от солнца на 152 млн км, подходя к точке, называемой афелием. За среднее расстояние принимают 150 млн км.

Земля движется по своей орбите с запада на восток, что соответствует направлению «против часовой стрелки».

На 1 оборот вокруг центра Солнечной системы Земле требуется 365 суток 5 часов 48 минут 46 секунд (1 астрономический год). Но для удобства за календарный год принято считать 365 дней, а оставшееся время «накапливается» и добавляет по одному дню к каждому високосному году.

Орбитальное расстояние равно 942 млн км. Исходя из расчетов, скорость Земли составляет 30 км в секунду или 107000 км/час. Для людей она остается незаметной, поскольку все люди и предметы движутся одинаково в системе координат. А между тем она очень большая. Для примера, наибольшая скорость гоночного автомобиля равна 300 км/час, что в 365 раз медленнее скорости Земли, несущейся по своей орбите.

Однако величина в 30 км/с непостоянна в связи с тем, что орбита представляет собой эллипс. Скорость движения нашей планеты в течение всего пути несколько колеблется. Наибольшая разница достигается при прохождении точек перигелия и афелия и составляет 1 км/с. То есть принятая скорость 30 км/с является средней.

Осевое вращение

Земная ось – условная линия, которую можно провести от северного к южному полюсу. Она проходит под углом в 66°33 относительно плоскости нашей планеты. Одно обращение происходит за 23 часа 56 минут и 4 секунды, это время обозначается звездными сутками.

Главный результат осевого вращения – смена дня и ночи на планете. Кроме того, за счет этого движения:

  • Земля имеет форму со сплюснутыми полюсами;
  • тела (течение рек, ветер), движущиеся в горизонтальной плоскости, несколько смещаются (в Южном полушарии – влево, в Северном – вправо).

Скорость осевого движения на разных участках значительно отличается. Самая высокая на экваторе – 465 м/с или 1674 км/час, она называется линейной. Такая скорость, например, в столице Эквадора. На участках севернее или южнее экватора скорость вращения снижается. К примеру, в Москве она почти в 2 раза ниже. Эти скорости называют угловыми , их показатель становится меньше по мере приближения к полюсам. На самих же полюсах скорость равна нулю, то есть полюса – единственные части планеты, находящиеся без движения относительно оси.

Именно расположение оси под определенным углом определяет смену времен года. Находясь именно в таком положении, разные области планеты получают неодинаковое количество тепла в разное время. Если бы наша планета располагалась строго вертикально относительно Солнца, то времен года не было совсем, поскольку освещенные светилом в дневное время северные широты получали столько же тепла и света, сколько и южные широты.

На осевое вращение влияют следующие факторы:

  • сезонные изменения (осадки, движение атмосферы);
  • приливные волны против направления осевого движения.

Эти факторы тормозят планету, вследствие чего уменьшается ее скорость. Показатель этого уменьшения очень мал всего 1 секунда за 40000 лет, однако, за 1 млрд лет сутки удлинились с 17-и до 24-х часов.

Движение Земли продолжают изучать по сей день . Эти данные помогают составить более точные звездные карты, а также определить связь этого движения с природными процессами на нашей планете.

Период обращения Земли вокруг своей оси - величина постоянная. Астрономически она равна 23 часам 56 минутам и 4 секундам. Однако ученые не стали учитывать ничтожную погрешность, округлив эти цифры до 24 часов, или одних земных суток. Один такой оборот называется суточным вращением и происходит с запада на восток. Для человека с Земли это выглядит как утро, день и вечер, сменяющие друг друга. Другими словами, восход Солнца, полдень и заход светила полностью совпадают с суточным вращением планеты.

Что такое ось Земли?

Земную ось можно мысленно представить в виде воображаемой линии, вокруг которой третья от Солнца планета и вращается. Эта ось пересекает поверхность Земли в двух постоянных точках - в Северном и Южном географических полюсах. Если, к примеру, мысленно продолжить направление земной оси вверх, то она пройдет рядом с Полярной звездой. Кстати, именно этим и объясняется неподвижность Полярной звезды. Создается эффект, что небесная сфера движется вокруг оси, а значит, и вокруг этой звезды.

Еще человеку с Земли кажется, что звездное небо вращается в направлении с востока на запад. Но это не так. Видимое движение является лишь отражением истинного суточного вращения. Важно знать, что наша планета одновременно участвует не в одном, а как минимум в двух процессах. Она обращается вокруг земной оси и совершает орбитальное движение вокруг небесного светила.

Видимое перемещение Солнца - это такое же отражение истинного движения нашей планеты по своей орбите вокруг него. В результате чего сначала наступает день, а потом - ночь. Отметим, что одно движение немыслимо без другого! Таковы законы Вселенной. При этом если период обращения Земли вокруг своей оси равен одним земным суткам, то время ее движения вокруг небесного светила - величина непостоянная. Узнаем, что же влияет на эти показатели.

Что влияет на скорость орбитального вращения Земли?

Период обращения Земли вокруг своей оси - это величина постоянная, чего не скажешь о скорости, с которой голубая планета движется по орбите вокруг светила. Долгое время астрономы думали, что эта скорость постоянна. Оказалось, что нет! В настоящее время благодаря наиболее точным измерительным приборам ученые обнаружили небольшое отклонение в ранее полученных цифрах.

Причина такой изменчивости - трение, возникающее во время морских приливов. Именно оно непосредственно влияет на уменьшение орбитальной скорости третьей от Солнца планеты. В свою очередь, приливы и отливы - это следствие действия на Землю ее постоянного спутника - Луны. Такой оборот планеты вокруг небесного светила человек не замечает, так же как и период обращения Земли вокруг оси. Но мы не можем не обращать своего внимания на смену времен года: весна сменяется летом, лето - осенью, а осень - зимой. И так происходит постоянно. Это и есть следствие орбитального движения планеты, длящегося 365,25 суток, или один земной год.

Стоит отметить, что Земля движется относительно Солнца неравномерно. Например, в одних точках она наиболее приближена к небесному светилу, а в других - наиболее удалена от него. И еще: орбита вокруг Земли - это не окружность, а овал, или эллипс.

Почему человек не замечает суточного вращения?

Человек никогда не сможет заметить вращения планеты, находясь на ее поверхности. Это объясняется разностью размеров наших и земного шара - слишком огромен он для нас! Период обращения Земли вокруг своей оси никак не получится заметить, но удастся ощутить: день сменится ночью и наоборот. Об этом уже говорилось выше. Но что было бы, если бы голубая планета не смогла вращаться вокруг оси? А вот что: на одной стороне Земли был бы вечный день, а на другой - вечная ночь! Ужасно, не так ли?

Важно знать!

Итак, период обращения Земли вокруг своей оси составляет почти 24 часа, а время ее «путешествия» вокруг Солнца - около 365,25 дней (один земной год), поскольку эта величина - непостоянная. Обратим ваше внимание на то, что, кроме двух рассмотренных движений, Земля участвует и в других. Например, она вместе с остальными планетами совершает движение относительно Млечного Пути - нашей родной Галактики. В свою очередь, Млечный Путь совершает некоторое движение относительно других соседних галактик. И все происходит потому, что во Вселенной не было и никогда не будет ничего неизменного и неподвижного! Это нужно запомнить на всю жизнь.

Привет дорогие читатели! Сегодня хотелось бы затронуть тему Земли и , и я подумала, что пост о том, как вращается Земля Вам пригодится 🙂 Ведь от этого зависит день и ночь, а еще времена года. Давайте со всем познакомимся поближе.

Наша планета вращается вокруг своей оси и вокруг Солнца. Когда она делает один оборот вокруг оси проходит один день, а когда вокруг Солнца – один год. Далее подробнее об этом:

Земная ось.

Земная ось (ось вращения Земли) – это прямая, вокруг которой происходит суточное вращение Земли; эта линия проходит через центр и в пересекает поверхность Земли.

Наклон оси вращения Земли.

Ось вращения Земли наклонена к плоскости под углом 66°33´; благодаря этому происходит . Когда Солнце находится над Северным тропиком (23°27´ с. ш.), в Северном полушарии начинается лето, а Земля при этом находится на самом дальнем расстоянии от Солнца.

Когда Солнце поднимается над Южным тропиком (23°27´ ю. ш.), в Южном полушарии начинается лето.

В Северном полушарии в это время начинается зима. Притяжение Луны, Солнца и других планет не изменяет угол наклона земной оси, но приводит к тому, что она перемещается по круговому конусу. Это перемещение называется прецессией.

Северный полюс в наше время направлен на Полярную звезду. Земная ось за следующие 12 000 лет, в результате прецессии, пройдет приблизительно полдороги, и будет направлена на звезду Вега.

Около 25 800 лет составляет полный цикл прецессии и существенно влияет на климатический цикл.

Два раза в год, когда Солнце находится непосредственно над экватором, и два раза в месяц, когда Луна занимает аналогичное положение, притяжение, которое обусловлено прецессией, уменьшается к нулю и происходит периодическое увеличение и снижение темпов прецессии.

Такие колебательные движения земной оси известны как нутация, которая достигает максимума каждые 18,6 лет. По значимости влияния на климат эта периодичность занимает второе место после изменения времен года .

Вращение Земли вокруг своей оси.

Суточное вращение Земли – движение Земли против часовой стрелки, или с запада на восток, если смотреть с Северного полюса мира. Вращение Земли определяет длительность дня и вызывает изменение дня и ночи.

Вокруг своей оси Земля делает один оборот за 23 часа 56 минут и 4,09 секунды. За период одного витка вокруг Солнца, Земля приблизительно совершает 365 ¼ оборотов, это составляет один год или равняется 365 ¼ суток.

Каждые четыре года в календарь добавляется еще один день, потому что на каждый такой виток, кроме целых суток, затрачивается еще четверть суток. Вращение Земли постепенно замедляет гравитационное притяжение Луны, и продлевает сутки приблизительно на 1/1000 с каждое столетие.

Судя по геологическим данным, темпы вращения Земли могли изменяться, но не более чем на 5%.


Вокруг Солнца Земля вращается по эллиптической орбите, близкой к круговой, со скоростью около 107 000 км/час в направлении с запада на восток. Среднее расстояние к Солнцу 149 598 тыс. км, а разница между самым меньшим и самым большим расстоянием 4,8 млн. км.

Эксцентриситет (отклонение от круга) земной орбиты немного изменяется на протяжении цикла длительностью 94 тыс. лет. Считается, что формированию сложного климатического цикла способствуют изменения расстояния к Солнцу, а с отдельными его этапами связаны наступление и отхождение ледников во время ледниковых периодов.

Все в нашей огромной Вселенной устроено очень сложно и точно. И наша Земля всего лишь точка в ней, но это наш родной дом, о котором мы еще немного узнали из поста о том, как вращается Земля. До встречи в новых постах об изучении Земли и Вселенной 🙂

Суточное вращение Земли - вращение Земли вокруг своей оси с периодом в одни звёздные сутки , наблюдаемым проявлением чего является суточное вращение небесной сферы . Вращение Земли происходит с запада на восток . При наблюдении с Полярной звезды или северного полюса эклиптики вращение Земли происходит против часовой стрелки.

Энциклопедичный YouTube

  • 1 / 5

    V = (R e R p R p 2 + R e 2 t g 2 φ + R p 2 h R p 4 + R e 4 t g 2 φ) ω {\displaystyle v=\left({\frac {R_{e}\,R_{p}}{\sqrt {{R_{p}}^{2}+{R_{e}}^{2}\,{\mathrm {tg} ^{2}\varphi }}}}+{\frac {{R_{p}}^{2}h}{\sqrt {{R_{p}}^{4}+{R_{e}}^{4}\,\mathrm {tg} ^{2}\varphi }}}\right)\omega } , где R e {\displaystyle R_{e}} = 6378,1 км - экваториальный радиус, R p {\displaystyle R_{p}} = 6356,8 км - полярный радиус.

    • Самолёт, летящий с этой скоростью с востока на запад (на высоте 12 км: 936 км/ч на широте Москвы , 837 км/ч на широте Санкт-Петербурга) в инерциальной системе отсчёта будет покоиться.
    • Суперпозиция вращения Земли вокруг оси с периодом в одни звёздные сутки и вокруг Солнца с периодом в один год приводит к неравенству солнечных и звёздных суток: длина средних солнечных суток составляет ровно 24 часа, что на 3 минуты 56 секунд длиннее звёздных суток.

    Физический смысл и экспериментальные подтверждения

    Физический смысл вращения Земли вокруг оси

    Поскольку любое движение является относительным, необходимо указывать конкретную систему отсчета , относительно которой изучается движение того или иного тела. Когда говорят, что Земля вращается вокруг воображаемой оси, имеется в виду, что она совершает вращательное движение относительно любой инерциальной системы отсчёта , причем период этого вращения равен звездным суткам - периоду полного оборота Земли (небесной сферы) относительно небесной сферы (Земли).

    Все экспериментальные доказательства вращения Земли вокруг оси сводятся к доказательству того, что система отсчёта, связанная с Землей, является неинерциальной системой отсчёта специального вида - системой отсчета, совершающей вращательное движение относительно инерциальных систем отсчёта .

    В отличие от инерциального движения (то есть равномерного прямолинейного движения относительно инерциальных систем отсчета), для обнаружения неинерциального движения замкнутой лаборатории не обязательно производить наблюдения над внешними телами, - такое движение обнаруживается с помощью локальных экспериментов (то есть экспериментов, произведенных внутри этой лаборатории). В этом смысле слова неинерциальное движение, включая вращение Земли вокруг оси, может быть названо абсолютным.

    Силы инерции

    Эффекты центробежной силы

    Зависимость ускорения свободного падения от географической широты. Эксперименты показывают, что ускорение свободного падения зависит от географической широты : чем ближе к полюсу, тем оно больше. Это объясняется действием центробежной силы. Во-первых, точки земной поверхности, расположенные на более высоких широтах, ближе к оси вращения и, следовательно, при приближении к полюсу расстояние r {\displaystyle r} от оси вращения уменьшается, доходя до нуля на полюсе. Во-вторых, с увеличением широты угол между вектором центробежной силы и плоскостью горизонта уменьшается, что приводит к уменьшению вертикальной компоненты центробежной силы.

    Это явление было открыто в 1672 году, когда французский астроном Жан Рише , находясь в экспедиции в Африке , обнаружил, что у экватора маятниковые часы идут медленнее, чем в Париже . Ньютон вскоре объяснил это тем, что период колебаний маятника обратно пропорционален квадратному корню из ускорения свободного падения, которое уменьшается на экваторе из-за действия центробежной силы.

    Сплюснутость Земли. Влияние центробежной силы приводит к сплюснутости Земли у полюсов. Это явление, предсказанное Гюйгенсом и Ньютоном в конце XVII века, было впервые обнаружено Пьером де Мопертюи в конце 1730-х годов в результате обработки данных двух французских экспедиций, специально снаряженных для решения этой проблемы в Перу (под руководством Пьера Бугера и Шарля де ла Кондамина) и Лапландию (под руководством Алексиса Клеро и самого Мопертюи).

    Эффекты силы Кориолиса: лабораторные эксперименты

    Наиболее отчетливо этот эффект должен быть выражен на полюсах, где период полного поворота плоскости маятника равен периоду вращения Земли вокруг оси (звёздным суткам). В общем случае, период обратно пропорционален синусу географической широты , на экваторе плоскость колебаний маятника неизменна.

    Гироскоп - вращающееся тело со значительным моментом инерции сохраняет момент импульса, если нет сильных возмущений. Фуко, которому надоело объяснять, что происходит с маятником Фуко не на полюсе, разработал другую демонстрацию: подвешенный гироскоп сохранял ориентацию, а значит медленно поворачивался относительно наблюдателя.

    Отклонение снарядов при орудийной стрельбе. Другим наблюдаемым проявлением силы Кориолиса является отклонение траекторий снарядов (в северном полушарии вправо, в южном - влево), выстреливаемых в горизонтальном направлении. С точки зрения инерциальной системы отсчета, для снарядов, выстреливаемых вдоль меридиана , это связано с зависимостью линейной скорости вращения Земли от географической широты: при движении от экватора к полюсу снаряд сохраняет горизонтальную компоненту скорости неизменной, в то время как линейная скорость вращения точек земной поверхности уменьшается, что приводит к смещению снаряда от меридиана в сторону вращения Земли. Если выстрел был произведен параллельно экватору, то смещение снаряда от параллели связано с тем, что траектория снаряда лежит в одной плоскости с центром Земли, в то время как точки земной поверхности движутся в плоскости, перпендикулярной оси вращения Земли . Этот эффект (для случая стрельбы вдоль меридиана) был предсказан Гримальди в 40-х годах XVII в. и впервые опубликован Риччоли в 1651 г.

    Отклонение свободно падающих тел от вертикали. ( ) Если скорость движения тела имеет большую вертикальную составляющую, сила Кориолиса направлена к востоку, что приводит к соответствующему отклонению траектории тела, свободно падающего (без начальной скорости) с высокой башни . При рассмотрении в инерциальной системе отсчета эффект объясняется тем, что вершина башни относительно центра Земли движется быстрее, чем основание , благодаря чему траектория тела оказывается узкой параболой и тело слегка опережает основание башни .

    Эффект Этвёша. На низких широтах сила Кориолиса при движении по земной поверхности направлена в вертикальном направлении и её действие приводит к увеличению или уменьшению ускорения свободного падения, в зависимости от того, движется ли тело на запад или восток. Этот эффект назван эффектом Этвёша в честь венгерского физика Лоранда Этвёша , экспериментально обнаружившего его в начале XX века.

    Опыты, использующие закон сохранения момента импульса. Некоторые эксперименты основаны на законе сохранения момента импульса : в инерциальной системе отсчёта величина момента импульса (равная произведению момента инерции на угловую скорость вращения) под действием внутренних сил не меняется. Если в некоторый начальный момент времени установка неподвижна относительно Земли, то скорость её вращения относительно инерциальной системы отсчета равна угловой скорости вращения Земли. Если изменить момент инерции системы, то должна измениться угловая скорость её вращения, то есть начнётся вращение относительно Земли. В неинерциальной системе отсчёта, связанной с Землёй, вращение возникает в результате действия силы Кориолиса. Эта идея была предложена французским учёным Луи Пуансо в 1851 г.

    Первый такой эксперимент был поставлен Хагеном в 1910 г.: два груза на гладкой перекладине были установлены неподвижно относительно поверхности Земли. Затем расстояние между грузами было уменьшено. В результате установка пришла во вращение . Ещё более наглядный опыт поставил немецкий учёный Ханс Букка (Hans Bucka) в 1949 г. Стержень длиной примерно 1,5 метра был установлен перпендикулярно прямоугольной рамке. Первоначально стержень был горизонтален, установка была неподвижной относительно Земли. Затем стержень был приведен в вертикальное положение, что привело к изменению момента инерции установки примерно в 10 4 раз и её быстрому вращению с угловой скоростью, в 10 4 раз превышающей скорость вращения Земли .

    Воронка в ванне.

    Поскольку сила Кориолиса очень слаба, она оказывает пренебрежимо малое влияние на направление закручивания воды при сливе в раковине или ванне, поэтому в общем случае направление вращения в воронке не связано с вращением Земли. Лишь только в тщательно контролируемых экспериментах можно отделить действие силы Кориолиса от других факторов: в северном полушарии воронка будет закручена против часовой стрелки, в южном - наоборот .

    Эффекты силы Кориолиса: явления в окружающей природе

    Оптические эксперименты

    В основе ряда опытов, демонстрирующих вращение Земли, используется эффект Саньяка : если кольцевой интерферометр совершает вращательное движение, то вследствие релятивистских эффектов во встречных лучах появляется разность фаз

    Δ φ = 8 π A λ c ω , {\displaystyle \Delta \varphi ={\frac {8\pi A}{\lambda c}}\omega ,}

    где A {\displaystyle A} - площадь проекции кольца на экваториальную плоскость (плоскость, перпендикулярную оси вращения), c {\displaystyle c} - скорость света , ω {\displaystyle \omega } - угловая скорость вращения. Для демонстрации вращения Земли этот эффект был использован американским физиком Майкельсоном в серии экспериментов, поставленных в 1923-1925 гг. В современных экспериментах, использующих эффект Саньяка, вращение Земли необходимо учитывать для калибровки кольцевых интерферометров.

    Существует ряд других экспериментальных демонстраций суточного вращения Земли .

    Неравномерность вращения

    Прецессия и нутация

    История идеи суточного вращения Земли

    Античность

    Объяснение суточного вращения небосвода вращением Земли вокруг оси впервые было предложено представителями пифагорейской школы , сиракузянами Гикетом и Экфантом . Согласно некоторым реконструкциям, вращение Земли утверждал также пифагореец Филолай из Кротона (V век до н. э.). Высказывание, которое можно трактовать как указание на вращение Земли, содержится в Платоновском диалоге Тимей .

    Однако о Гикете и Экфанте практически ничего неизвестно, и даже само их существование иногда подвергается сомнению . Согласно мнению большинства ученых, Земля в системе мира Филолая совершала не вращательное, а поступательное движение вокруг Центрального огня. В других своих произведениях Платон следует традиционному мнению о неподвижности Земли. Однако до нас дошли многочисленные свидетельства, что идею вращения Земли отстаивал философ Гераклид Понтийский (IV век до н. э.) . Вероятно, с гипотезой о вращении Земли вокруг оси связано ещё одно предположение Гераклида: каждая звезда представляет собой мир, включающий землю, воздух, эфир, причем всё это располагается в бесконечном пространстве. Действительно, если суточное вращение неба является отражением вращения Земли, то исчезает предпосылка считать звезды находящимися на одной сфере.

    Примерно столетие спустя предположение о вращении Земли стало составной частью первой , предложенной великим астрономом Аристархом Самосским (III век до н. э.) . Аристарха поддержал вавилонянин Селевк (II век до н. э.) , также, как и Гераклид Понтийский , считавший Вселенную бесконечной. О том, что идея суточного вращения Земли имела своих сторонников ещё в I веке н. э., свидетельствуют некоторые высказывания философов Сенеки , Деркиллида, астронома Клавдия Птолемея . Подавляющее большинство астрономов и философов, однако, не сомневалось в неподвижности Земли.

    Аргументы против идеи движения Земли имеются в произведениях Аристотеля и Птолемея . Так, в своем трактате О Небе Аристотель обосновает неподвижность Земли тем, что на вращающейся Земле брошенные вертикально вверх тела не могли бы упасть в ту точку, из которой началось их движение: поверхность Земли сдвигалась бы под брошенным телом . Другой довод в пользу неподвижности Земли, приводимый Аристотелем, основан на его физической теории: Земля является тяжелым телом, а для тяжелых тел свойственно движение к центру мира, а не вращение вокруг него.

    Из сочинения Птолемея следует, что сторонники гипотезы вращения Земли на эти доводы отвечали, что и воздух и все земные предметы совершают движение вместе с Землей. По всей видимости, роль воздуха в этом рассуждении принципиально важна, поскольку подразумевается, что именно его движение вместе с Землей скрывает вращение нашей планеты. Птолемей на это возражает, что

    находящиеся в воздухе тела всегда будут казаться отстающими… А если бы тела вращались вместе с воздухом как одно целое, то никакое из них не казалось бы опережающим другое или отстающим от него, но оставалось бы на месте, в полете и бросании оно не совершало бы отклонений или движений в другое место вроде тех, которые мы воочию видим совершающимися, и у них вообще не происходило бы замедления или ускорения, оттого что Земля не является неподвижной .

    Средние века

    Индия

    Первым из средневековых авторов, высказавший предположение о вращении Земли вокруг оси, был великий индийский астроном и математик Ариабхата (кон. V - нач. VI вв.). Он формулирует её в нескольких местах своего трактата Ариабхатия , например:

    Точно также, как человек на движущемся вперед корабле видит закрепленные объекты движущимися назад, так и наблюдатель… видит неподвижные звезды движущимися по прямой линии на запад .

    Неизвестно, принадлежит ли эта идея самому Ариабхате или он её заимствовал у древнегреческих астрономов .

    Ариабхату поддержал только один астроном, Пртхудака (IX век) . Большинство индийских ученых отстаивало неподвижность Земли. Так, астроном Варахамихира (VI в.) утверждал, что на вращающейся Земле летящие в воздухе птицы не могли бы вернуться к своим гнездам, а камни и деревья слетали бы с поверхности Земли. Выдающийся астроном Брахмагупта (VI в.) повторил также старый аргумент, что тело, упавшее с высокой горы, но смогло бы опуститься к её основанию. При этом он, однако, отверг один из доводов Варахамихиры : по его мнению, даже если бы Земля вращалась, предметы не могли бы оторваться от неё вследствие своей тяжести.

    Исламский Восток

    Возможность вращения Земли рассматривали многие ученые мусульманского Востока. Так, известный геометр ас-Сиджизи изобрел астролябию , принцип действия которой основан на этом предположении . Некоторые исламские ученые (имена которых до нас не дошли) даже нашли правильный способ опровержения основного довода против вращения Земли: вертикальности траекторий падающих тел. По существу, при этом был высказан принцип суперпозиции движений, согласно которому любое перемещение можно разложить на два или несколько составляющих: по отношению к поверхности вращающейся Земли падающее тело двигается по отвесной линии, но точка, являющаяся проекцией этой линии на поверхность Земли, переносится бы её вращением. Об этом свидетельствует знаменитый ученый-энциклопедист ал-Бируни , который сам, однако, склонялся к неподвижности Земли. По его мнению, если на падающее тело будет действовать какая-то дополнительная сила, то результат её действия на вращающейся Земле приведет к некоторым эффектам, которые на самом деле не наблюдаются .

    Файл:Al-Tusi Nasir.jpeg

    Насир ад-Дин ат-Туси

    Среди ученых XIII-XVI веков, связанных с Марагинской и Самаркандской обсерваториями, развернулась дискуссия о возможности эмпирического обоснования неподвижности Земли. Так, известный астроном Кутб ад-Дин аш-Ширази (XIII-XIV вв.) полагал, что неподвижность Земли может быть удостоверена экспериментом. С другой стороны, основатель Марагинской обсерватории Насир ад-Дин ат-Туси полагал, что если бы Земля вращалась, то это вращение разделял бы слой воздуха, прилегающий к её поверхности, и все движения вблизи поверхности Земли происходили бы точно также, как если бы Земля была неподвижной. Он это обосновывал с помощью наблюдений комет: согласно Аристотелю , кометы являются метеорологическим явлением в верхних слоях атмосферы; тем не менее, астрономические наблюдения показывают, что кометы принимают участие в суточном вращении небесной сферы. Следовательно, верхние слои воздуха увлекаются вращением небосвода, поэтому и нижние слои также могут увлекаться вращением Земли. Таким образом, эксперимент не может дать ответ на вопрос о том, вращается ли Земля. Однако он оставался сторонником неподвижности Земли, поскольку это соответствовало философии Аристотеля.

    Большинство исламских учёных более позднего времени (аль-Урди , аль-Казвини , ан-Найсабури , ал-Джурджани , ал-Бирджанди и другие) были согласны с ат-Туси, что все физические явления на вращающейся и неподвижной Землей проистекали бы одинаково. Однако роль воздуха при этом уже не считалась принципиальной: не только воздух, но и все предметы переносятся вращающейся Землей. Следовательно, для обоснования неподвижности Земли необходимо привлекать учение Аристотеля .

    Особую позицию в этих спорах занял третий директор Самаркандской обсерватории Алауддин Али аль-Кушчи (XV в.), отвергавший философию Аристотеля и считавший вращение Земли физически возможным . В XVII веке к аналогичному выводу пришел иранский теолог и ученый-энциклопедист Баха ад-Дин ал-Амили . По его мнению, астрономы и философы не представили достаточных доказательств, опровергающих вращение Земли .

    Латинский Запад

    Подробное обсуждение возможности движения Земли широко содержится в сочинениях парижских схоластов Жана Буридана , Альберта Саксонского , и Николая Орема (вторая половина XIV в.). Важнейшим аргументом в пользу вращения Земли, а не неба, приведенным в их работах, является малость Земли по сравнению со Вселенной, что делает приписывание суточного вращения небосвода Вселенной в высшей степени противоестественным.

    Однако все эти ученые в конечном итоге отвергли вращение Земли, хотя и на разных основаниях. Так, Альберт Саксонский полагал, что эта гипотеза не способна объяснить наблюдаемые астрономические явления. С этим справедливо не согласились Буридан и Орем , по мнению которых небесные явления должны происходить одинаково независимо от того, что совершает вращение, Земля или Космос. Буридан смог найти только один существенный довод против вращения Земли: стрелы, пускаемые вертикально вверх, падают вниз по отвесной линии, хотя при вращении Земли они, по его мнению, должны были бы отставать от движения Земли и падать к западу от точки выстрела.

    Но даже и этот довод был отвергнут Оремом . Если Земля вращается, то стрела летит вертикально вверх и одновременно с этим движется на восток, будучи захваченная воздухом, вращающимся вместе с Землей. Таким образом, стрела должна упасть на то же место, откуда она была выпущена. Хотя здесь снова упоминается об увлекающей роли воздуха, в действительности он не играет особой роли. Об этом говорит следующая аналогия:

    Подобным образом, если бы воздух был закрыт в движущемся судне, то человеку, окруженному этим воздухом, показалось бы, что воздух не движется… Если бы человек находился в корабле, движущемся с большой скоростью на восток, не зная об этом движении, и если бы он вытянул руку по прямой линии вдоль мачты корабля, ему бы показалось, что его рука совершает прямолинейное движение; точно так же, согласно этой теории, нам представляется, что такая же вещь происходит со стрелой, когда мы пускаем её вертикально вверх или вертикально вниз. Внутри корабля, движущегося с большой скоростью на восток, могут иметь место все виды движения: продольное, поперечное, вниз, вверх, во всех направлениях - и они кажутся точно такими же, как тогда, когда корабль пребывает неподвижным.

    Далее Орем приводит формулировку, предвосхищающую принцип относительности :

    Я заключаю, следовательно, что с помощью какого бы то ни было опыта невозможно продемонстрировать, что небеса имеют суточное движение и что Земля его не имеет.

    Тем не менее, окончательный вердикт Орема о возможности вращения Земли был отрицательным. Основанием для такого вывода был текст Библии :

    Однако до сих пор все поддерживают и я верю, что они [Небеса], а не Земля движется, ибо «Бог сотворил круг Земли, который не поколеблется», несмотря на все противоположные аргументы.

    О возможности суточного вращения Земли упоминали и средневековые европейские ученые и философы более позднего времени, однако никаких новых аргументов, не содержавшихся у Буридана и Орема , добавлено не было.

    Таким образом, практически никто из средневековых ученых так и не принял гипотезу о вращении Земли. Однако в ходе её обсуждения учеными Востока и Запада было высказано множество глубоких мыслей, которые потом будут повторены учеными Нового времени.

    Эпоха Возрождения и Новое время

    В первой половине XVI века увидели свет несколько сочинений, утверждавших, что причиной суточного вращения небосвода является вращение Земли вокруг оси. Одним из них был трактат итальянца Челио Кальканьини «О том, что небо неподвижно, а Земля вращается, или о вечном движении Земли» (написан около 1525 г., издан в 1544 г.). Он не произвел большого впечатления на современников, поскольку к тому времени уже был опубликован фундаментальный труд польского астронома Николая Коперника «О вращениях небесных сфер» (1543 г.), где гипотеза суточного вращения Земли у него стала частью гелиоцентрической системы мира , как у Аристарха Самосского . Свои мысли Коперник ранее изложил в небольшом рукописном сочинении Малый Комментарий (не ранее 1515 г.). Два года ранее основного труда Коперника вышло сочинение немецкого астронома Георга Иоахима Ретика Первое повествование (1541 г.), где популярно изложена теория Коперника.

    В XVI веке Коперника полностью поддержали астрономы Томас Диггес , Ретик , Кристоф Ротман, Михаэль Мёстлин , физики Джамбатиста Бенедетти , Симон Стевин , философ Джордано Бруно , богослов Диего де Цунига . Некоторые учёные принимали вращение Земли вокруг оси, отвергая её поступательное движение. Такова была позиция немецкого астронома Николаса Реймерса , известного также как Урсус, а также итальянских философов Андреа Чезальпино и Франческо Патрици . Не совсем ясна точка зрения выдающегося физика Вильяма Гильберта , который поддержал осевое вращение Земли, но не высказывался по поводу её поступательного движения. В начале XVII века гелиоцентрическая система мира (включая вращение Земли вокруг оси) получила внушительную поддержку со стороны Галилео Галилея и Иоганна Кеплера . Наиболее влиятельными противниками идеи движения Земли в XVI - начале XVII века были астрономы Тихо Браге и Христофор Клавиус .

    Гипотеза о вращении Земли и становление классической механики

    По существу, в XVI-XVII вв. единственным аргументом в пользу осевого вращения Земли было то, что в этом случае отпадает надобность в приписывании звездной сфере огромных скоростей вращения, ведь ещё в античности уже было надежно установлено, что размер Вселенной значительно превышает размер Земли (этот аргумент содержался ещё у Буридана и Орема).

    Против этой гипотезы высказывались соображения, основанные на динамических преставлениях того времени. Прежде всего, это вертикальность траекторий падающих тел . Появились и другие доводы, например, равная дальность стрельбы в восточном и западном направлениях. Отвечая на вопрос о ненаблюдаемости эффектов суточного вращения в земных экспериментах, Коперник писал:

    Вращается не только Земля с соединенной с ней водной стихией, но также и немалая часть воздуха и все, что каким-либо образом сродно с Землёй, или уже ближайший к Земле воздух пропитанный земной и водной материей, следует тем же самым законам природы, что и Земля, или имеет приобретенное движение, которое сообщается ему прилегающей Землей в постоянном вращении и без всякого сопротивления

    Таким образом, главную роль в ненаблюдаемости вращения Земли играет увлечение воздуха её вращением. Такого же мнения придерживались и большинство коперниканцев в XVI веке.

    Сторонниками бесконечности Вселенной в XVI веке были также Томас Диггес , Джордано Бруно , Франческо Патрици - все они поддерживали гипотезу о вращении Земли вокруг оси (а первые двое - также вокруг Солнца). Кристоф Ротман и Галилео Галилей полагали звезды расположенными на разных расстояниях от Земли, хотя явно не высказывались по поводу бесконечности Вселенной. С другой стороны, Иоганн Кеплер отрицал бесконечность Вселенной, хотя и был сторонником вращения Земли.

    Религиозный контекст споров о вращении Земли

    Ряд возражений против вращения Земли был связан с её противоречиями тексту Священного Писания. Эти возражения были двух видов. Во-первых, некоторые места в Библии приводились в подтверждение того, что суточное движение совершает именно Солнце, например:

    Восходит солнце и заходит солнце, и спешит к месту своему, где оно восходит .

    В данном случае под удар попадало осевое вращение Земли, поскольку движение Солнца с востока на запад является частью суточного вращения небосвода. Часто в этой связи цитировался отрывок из книги Иисуса Навина :

    Иисус воззвал к Господу в тот день, в который предал Господь Аморрея в руки Израилю, когда побил их в Гаваоне, и они побиты были пред лицем сынов Израилевых, и сказал пред Израильтянами: стой, солнце, над Гаваоном, и луна, над долиною Авалонскою !

    Поскольку команда остановиться была дана Солнцу, а не Земле, отсюда делался вывод, что суточное движение совершает именно Солнце. Другие отрывки приводились в поддержку неподвижности Земли, например:

    Ты поставил землю на твердых основах: не поколеблется она во веки и веки .

    Эти отрывки считались противоречащими как мнению о вращении Земли вокруг оси, так и обращению вокруг Солнца.

    Сторонники вращения Земли (в частности, Джордано Бруно , Иоганн Кеплер и особенно Галилео Галилей ) проводили защиту по нескольким направлениям. Во-первых, они указывали, что Библия написана языком, понятным простым людям, и если бы её авторы давали четкие с научной точки зрения формулировки, она не смогла бы выполнять свою основную, религиозную миссию . Так, Бруно писал:

    Во многих случаях глупо и нецелесообразно приводить много рассуждений скорее в соответствии с истиной, чем соответственно данному случаю и удобству. Например, если бы вместо слов: «Солнце рождается и поднимается, переваливает через полдень и склоняется к Аквилону» - мудрец сказал: «Земля идет по кругу к востоку и, покидая солнце, которое закатывается, склоняется к двум тропикам, от Рака к Югу, от Козерога к Аквилону», - то слушатели стали бы раздумывать: «Как? Он говорит, что Земля движется? Что это за новости?» В конце концов они его сочли бы за глупца, и он действительно был бы глупцом .

    Такого рода ответы давались в основном на возражения, касавшиеся суточного движения Солнца. Во-вторых, отмечалось, что некоторые отрывки Библии должны быть трактованы аллегорически (см. статью Библейский аллегоризм). Так, Галилей отмечал, что если Св. Писание целиком понимать буквально, то окажется, что у Бога есть руки, он подвержен эмоциям типа гнева и т. п. В целом, главной мыслью защитников учения о движении Земли было то, что наука и религия имеют разные цели: наука рассматривает явления материального мира, руководствуясь доводами разума, целью религии является моральное усовершенствование человека, его спасение. Галилей в этой связи цитировал кардинала Баронио , что Библия учит тому, как взойти на небеса, а не тому, как устроены небеса.

    Эти доводы были сочтены католической церковью неубедительными, и в 1616 г. учение о вращении Земли было запрещено, а в 1631 г. Галилей был осужден судом инквизиции за его защиту. Однако за пределами Италии этот запрет не оказал существенного влияния на развитие науки и способствовал главным образом падению авторитета самой католической церкви.

    Необходимо добавить, что религиозные доводы против движения Земли приводили не только церковные деятели, но и ученые (например, Тихо Браге ). С другой стороны, католический монах Паоло Фоскарини написал небольшое сочинение «Письмо о воззрениях пифагорейцев и Коперника на подвижность Земли и неподвижность Солнца и о новой пифагорейской системе мироздания» (1615 г.), где высказывал соображения, близкие к галилеевским, а испанский богослов Диего де Цунига даже использовал теорию Коперника для толкования некоторых мест Священного Писания (хотя впоследствии он изменил своё мнение). Таким образом, конфликт между богословием и учением о движении Земли был не столько конфликтом между наукой и религией как таковыми, сколько конфликтом между старыми (к началу XVII века уже устаревшими) и новыми методологическими принципами, полагаемыми в основу науки.

    Значение гипотезы о вращении Земли для развития науки

    Осмысление научных проблем, поднимаемых теорией вращающейся Земли, способствовало открытию законов классической механики и созданию новой космологии, в основе которой лежит представление о безграничности Вселенной. Обсуждавшиеся в ходе этого процесса противоречия между этой теорией и буквалистским прочтением Библии способствовали размежеванию естествознания и религии.

    См. также

    Примечания

    1. Пуанкаре, О науке , с. 362-364.
    2. Впервые этот эффект наблюдал