Болезни Военный билет Призыв

Приведение к стандартному виду многочлена примеры. Приведение одночлена к стандартному виду, примеры, решения. Что значит привести одночлен к стандартному виду

СЗЛП - задача линейного программирования вида ax ≥ b или ax ≤ b . где a - матрица коэффициентов, b - вектор ограничений.
Математическая модель ЗЛП называется стандартной , если ограничения в ней представлены в виде линейных неравенств, а целевая функция минимизируется или максимизируется.

Назначение сервиса . Онлайн-калькулятор предназначен для приведения КЗЛП к СЗЛП путем преобразования матрицы a к единичной. При этом возможны две стандартных формы:

  1. Первая стандартная форма ax ≥ b , F(X) → min.
  2. Вторая стандартная форма ax ≤ b , F(X) → max.

Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word .

Как привести каноническую задачу линейного программирования к стандартной форме
Привести к канонической форме

Пример . Дана основная задача линейного программирования. При помощи элементарных преобразований матрицы коэффициентов системы ограничений привести задачу к стандартному виду и решить ее геометрическим методом или доказать, что она не имеет оптимального плана.

Расширенная матрица системы ограничений-равенств данной задачи:

1 6 -1 -1 -1 2
5 -12 -1 2 0 -4
3 -1 -2 0 -1 -7

Приведем систему к единичной матрице методом жордановских преобразований.
1. В качестве базовой переменной выбираем x 1 .
Разрешающий элемент РЭ=1.
Строка, соответствующая переменной x 1 , получена в результате деления всех элементов строки x 1 на разрешающий элемент РЭ=1

В остальных клетках столбца x 1 записываем нули.

Для этого выбираем из старого плана четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.
НЭ = СЭ - (А*В)/РЭ
СТЭ - элемент старого плана, РЭ - разрешающий элемент (1), А и В - элементы старого плана, образующие прямоугольник с элементами СТЭ и РЭ.
1: 1 6: 1 -1: 1 -1: 1 -1: 1 2: 1
5-(1 5):1 -12-(6 5):1 -1-(-1 5):1 2-(-1 5):1 0-(-1 5):1 -4-(2 5):1
3-(1 3):1 -1-(6 3):1 -2-(-1 3):1 0-(-1 3):1 -1-(-1 3):1 -7-(2 3):1

2. В качестве базовой переменной выбираем x 2 .
Разрешающий элемент РЭ=-42.
Строка, соответствующая переменной x 2 , получена в результате деления всех элементов строки x 2 на разрешающий элемент РЭ=-42
На месте разрешающего элемента получаем 1.
В остальных клетках столбца x 2 записываем нули.
Все остальные элементы определяются по правилу прямоугольника.
Представим расчет каждого элемента в виде таблицы:
1-(0 6):-42 6-(-42 6):-42 -1-(4 6):-42 -1-(7 6):-42 -1-(5 6):-42 2-(-14 6):-42
0: -42 -42: -42 4: -42 7: -42 5: -42 -14: -42
0-(0 -19):-42 -19-(-42 -19):-42 1-(4 -19):-42 3-(7 -19):-42 2-(5 -19):-42 -13-(-14 -19):-42

Получаем новую матрицу:
1 0 -3 / 7 0 -2 / 7 0
0 1 -2 / 21 -1 / 6 -5 / 42 1 / 3
0 0 -17 / 21 -1 / 6 -11 / 42 -20 / 3

3. В качестве базовой переменной выбираем x 3 .
Разрешающий элемент РЭ= -17 / 21 .
Строка, соответствующая переменной x 3 , получена в результате деления всех элементов строки x 3 на разрешающий элемент РЭ= -17 / 21
На месте разрешающего элемента получаем 1.
В остальных клетках столбца x 3 записываем нули.
Все остальные элементы определяются по правилу прямоугольника.
Представим расчет каждого элемента в виде таблицы:
1-(0 -3 / 7): -17 / 21 0-(0 -3 / 7): -17 / 21 -3 / 7 -(-17 / 21 -3 / 7): -17 / 21 0-(-1 / 6 -3 / 7): -17 / 21 -2 / 7 -(-11 / 42 -3 / 7): -17 / 21 0-(-6 2 / 3 -3 / 7): -17 / 21
0-(0 -2 / 21): -17 / 21 1-(0 -2 / 21): -17 / 21 -2 / 21 -(-17 / 21 -2 / 21): -17 / 21 -1 / 6 -(-1 / 6 -2 / 21): -17 / 21 -5 / 42 -(-11 / 42 -2 / 21): -17 / 21 1 / 3 -(-6 2 / 3 -2 / 21): -17 / 21
0: -17 / 21 0: -17 / 21 -17 / 21: -17 / 21 -1 / 6: -17 / 21 -11 / 42: -17 / 21 -6 2 / 3: -17 / 21

Получаем новую матрицу:
1 0 0 3 / 34 -5 / 34 60 / 17
0 1 0 -5 / 34 -3 / 34 19 / 17
0 0 1 7 / 34 11 / 34 140 / 17

Поскольку в системе имеется единичная матрица, то в качестве базисных переменных принимаем X = (1,2,3).
Соответствующие уравнения имеют вид:
x 1 + 3 / 34 x 4 - 5 / 34 x 5 = 3 9 / 17
x 2 - 5 / 34 x 4 - 3 / 34 x 5 = 1 2 / 17
x 3 + 7 / 34 x 4 + 11 / 34 x 5 = 8 4 / 17
Выразим базисные переменные через остальные:
x 1 = - 3 / 34 x 4 + 5 / 34 x 5 +3 9 / 17
x 2 = 5 / 34 x 4 + 3 / 34 x 5 +1 2 / 17
x 3 = - 7 / 34 x 4 - 11 / 34 x 5 +8 4 / 17
Подставим их в целевую функцию:
F(X) = - 3(- 3 / 34 x 4 + 5 / 34 x 5 +3 9 / 17) + 13(5 / 34 x 4 + 3 / 34 x 5 +1 2 / 17) + (- 7 / 34 x 4 - 11 / 34 x 5 +8 4 / 17) - 2x 4
или

Система неравенств:
- 3 / 34 x 4 + 5 / 34 x 5 +3 9 / 17 ≥ 0
5 / 34 x 4 + 3 / 34 x 5 +1 2 / 17 ≥ 0
- 7 / 34 x 4 - 11 / 34 x 5 +8 4 / 17 ≥ 0
Приводим систему неравенств к следующему виду:
3 / 34 x 4 - 5 / 34 x 5 ≤ 3 9 / 17
- 5 / 34 x 4 - 3 / 34 x 5 ≤ 1 2 / 17
7 / 34 x 4 + 11 / 34 x 5 ≤ 8 4 / 17
F(X) = - 1 / 34 x 4 + 13 / 34 x 5 +12 3 / 17 → max
Упростим систему.
3x 1 - 5x 2 ≤ 120
- 5x 1 - 3x 2 ≤ 38
7x 1 + 11x 2 ≤ 280
F(X) = - x 1 + 13x 2 +414 → max

Любая десятичная дробь может быть записана в виде a ,bc ... · 10 k . Такие записи часто встречается в научных расчетах. Считается, что работать с ними еще удобнее, чем с обычной десятичной записью.

Сегодня мы научимся приводить к такому виду любую десятичную дробь. Заодно убедимся, что подобная запись - это уже «перебор», и никаких преимуществ в большинстве случаев она не дает.

Для начала - небольшое повторение. Как известно, десятичные дроби можно умножать не только между собой, но и на обычные целые числа (см. урок « »). Особый интерес представляет умножение на степени десятки. Взгляните:

Задача. Найдите значение выражения: 25,81 · 10; 0,00005 · 1000; 8,0034 · 100.

Умножение выполняется по стандартной схеме, с выделением значащей части у каждого множителя. Кратко опишем эти шаги:

Для первого выражения: 25,81 · 10.

  1. Значащие части: 25,81 → 2581 (сдвиг вправо на 2 цифры); 10 → 1 (сдвиг влево на 1 цифру);
  2. Умножаем: 2581 · 1 = 2581;
  3. Суммарный сдвиг: вправо на 2 − 1 = 1 цифру. Выполняем обратный сдвиг: 2581 → 258,1.

Для второго выражения: 0,00005 · 1000.

  1. Значащие части: 0,00005 → 5 (сдвиг вправо на 5 цифр); 1000 → 1 (сдвиг влево на 3 цифры);
  2. Умножаем: 5 · 1 = 5;
  3. Суммарный сдвиг: вправо на 5 − 3 = 2 цифры. Выполняем обратный сдвиг: 5 → ,05 = 0,05.

Последнее выражение: 8,0034 · 100.

  1. Значащие части: 8,0034 → 80 034 (сдвиг вправо на 4 цифры); 100 → 1 (сдвиг влево на 2 цифры);
  2. Умножаем: 80 034 · 1 = 80 034;
  3. Суммарный сдвиг: вправо на 4 − 2 = 2 цифры. Выполняем обратный сдвиг: 80 034 → 800,34.

Давайте немного перепишем исходные примеры и сравним их с ответами:

  1. 25,81 · 10 1 = 258,1;
  2. 0,00005 · 10 3 = 0,05;
  3. 8,0034 · 10 2 = 800,34.

Что происходит? Оказывается, умножение десятичной дроби на число 10 k (где k > 0) равносильно сдвигу десятичной точки вправо на k разрядов. Именно вправо - ведь число увеличивается.

Аналогично, умножение на 10 −k (где k > 0) равносильно делению на 10 k , т.е. сдвигу на k разрядов влево, что приводит к уменьшению числа. Взгляните на примеры:

Задача. Найдите значение выражения: 2,73 · 10; 25,008: 10; 1,447: 100;

Во всех выражениях второе число - степень десятки, поэтому имеем:

  1. 2,73 · 10 = 2,73 · 10 1 = 27,3;
  2. 25,008: 10 = 25,008: 10 1 = 25,008 · 10 −1 = 2,5008;
  3. 1,447: 100 = 1,447: 10 2 = 1,447 · 10 −2 = ,01447 = 0,01447.

Отсюда следует, что одну и ту же десятичную дробь можно записать бесконечным числом способов. Например: 137,25 = 13,725 · 10 1 = 1,3725 · 10 2 = 0,13725 · 10 3 = ...

Стандартный вид числа - это выражения вида a ,bc ... · 10 k , где a , b , c , ... - обычные цифры, причем a ≠ 0. Число k - целое.

  1. 8,25 · 10 4 = 82 500;
  2. 3,6 · 10 −2 = 0,036;
  3. 1,075 · 10 6 = 1 075 000;
  4. 9,8 · 10 −6 = 0,0000098.

Для каждого числа, записанного в стандартном виде, рядом указана соответствующая десятичная дробь.

Переход к стандартному виду

Алгоритм перехода от обычной десятичной дроби к стандартному виду очень прост. Но перед тем как его использовать, обязательно повторите, что такое значащая часть числа (см. урок «Умножение и деление десятичных дробей »). Итак, алгоритм:

  1. Выписать значащую часть исходного числа и поставить после первой значащей цифры десятичную точку;
  2. Найти образовавшийся сдвиг, т.е. на сколько разрядов сместилась десятичная точка по сравнению с исходной дробью. Пусть это будет число k ;
  3. Сравнить значащую часть, которую мы выписали на первом шаге, с исходным числом. Если значащая часть (с учетом десятичной точки) меньше исходного числа, дописать множитель 10 k . Если больше - дописать множитель 10 −k . Это выражение и будет стандартным видом.

Задача. Запишите число в стандартном виде:

  1. 9280;
  2. 125,05;
  3. 0,0081;
  4. 17 000 000;
  5. 1,00005.
  1. 9280 → 9,28. Сдвиг десятичной точки на 3 разряда влево, число уменьшилось (очевидно, 9,28 < 9280). Результат: 9,28 · 10 3 ;
  2. 125,05 → 1,2505. Сдвиг - на 2 разряда влево, число уменьшилось (1,2505 < 125,05). Результат: 1,2505 · 10 2 ;
  3. 0,0081 → 8,1. В этот раз сдвиг произошел вправо на 3 разряда, поэтому число увеличилось (8,1 > 0,0081). Результат: 8,1 · 10 −3 ;
  4. 17000000 → 1,7. Сдвиг - на 7 разрядов влево, число уменьшилось. Результат: 1,7 · 10 7 ;
  5. 1,00005 → 1,00005. Сдвига нет, поэтому k = 0. Результат: 1,00005 · 10 0 (бывает и такое!).

Как видите, в стандартном виде представляются не только десятичные дроби, но и обычные целые числа. Например: 812 000 = 8,12 · 10 5 ; 6 500 000 = 6,5 · 10 6 .

Когда применять стандартную запись

По идее, стандартная запись числа должна сделать дробные вычисления еще проще. Но на практике заметный выигрыш получается только при выполнении операции сравнения. Потому что сравнение чисел, записанных в стандартном виде, выполняется так:

  1. Сравнить степени десятки. Наибольшим будет то число, у которого эта степень больше;
  2. Если степени одинаковые, начинаем сравнивать значащие цифры - как в обычных десятичных дробях. Сравнение идет слева направо, от старшего разряда к младшему. Наибольшим будет то число, в котором очередной разряд окажется больше;
  3. Если степени десятки равны, а все разряды совпадают, то сами дроби тоже равны.

Разумеется, все это верно только для положительных чисел. Для отрицательных чисел все знаки меняются на противоположные.

Замечательно свойство дробей, записанных в стандартном виде, заключается в том, что к их значащей части можно приписывать любое количество нулей - как слева, так и справа. Аналогичное правило существует для других десятичных дробей (см. урок «Десятичные дроби »), но там есть свои ограничения.

Задача. Сравните числа:

  1. 8,0382 · 10 6 и 1,099 · 10 25 ;
  2. 1,76 · 10 3 и 2,5 · 10 −4 ;
  3. 2,215 · 10 11 и 2,64 · 10 11 ;
  4. −1,3975 · 10 3 и −3,28 · 10 4 ;
  5. −1,0015 · 10 −8 и −1,001498 · 10 −8 .
  1. 8,0382 · 10 6 и 1,099 · 10 25 . Оба числа положительные, причем у первого степень десятки меньше, чем у второго (6 < 25). Значит, 8,0382 · 10 6 < 1,099 · 10 25 ;
  2. 1,76 · 10 3 и 2,5 · 10 −4 . Числа снова положительные, причем степень десятки у первого из них больше, чем у второго (3 > −4). Следовательно, 1,76 · 10 3 > 2,5 · 10 −4 ;
  3. 2,215 · 10 11 и 2,64 · 10 11 . Числа положительные, степени десятки совпадают. Смотрим на значащую часть: первые цифры тоже совпадают (2 = 2). Различие начинается на второй цифре: 2 < 6, поэтому 2,215 · 10 11 < 2,64 · 10 11 ;
  4. −1,3975 · 10 3 и −3,28 · 10 4 . Это отрицательные числа. У первого степень десятки меньше (3 < 4), поэтому (в силу отрицательности) само число будет больше: −1,3975 · 10 3 > −3,28 · 10 4 ;
  5. −1,0015 · 10 −8 и −1,001498 · 10 −8 . Снова отрицательные числа, причем степени десятки совпадают. Также совпадают и первые 4 разряда значащей части (1001 = 1001). На 5 разряде начинается отличие, а именно: 5 > 4. Поскольку исходные числа отрицательные, заключаем: −1,0015 · 10 −8 < −1,001498 · 10 −8 .

В изучении темы о многочленах отдельно стоит упомянуть о том, что многочлены встречаются как стандартного, так и не стандартного вида. При этом многочлен нестандартного вида можно привести к стандартному виду. Собственно, этот вопрос и будем разбирать в данной статье. Закрепим разъяснения примерами с подробным пошаговым описанием.

Yandex.RTB R-A-339285-1

Смысл приведения многочлена к стандартному виду

Немного углубимся в само понятие, действие – «приведение многочлена к стандартному виду».

Многочлены, подобно любым другим выражениям, возможно тождественно преобразовывать. Как итог, мы получаем в таком случае выражения, которые тождественно равны исходному выражению.

Определение 1

Привести многочлен к стандартному виду – означает замену исходного многочлена на равный ему многочлен стандартного вида, полученный из исходного многочлена при помощи тождественных преобразований.

Способ приведения многочлена к стандартному виду

Порассуждаем на тему того, какие именно тождественные преобразования приведут многочлен к стандартному виду.

Определение 2

Согласно определению, каждый многочлен стандартного вида состоит из одночленов стандартного вида и не имеет в своем составе подобных членов. Многочлен же нестандартного вида может включать в себя одночлены нестандартного вида и подобные члены. Из сказанного закономерно выводится правило, говорящее о том, как привести многочлен к стандартному виду:

  • в первую очередь к стандартному виду приводятся одночлены, составляющие заданный многочлен;
  • затем производится приведение подобных членов.

Примеры и решения

Разберем подробно примеры, в которых приведем многочлен к стандартному виду. Следовать будем правилу, выведенному выше.

Отметим, что иногда члены многочлена в исходном состоянии уже имеют стандартный вид, и остается только привести подобные члены. Случается, что после первого шага действий не оказывается подобных членов, тогда второй шаг пропускаем. В общих случаях необходимо совершать оба действия из правила выше.

Пример 1

Заданы многочлены:

5 · x 2 · y + 2 · y 3 − x · y + 1 ,

0 , 8 + 2 · a 3 · 0 , 6 − b · a · b 4 · b 5 ,

2 3 7 · x 2 + 1 2 · y · x · (- 2) - 1 6 7 · x · x + 9 - 4 7 · x 2 - 8 .

Необходимо привести их к стандартному виду.

Решение

рассмотрим сначала многочлен 5 · x 2 · y + 2 · y 3 − x · y + 1 : его члены имеют стандартный вид, подобные члены отсутствуют, значит многочлен задан в стандартном виде, и никаких дополнительных действий не требуется.

Теперь разберем многочлен 0 , 8 + 2 · a 3 · 0 , 6 − b · a · b 4 · b 5 . В его состав входят нестандартные одночлены: 2 · a 3 · 0 , 6 и − b · a · b 4 · b 5 , т.е. имеем необходимость привести многочлен к стандартному виду, для чего первым действием преобразуем одночлены в стандартный вид:

2 · a 3 · 0 , 6 = 1 , 2 · a 3 ;

− b · a · b 4 · b 5 = − a · b 1 + 4 + 5 = − a · b 10 , таким образом получаем следующий многочлен:

0 , 8 + 2 · a 3 · 0 , 6 − b · a · b 4 · b 5 = 0 , 8 + 1 , 2 · a 3 − a · b 10 .

В полученном многочлене все члены – стандартные, подобных членов не имеется, значит наши действия по приведению многочлена к стандартному виду завершены.

Рассмотрим третий заданный многочлен: 2 3 7 · x 2 + 1 2 · y · x · (- 2) - 1 6 7 · x · x + 9 - 4 7 · x 2 - 8

Приведем его члены к стандартному виду и получим:

2 3 7 · x 2 - x · y - 1 6 7 · x 2 + 9 - 4 7 · x 2 - 8 .

Мы видим, что в составе многочлена имеются подобные члены, произведем приведение подобных членов:

2 3 7 · x 2 - x · y - 1 6 7 · x 2 + 9 - 4 7 · x 2 - 8 = = 2 3 7 · x 2 - 1 6 7 · x 2 - 4 7 · x 2 - x · y + (9 - 8) = = x 2 · 2 3 7 - 1 6 7 - 4 7 - x · y + 1 = = x 2 · 17 7 - 13 7 - 4 7 - x · y + 1 = = x 2 · 0 - x · y + 1 = x · y + 1

Таким образом, заданный многочлен 2 3 7 · x 2 + 1 2 · y · x · (- 2) - 1 6 7 · x · x + 9 - 4 7 · x 2 - 8 принял стандартный вид − x · y + 1 .

Ответ:

5 · x 2 · y + 2 · y 3 − x · y + 1 - многочлен задан стандартным;

0 , 8 + 2 · a 3 · 0 , 6 − b · a · b 4 · b 5 = 0 , 8 + 1 , 2 · a 3 − a · b 10 ;

2 3 7 · x 2 + 1 2 · y · x · (- 2) - 1 6 7 · x · x + 9 - 4 7 · x 2 - 8 = - x · y + 1 .

Во многих задачах действие приведения многочлена к стандартному виду – промежуточное при поиске ответа на заданный вопрос. Рассмотрим и такой пример.

Пример 2

Задан многочлен 11 - 2 3 z 2 · z + 1 3 · z 5 · 3 - 0 . 5 · z 2 + z 3 . Необходимо привести его к с стандартному виду, указать его степень и расположить члены заданного многочлена по убывающим степеням переменной.

Решение

Приведем члены заданного многочлена к стандартному виду:

11 - 2 3 z 3 + z 5 - 0 . 5 · z 2 + z 3 .

Следующим шагом приведем подобные члены:

11 - 2 3 z 3 + z 5 - 0 . 5 · z 2 + z 3 = 11 + - 2 3 · z 3 + z 3 + z 5 - 0 , 5 · z 2 = = 11 + 1 3 · z 3 + z 5 - 0 , 5 · z 2

Мы получили многочлен стандартного вида, что дает нам возможность обозначить степень многочлена (равна наибольшей степени составляющих его одночленов). Очевидно, что искомая степень равна 5 .

Остается только расположить члены по убывающим степеням переменных. С этой целью мы просто переставим местами члены в полученном многочлене стандартного вида с учетом требования. Таким образом, получим:

z 5 + 1 3 · z 3 - 0 , 5 · z 2 + 11 .

Ответ:

11 - 2 3 · z 2 · z + 1 3 · z 5 · 3 - 0 , 5 · z 2 + z 3 = 11 + 1 3 · z 3 + z 5 - 0 , 5 · z 2 , при этом степень многочлена – 5 ; в результате расположения членов многочлена по убывающим степеням переменных многочлен примет вид: z 5 + 1 3 · z 3 - 0 , 5 · z 2 + 11 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

На данном уроке мы вспомним основные определения данной темы и рассмотрим некоторые типовые задачи, а именно приведение многочлена к стандартному виду и вычисление численного значения при заданных значениях переменных. Мы решим несколько примеров, в которых будет применяться приведение к стандартному виду для решения разного рода задач.

Тема: Многочлены. Арифметические операции над одночленами

Урок: Приведение многочлена к стандартному виду. Типовые задачи

Напомним основное определение: многочлен - это сумма одночленов. Каждый одночлен, входящий в состав многочлена как слагаемое называется его членом. Например:

Двучлен;

Многочлен;

Двучлен;

Поскольку многочлен состоит из одночленов, то первое действие с многочленом следует отсюда - нужно привести все одночлены к стандартному виду. Напомним, что для этого нужно перемножить все численные множители - получить численный коэффициент, и перемножить соответствующие степени - получить буквенную часть. Кроме того, обратим внимание на теорему о произведении степеней: при умножении степеней показатели их складываются.

Рассмотрим важную операцию - приведение многочлена к стандартному виду. Пример:

Комментарий: чтобы привести многочлен к стандартному виду, нужно привести к стандартному виду все одночлены, входящие в его состав, после этого, если есть подобные одночлены - а это одночлены с одинаковой буквенной частью - выполнить действия с ними.

Итак, мы рассмотрели первую типовую задачу - приведение многочлена к стандартному виду.

Следующая типовая задача - вычисление конкретного значения многочлена при заданных численных значениях входящих в него переменных. Продолжим рассматривать предыдущий пример и зададим значения переменных:

Комментарий: напомним, что единица в любой натуральной степени равна единице, а ноль в любой натуральной степени равен нулю, кроме того, напомним, что при умножении любого числа на ноль получаем ноль.

Рассмотрим ряд примеров на типовые операции приведения многочлена к стандартному виду и вычисление его значения:

Пример 1 - привести к стандартному виду:

Комментарий: первое действие - приводим одночлены к стандартному виду, нужно привести первый, второй и шестой; второе действие - приводим подобные члены, то есть выполняем над ними заданные арифметические действия: первый складываем с пятым, второй с третьим, остальные переписываем без изменений, так как у них нет подобных.

Пример 2 - вычислить значение многочлена из примера 1 при заданных значениях переменных:

Комментарий: при вычислении следует вспомнить, что единица в любой натуральной степени это единица, при затруднении вычислений степеней двойки можно воспользоваться таблицей степеней.

Пример 3 - вместо звездочки поставить такой одночлен, чтобы результат не содержал переменной :

Комментарий: независимо от поставленной задачи, первое действие всегда одинаково - привести многочлен к стандартному виду. В нашем примере это действие сводится к приведению подобных членов. После этого следует еще раз внимательно прочитать условие и подумать, каким образом мы можем избавиться от одночлена . очевидно, что для этого нужно к нему прибавить такой же одночлен, но с противоположным знаком - . далее заменяем звездочку этим одночленом и убеждаемся в правильности нашего решения.

Мы отметили, что любой одночлен можно привести к стандартному виду . В этой статье мы разберемся, что называют приведением одночлена к стандартному виду, какие действия позволяют осуществить этот процесс, и рассмотрим решения примеров с подробными пояснениями.

Навигация по странице.

Что значит привести одночлен к стандартному виду?

С одночленами удобно работать, когда они записаны в стандартном виде . Однако достаточно часто одночлены задаются в виде, отличном от стандартного. В этих случаях всегда можно перейти от исходного одночлена к одночлену стандартного вида, выполнив тождественные преобразования . Процесс проведения таких преобразований называют приведением одночлена к стандартному виду.

Обобщим приведенные рассуждения. Привести одночлен к стандартному виду – это значит выполнить с ним такие тождественные преобразования, чтобы он принял стандартный вид.

Как привести одночлен к стандартному виду?

Пришло время разобраться с тем, как приводить одночлены к стандартному виду.

Как известно из определения, одночлены нестандартного вида представляют собой произведения чисел, переменных и их степеней, причем, возможно, повторяющихся. А одночлен стандартного вида может содержать в своей записи только одно число и неповторяющиеся переменные или их степени. Теперь осталось понять, как произведения первого вида привести к виду вторых?

Для этого нужно воспользоваться следующим правилом приведения одночлена к стандартному виду , состоящим из двух шагов:

  • Во-первых, выполняется группировка числовых множителей, а также одинаковых переменных и их степеней;
  • Во-вторых, вычисляется произведение чисел и применяется .

В результате применения озвученного правила любой одночлен будет приведен к стандартному виду.

Примеры, решения

Осталось научиться применять правило из предыдущего пункта при решении примеров.

Пример.

Приведите одночлен 3·x·2·x 2 к стандартному виду.

Решение.

Сгруппируем числовые множители и множители с переменной x . После группировки исходный одночлен примет вид (3·2)·(x·x 2) . Произведение чисел в первых скобках равно 6 , а правило умножения степеней с одинаковыми основаниями позволяет выражение во вторых скобках представить как x 1 +2=x 3 . В итоге получаем многочлен стандартного вида 6·x 3 .

Приведем краткую запись решения: 3·x·2·x 2 =(3·2)·(x·x 2)=6·x 3 .

Ответ:

3·x·2·x 2 =6·x 3 .

Итак, для приведения одночлена к стандартному виду необходимо уметь проводить группировку множителей, выполнять умножение чисел, и работать со степенями.

Для закрепления материала решим еще один пример.

Пример.

Представьте одночлен в стандартном виде и укажите его коэффициент.

Решение.

Исходный одночлен имеет в своей записи единственный числовой множитель −1 , перенесем его в начало. После этого отдельно сгруппируем множители с переменной a , отдельно – с переменно b , а переменную m группировать не с чем, оставим ее как есть, имеем . После выполнения действий со степенями в скобках одночлен примет нужный нам стандартный вид , откуда виден коэффициент одночлена , равный −1 . Минус единицу можно заменить знаком минус: .